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Module IV

Computing with a Camera Pair

4.1Camera Motions Inducing Epipolar Geometry, Fundamental and Essential Matrices

4.2Estimating Fundamental Matrix from 7 Correspondences

4.3Estimating Essential Matrix from 5 Correspondences

4.4Triangulation: 3D Point Position from a Pair of Corresponding Points

covered by

[1] [H&Z] Secs: 9.1, 9.2, 9.6, 11.1, 11.2, 11.9, 12.2, 12.3, 12.5.1

[2] H. Li and R. Hartley. Five-point motion estimation made easy. In Proc ICPR 2006, pp. 630–633

additional references

H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 293(5828):133–135, 1981.
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▶Geometric Model of a Camera Stereo Pair

Pi =
[
Qi qi

]
= Ki

[
Ri ti

]
= KiRi

[
I −Ci

]
i = 1, 2 →31

Epipolar geometry:

• brings constraints necessary for inter-image matching

• its parametric form encapsulates information about the relative pose of two cameras" �2�1 d2d1
e2e1m1

X
C2l1 m2C1 l2b

two-camera setup

Description

• baseline b joins projection centers C1, C2

b = C2 −C1

• epipole ei ∈ πi is the image of Cj :

e1 ≃ P1C2, e2 ≃ P2C1

• li ∈ πi is the image of optical ray dj , j ̸= i and also the
epipolar plane

ε = (C2, X,C1)

• lj is the epipolar line (‘epipolar’) in image πj induced by mi in
image πi

Epipolar constraint relates m1 and m2: corresponding d2, b, d1 are coplanar a necessary condition →88
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Epipolar Geometry Example: Forward Motion
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image 1 image 2
• red: correspondences click on the image to see their IDs
• green: epipolar line pairs per correspondence same ID in both images

Epipole is the image of the other camera’s center.
How high was the camera above the floor?

movement2 1 h=?
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▶Cross Products and Maps by Skew-Symmetric 3× 3 Matrices

• There is an equivalence b×m = [b]×m, where [b]× is a 3× 3 skew-symmetric matrix

[b]× =

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 , assuming b =

b1b2
b3


Some properties

1. [b]⊤× = −[b]× the general antisymmetry property

2. A is skew-symmetric iff x⊤Ax = 0 for all x skew-sym mtx generalizes cross products

3. [b]3× = −∥b∥2 · [b]×
4. ∥[b]×∥F =

√
2 ∥b∥ Frobenius norm (∥A∥F =

√
tr(A⊤A) =

√∑
i,j |aij |

2)

5. rank [b]× = 2 iff ∥b∥ > 0 check minors of [b]×

6. [b]×b = 0

7. eigenvalues of [b]× are (0, λ,−λ)

8. for any 3× 3 regular B : B⊤[Bz]×B = detB [z]× follows from the factoring on →39

9. in particular: if RR⊤ = I then [Rb]× = R[b]×R
⊤

• note that if Rb is rotation about b then Rbb = b

• note [b]× is not a homography; it is not a rotation matrix it is the logarithm of a rotation mtx
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▶Expressing the Epipolar Constraint Algebraically: Fundamental Matrix

"p"b �2�1 d2d1
e2e1m1

X
C2l1 m2C1 l2 Pi =

[
Qi qi

]
= Ki

[
Ri ti

]
, i = 1, 2

0 = d⊤
2 pε︸︷︷︸
normal of ε

≃ (Q−1
2 m2)

⊤︸ ︷︷ ︸
optical ray

Q⊤
1 l1︸ ︷︷ ︸

optical plane

= m⊤
2 Q−⊤

2 Q⊤
1 (e1 ×m1)︸ ︷︷ ︸

image of ε in π2

= m⊤
2

(
(Q2Q

−1
1 )−⊤ [e1]×

)︸ ︷︷ ︸
fundamental matrix F

m1

Epipolar constraint m⊤
2 Fm1 = 0 is a point-line incidence constraint

F = ( Q2Q
−1
1︸ ︷︷ ︸

epipolar homography He

)−⊤[e1]× = H−⊤
e [

left epipole︷︸︸︷
e1 ]×

→76≃ [

right epipole︷ ︸︸ ︷
Hee1]×He

• point m2 is incident on epipolar line l2 ≃ Fm1

• point m1 is incident on epipolar line l1 ≃ F⊤m2

• all epipolars meet at the epipole
• epipolar lines map by epipolar homography H−⊤

e

• epipoles map by epipolar homography He
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▶cont’d

F = ( Q2Q
−1
1︸ ︷︷ ︸

epipolar homography He

)−⊤[e1]× = H−⊤
e [

left epipole︷︸︸︷
e1 ]×

→76≃ [

right epipole e2︷ ︸︸ ︷
Hee1 ]×He

• epipole e1 falls in the nullspace of F: Fe1 = H−⊤
e [e1]×e1 = 0, also e⊤2 F = 0

