3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz
phone ext. 7203
rev. October 24, 2023

Open Informatics Master's Course

Module IV

Computing with a Camera Pair

4.1) Camera Motions Inducing Epipolar Geometry, Fundamental and Essential Matrices
4.2 Estimating Fundamental Matrix from 7 Correspondences
4.3 Estimating Essential Matrix from 5 Correspondences
4.4) Triangulation: 3D Point Position from a Pair of Corresponding Points
covered by
[1] [H\&Z] Secs: 9.1, 9.2, 9.6, 11.1, 11.2, 11.9, 12.2, 12.3, 12.5.1
[2] H. Li and R. Hartley. Five-point motion estimation made easy. In Proc ICPR 2006, pp. 630-633
additional references
\square H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 293(5828):133-135, 1981.

Geometric Model of a Camera Stereo Pair

$$
\mathbf{P}_{i}=\left[\begin{array}{ll}
\mathbf{Q}_{i} & \mathbf{q}_{i}
\end{array}\right]=\mathbf{K}_{i}\left[\begin{array}{ll}
\mathbf{R}_{i} & \mathbf{t}_{i}
\end{array}\right]=\mathbf{K}_{i} \mathbf{R}_{i}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}_{i}
\end{array}\right] \quad i=1,2 \quad \rightarrow 31
$$

Epipolar geometry:

- brings constraints necessary for inter-image matching
- its parametric form encapsulates information about the relative pose of two cameras

Description

- baseline b joins projection centers C_{1}, C_{2}

$$
\mathbf{b}=\mathbf{C}_{2}-\mathbf{C}_{1}
$$

- epipole $e_{i} \in \pi_{i}$ is the image of C_{j} :

$$
\underline{\mathbf{e}}_{1} \simeq \mathbf{P}_{1} \underline{\mathbf{C}}_{2}, \quad \underline{\mathbf{e}}_{2} \simeq \mathbf{P}_{2} \underline{\mathbf{C}}_{1}
$$

- $l_{i} \in \pi_{i}$ is the image of optical ray $d_{j}, j \neq i$ and also the epipolar plane

$$
\varepsilon=\left(C_{2}, X, C_{1}\right)
$$

- l_{j} is the epipolar line ('epipolar') in image π_{j} induced by m_{i} in image π_{i}

Epipolar constraint relates \underline{m}_{1} and $\underline{\mathbf{m}}_{2}: \quad$ corresponding d_{2}, b, d_{1} are coplanar \quad a necessary condition $\rightarrow 88$

Epipolar Geometry Example: Forward Motion

image 1

- red: correspondences
- green: epipolar line pairs per correspondence

image 2
click on the image to see their IDs same ID in both images

Epipole is the image of the other camera's center.
How high was the camera above the floor?

Cross Products and Maps by Skew-Symmetric 3×3 Matrices

- There is an equivalence $\mathbf{b} \times \mathbf{m}=[\mathbf{b}]_{\times} \mathbf{m}$, where $[\mathbf{b}]_{\times}$is a 3×3 skew-symmetric matrix

$$
[\mathbf{b}]_{\times}=\left[\begin{array}{ccc}
0 & -b_{3} & b_{2} \\
b_{3} & 0 & -b_{1} \\
-b_{2} & b_{1} & 0
\end{array}\right], \quad \text { assuming } \quad \mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

Some properties

1. $[\mathbf{b}]_{\times}^{\top}=-[\mathbf{b}]_{\times}$
the general antisymmetry property
2. \mathbf{A} is skew-symmetric iff $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}=0$ for all \mathbf{x} skew-sym mtx generalizes cross products
3. $[\mathbf{b}]_{\times}^{3}=-\|\mathbf{b}\|^{2} \cdot[\mathbf{b}]_{\times}$
4. $\left\|[\mathbf{b}]_{\times}\right\|_{F}=\sqrt{2}\|\mathbf{b}\|$
5. $\operatorname{rank}[\mathbf{b}]_{\times}=2$ iff $\|\mathbf{b}\|>0 \quad 3 \times 3$
6. $[\mathbf{b}]_{\times} \mathbf{b}=\mathbf{0}$
7. eigenvalues of $[\mathbf{b}]_{\times}$are $(0, \lambda,-\lambda)$
8. for any 3×3 regular $\mathbf{B}: \quad \mathbf{B}^{\top}[\mathbf{B z}]_{\times} \mathbf{B}=\operatorname{det}(\mathbf{B})[\mathbf{z}]_{\times}$
follows from the factoring on $\rightarrow 39$
9. in particular: if $\mathbf{R} \mathbf{R}^{\top}=\mathbf{I}$ then $\underset{z}{[\mathbf{R} b]_{\times}}=\underset{z}{[b]} \mathbf{R}^{\top}$