• F maps points to lines and it is not a homography

• H−⊤
e maps epipolars to epipolars: l2 ≃ H−⊤

e l1

• there is another useful map that does the job for epipolars: l2 ≃ F[e1]×l1 = F(e1 × l1)

l1

e1

e1 × l1

e1

proof by point/line ‘transmutation’ (left):
• point e1 does not lie on line e1 (dashed): e⊤1 e1 ̸= 0
• e1 × l1 is a point on l1
• F maps that point to l2

• the composition F[e1]× is not a homography
• usefulness: no need to decompose F to obtain He
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▶The Essential Matrix

Pi =
[
Qi qi

]
= Ki

[
Ri ti

]
, i = 1, 2

R21 – relative camera rotation, R21 = R2R
⊤
1

t21 – relative camera translation, t21 = t2 − R21t1 = −R2b →74

b – baseline vector (world coordinate system)

remember: C = −Q−1q = −R⊤t →33 and 35

• the epipole is the image of the (projection center) of the other camera

e1 ≃ Q1C2 + q1 = Q1C2 −Q1C1 = K1R1b = −K1R1R
⊤
2 t21 = −K1R

⊤
21t21

F = Q−⊤
2 Q⊤

1 [e1]× = Q−⊤
2 Q⊤

1 [−K1R
⊤
21t21]× =

⊛ 1· · · ≃ K−⊤
2 [−t21]×R21︸ ︷︷ ︸

E

K−1
1 fundamental

E = [−t21]×R21 = [R2b]×︸ ︷︷ ︸
baseline in Cam 2

R21
→76/9
= R21 [R1b]×︸ ︷︷ ︸

baseline in Cam 1

= R21[−R⊤
21t21]× essential

• E captures relative camera pose only [Longuet-Higgins 1981]

(the change of the world coordinate system by (R, t) does not change E)[
R′

i t′i
]
=
[
Ri ti

]
·
[
R t
0⊤ 1

]
=
[
RiR Rit+ ti

]
,

then
R′

21 = R′
2R

′
1
⊤

= · · · = R21 t′21 = t′2 −R′
21t

′
1 = · · · = t21

• the translation length ∥t21∥ is lost, since E is homogeneous
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▶Summary: Relations and Mappings Involving Fundamental Matrix

e1

m1

l1

m2

l2

π2π1

e2

0 = m⊤
2 Fm1

e1 ≃ null(F), e2 ≃ null(F⊤)

e1 ≃ H−1
e e2 e2 ≃ Hee1

l1 ≃ F⊤m2 l2 ≃ Fm1

l1 ≃ H⊤
e l2 l2 ≃ H−⊤

e l1

l1 ≃ F⊤[e2]×l2 l2 ≃ F[e1]×l1

m⊤
2 Fm1 = 0m1 m2

l1l2

F⊤F

H−⊤
e or F [e1]×

H⊤
e or F⊤[e2]×

• He = Q2Q
−1
1 is the epipolar homography→79

H−⊤
e maps epipolar lines to epipolar lines, where

He = Q2Q
−1
1 = K2R21K

−1
1

you have seen this →59

• F[e1]× maps epipolar lines to epipolar lines but it is not a
homography

• The essential matrix is the ‘calibrated fundamental matrix’
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▶Representation Theorem for Fundamental Matrices

Def: F is fundamental when F ≃ H−⊤[e1]×, where H is regular and e1 ≃ nullF ̸= 0.

Theorem: A 3× 3 matrix A is fundamental iff it is of rank 2.

Proof.
Direct: By the geometry, H is full-rank, e1 ̸= 0, hence H−⊤[e1]× is a 3× 3 matrix of rank 2.

Converse:

1. let A = UDV⊤ be the SVD of A of rank 2; then D = diag(λ1, λ2, 0), λ1 ≥ λ2 > 0

2. we write D = BC, where B = diag(λ1, λ2, λ3), C = diag(1, 1, 0), λ3 > 0

3. then A = UBCV⊤ = UBCWW⊤︸ ︷︷ ︸
I

V⊤ with W rotation matrix

4. we look for a rotation mtx W that maps C to a skew-symmetric S, i.e. S = CW (if it exists)

5. then W =

 0 α 0
−α 0 0
0 0 1

, |α| = 1, and S = CW =

1 0 0
0 1 0
0 0 0

 0 α 0
−α 0 0
0 0 1

 = · · · = [s]×, where s = (0, 0, 1)

6. we write v3 – 3rd column of V, u3 – 3rd column of U

A = UB[s]×︸ ︷︷ ︸
CW

W⊤V⊤ =
⊛ 1· · · = UB(VW)⊤︸ ︷︷ ︸

≃H−⊤

[v3]×︸ ︷︷ ︸
3rd col V

→76/9
≃ [Hv3]×︸ ︷︷ ︸

≃[u3]×

H, (12)

7. H regular, Av3 = 0, u3A = 0 for v3 ̸= 0, u3 ̸= 0 ⊓⊔
• we also got a (non-unique: α, λ3) decomposition formula for fundamental matrices
• it follows there is no constraint on F except for the rank
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Thank You
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