- note that if \mathbf{R}_{b} is rotation about \mathbf{b} then $\mathbf{R}_{b} \mathbf{b}=\mathbf{b}$
- note $[\mathbf{b}]_{\times}$is not a homography; it is not a rotation matrix
it is the logarithm of a rotation mtx

Expressing the Epipolar Constraint Algebraically: Fundamental Matrix

- point $\underline{\mathbf{m}}_{2}$ is incident on epipolar line $\underline{\mathbf{l}}_{2} \simeq \mathbf{F m}_{1}$
- point $\underline{\mathbf{m}}_{1}$ is incident on epipolar line $\underline{l}_{1} \simeq \mathbf{F}^{\top} \underline{\mathbf{m}}_{2}$
- all epipolars meet at the epipole
- epipolar lines map by epipolar homography $\mathbf{H}_{e}^{-\top}$
- epipoles map by epipolar homography \mathbf{H}_{e}

$>$ cont'd

$$
\mathbf{F}=(\underbrace{\mathbf{Q}_{2} \mathbf{Q}_{1}^{-1}}_{\text {epipolar homography } \mathbf{H}_{e}})^{-\top}\left[\underline{\mathbf{e}}_{1}\right]_{\times}=\mathbf{H}_{e}^{-\top}[\overbrace{\left.\underline{\mathbf{e}}_{1}\right]_{\times}}^{\text {left eeipole }} \stackrel{\rightarrow}{\sim} \overbrace{\sim}^{\text {right epipole }}[\overbrace{\mathbf{H}_{e} \underline{\mathbf{e}}_{1}}^{\underline{\underline{\mathbf{Q}}}_{2}}]_{\times} \mathbf{H}_{e}
$$

- epipole $\underline{\mathbf{e}}_{1}$ falls in the nullspace of $\mathbf{F}: \quad \mathbf{F e}_{1}=\mathbf{H}_{e}^{-\top}\left[\underline{\mathbf{e}}_{1}\right]_{\times} \underline{\mathbf{e}}_{1}=\mathbf{0}$, also $\underline{\mathbf{e}}_{2}^{\top} \mathbf{F}=\mathbf{0}$
- F maps points to lines and it is not a homography
- $\mathbf{H}_{e}^{-\top}$ maps epipolars to epipolars: $\mathbf{l}_{2} \simeq \mathbf{H}_{e}^{-\top} \underline{\mathbf{l}}_{1}$
- there is another useful map that does the job for epipolars: $\underline{\mathbf{l}}_{2} \simeq \mathbf{F}\left[\mathbf{e}_{1}\right]_{\times} \underline{\mathbf{l}}_{1}=\mathbf{F}\left(\underline{\mathbf{e}}_{1} \times \underline{\mathbf{l}}_{1}\right)$

-The Essential Matrix

$\mathbf{P}_{i}=\left[\begin{array}{ll}\mathbf{Q}_{i} & \mathbf{q}_{i}\end{array}\right]=\mathbf{K}_{i}\left[\begin{array}{ll}\mathbf{R}_{i} & \mathbf{t}_{i}\end{array}\right], i=1,2$

$$
\begin{aligned}
& \mathbf{R}_{21} \text { - relative camera rotation, } \mathbf{R}_{21}=\mathbf{R}_{2} \mathbf{R}_{1}^{\top} \\
& \mathbf{t}_{21} \text { - relative camera translation } \mathbf{t}_{21}=\mathbf{t}_{2}-\mathbf{R}_{21} \mathbf{t}_{1}=-\mathbf{R}_{2} \mathbf{b} \rightarrow 74
\end{aligned}
$$

b - baseline vector (world coordinate system)
remember: $\mathbf{C}=-\mathbf{Q}^{-1} \mathbf{q}=-\mathbf{R}^{\top} \mathbf{t}$

- the epipole is the image of the (projection center) of the other camera-

$$
b=c_{2}-c_{1}
$$

$$
\begin{array}{r}
x_{2}^{\top} E x_{1}=0 \\
\mathbf{E}
\end{array}
$$

$$
\mathbf{E}=\left[-\mathbf{t}_{21}\right]_{\times} \mathbf{R}_{21} \stackrel{y}{=} \underbrace{\left[\mathbf{R}_{2} \mathbf{b}\right]_{\times}}_{\text {baseline in Cam 2 }} \mathbf{R}_{21} \stackrel{\rightarrow 76 / 9}{=} \mathbf{R}_{21} \underbrace{\left[\mathbf{R}_{1} \mathbf{b}\right]_{\times}}_{\text {baseline in Cam 1 }}=\mathbf{R}_{21}\left[-\mathbf{R}_{21}^{\top} \mathbf{t}_{21}\right]_{\times} \quad \text { essential } \quad \text { S D oF }
$$

- E captures relative camera pose only
(the change of the world coordinate system by (\mathbf{R}, \mathbf{t}) does not change \mathbf{E})

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\mathbf{R}_{i}^{\prime} & \mathbf{t}_{i}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{R}_{i} & \mathbf{t}_{i}
\end{array}\right] \cdot\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{R}_{i} \mathbf{R} & \mathbf{R}_{i} \mathbf{t}+\mathbf{t}_{i}
\end{array}\right], } \\
& \mathbf{R}_{21}^{\prime}=\mathbf{R}_{2}^{\prime} \mathbf{R}_{1}^{\prime \top}=\cdots=\mathbf{R}_{21} \text { then } \\
& \mathbf{t}_{21}^{\prime}=\mathbf{t}_{2}^{\prime}-\mathbf{R}_{21}^{\prime} \mathbf{t}_{1}^{\prime}=\cdots=\mathbf{t}_{21}
\end{aligned}
$$

- the translation length $\left\|\mathbf{t}_{21}\right\|$ is lost, since \mathbf{E} is homogeneous

$$
\begin{aligned}
& \underline{\mathbf{e}}_{1} \simeq \mathbf{Q}_{1} \mathbf{C}_{2}+\mathbf{q}_{1}=\mathbf{Q}_{1} \mathbf{C}_{2}-\mathbf{Q}_{1} \mathbf{C}_{1}=\mathbf{K}_{1} \mathbf{R}_{1} \mathbf{b}=-\mathbf{K}_{1} \mathbf{R}_{1} \mathbf{R}_{2}^{\top} \mathbf{t}_{21}=-\mathbf{K}_{1} \mathbf{R}_{21}^{\top} \mathbf{t}_{21} \quad \text { rank } 2 \text {, hawog. } \\
& \mathbf{F}=\mathbf{Q}_{2}^{-\top} \mathbf{Q}_{1}^{\top}\left[\underline{\mathbf{e}}_{1}\right]_{\times}=\mathbf{Q}_{2}^{-\top} \mathbf{Q}_{1}^{\top}\left[-\mathbf{K}_{1} \mathbf{R}_{21}^{\top} \mathbf{t}_{21}\right]_{\times}={ }^{\circledast} 1 . \simeq \mathbf{K}_{2}^{-\top} \underbrace{\left[-\mathbf{t}_{21}\right]_{\times} \mathbf{R}_{21}}_{\mathbf{E}} \mathbf{K}_{1}^{-1} \text { fundamental } 7 D_{0} \Gamma
\end{aligned}
$$

Summary: Relations and Mappings Involving Fundamental Matrix

$$
\begin{array}{rlrl}
0 & =\underline{\mathbf{m}}_{2}^{\top} \mathbf{F} \underline{\mathbf{m}}_{1} & & \\
\underline{\mathbf{e}}_{1} & \simeq \operatorname{null}(\mathbf{F}), & & \underline{\mathbf{e}}_{2} \simeq \operatorname{null}\left(\mathbf{F}^{\top}\right) \\
\underline{\mathbf{e}}_{1} & \simeq \mathbf{H}_{e}^{-1} \underline{\mathbf{e}}_{2} & & \underline{\mathbf{e}}_{2} \simeq \mathbf{H}_{e} \underline{\mathbf{e}}_{1} \\
\underline{\mathbf{l}}_{1} & \simeq \mathbf{F}^{\top} \underline{\mathbf{m}}_{2} & \underline{\mathbf{l}}_{2} \simeq \mathbf{F}_{1} \\
\underline{\mathbf{l}}_{1} & \simeq \mathbf{H}_{e}^{\top} \underline{\mathbf{l}}_{2} & & \underline{\mathbf{l}}_{2} \simeq \mathbf{H}_{e}^{-\top} \underline{\mathbf{l}}_{1} \\
\underline{\mathbf{l}}_{1} & \simeq \mathbf{F}^{\top}\left[\underline{\mathbf{e}}_{2}\right]_{\times} \underline{\mathbf{l}}_{2} & & \underline{\mathbf{l}}_{2} \simeq \mathbf{F}\left[\underline{\mathbf{e}}_{1}\right]_{\times} \underline{\mathbf{l}}_{1}
\end{array}
$$

- $\mathbf{H}_{e}=\mathbf{Q}_{2} \mathbf{Q}_{1}^{-1}$ is the epipolar homography $\rightarrow 79$
$\mathbf{H}_{e}^{-\top}$ maps epipolar lines to epipolar lines, where

$$
\mathbf{H}_{e}=\mathbf{Q}_{2} \mathbf{Q}_{1}^{-1}=\mathbf{K}_{2} \mathbf{R}_{21} \mathbf{K}_{1}^{-1}
$$

$$
\text { you have seen this } \rightarrow 59
$$

- $\mathbf{F}\left[\underline{\mathbf{e}}_{1}\right]_{\times}$maps epipolar lines to epipolar lines but it is not a homography
- The essential matrix is the 'calibrated fundamental matrix'

Representation Theorem for Fundamental Matrices

Def: \mathbf{F} is fundamental when $\mathbf{F} \simeq \mathbf{H}^{-\top}\left[\mathbf{e}_{1}\right]_{\times}$, where \mathbf{H} is regular and $\underline{e}_{1} \simeq \operatorname{null} \mathbf{F} \neq \mathbf{0}$.
Theorem: A 3×3 matrix \mathbf{A} is fundamental iff it is of rank 2 .

Proof.

homofeneons

Direct: By the geometry, \mathbf{H} is full-rank, $\underline{\mathbf{e}}_{1} \neq \mathbf{0}$, hence $\mathbf{H}^{-\top}\left[\mathbf{e}_{1}\right]_{\times}$is a 3×3 matrix of rank 2 .

Converse:

1. let $\mathbf{A}=\mathbf{U D V}^{\top}$ be the SVD of \mathbf{A} of rank 2; then $\mathbf{D}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, 0\right), \lambda_{1} \geq \lambda_{2}>0$
2. we write $\mathbf{D}=\mathbf{B C}$, where $\mathbf{B}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right), \mathbf{C}=\operatorname{diag}(1,1,0), \lambda_{3}>0$
3. then $\mathbf{A}=\mathbf{U B C V}^{\mathbf{B}}=\underbrace{\mathbf{U B C}}_{\mathbf{D}}(\underbrace{\left.\mathbf{W} \mathbf{W}^{\top}\right) \mathbf{V}^{\top}}_{\mathbf{I}}$ with \mathbf{W} rotation matrix
4. we look for a rotation mtx \mathbf{W} that maps \mathbf{C} to a skew-symmetric \mathbf{S}, i.e. $\mathbf{S}=\mathbf{C W}$ (if it exists)
5. then $\mathbf{W}=\left[\begin{array}{ccc}0 & \alpha & 0 \\ -\alpha & 0 & 0 \\ 0 & 0 & 1\end{array}\right],|\alpha|=1$, and \mathbf{S}
6. we write
7. \mathbf{H} regular, $\mathbf{A v}_{3}=\mathbf{0}, \mathbf{u}_{3} \mathbf{A}=\mathbf{0}$ for $\mathbf{v}_{3} \neq \mathbf{0}, \mathbf{u}_{3} \neq \mathbf{0}$

- we also got a (non-unique: α, λ_{3}) decomposition formula for fundamental matrices
- it follows there is no constraint on \mathbf{F} except for the rank

Thank You

