3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/tdv/start

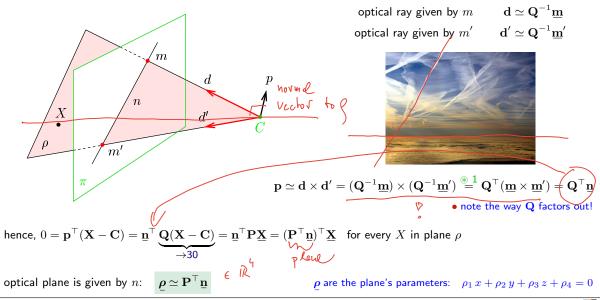
http://cmp.felk.cvut.cz mailto:sara@cmp.felk.cvut.cz phone ext. 7203

rev. October 10, 2023

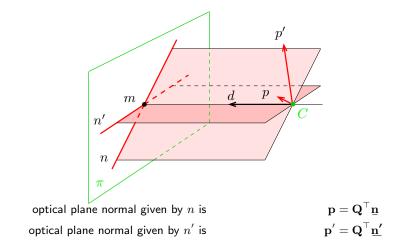
Open Informatics Master's Course

► Optical Plane

A spatial plane with normal p containing the projection center C and a given image line n.



Cross-Check: Optical Ray as Optical Plane Intersection



The optical ray through their intersection is then

$$\mathbf{d} = \mathbf{p} \times \mathbf{p}' = (\mathbf{Q}^\top \underline{\mathbf{n}}) \times (\mathbf{Q}^\top \underline{\mathbf{n}}') = \mathbf{Q}^{-1} (\underline{\mathbf{n}} \times \underline{\mathbf{n}}') = \mathbf{Q}^{-1} \underline{\mathbf{m}}$$

Summary: Projection Center; Optical Ray, Axis, Plane

General (finite) camera

$$\mathbf{P} = \begin{bmatrix} \mathbf{Q} & \mathbf{q} \end{bmatrix} = \begin{bmatrix} \mathbf{q}_1^\top & q_{14} \\ \mathbf{q}_2^\top & q_{24} \\ \mathbf{q}_3^\top & q_{34} \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} = \mathbf{K} \mathbf{R} \begin{bmatrix} \mathbf{I} & -\mathbf{C} \end{bmatrix}$$

 $\underline{\mathbf{C}}\simeq \mathrm{rnull}(\mathbf{P}), \quad \mathbf{C}=-\mathbf{Q}^{-1}\mathbf{q} \qquad \qquad \text{projection center (world coords.)} \rightarrow 35$

 $\mathbf{d} = \mathbf{Q}^{-1} \, \underline{\mathbf{m}}$ optical ray direction (world coords.) \rightarrow 36

outward optical axis (world coords.) \rightarrow 37

principal point (in image plane) \rightarrow 38

optical plane (world coords.) \rightarrow 39

camera (calibration) matrix (f, u_0 , v_0 in pixels) $\rightarrow 31$

3D rotation matrix (cam coords.) \rightarrow 30

3D translation vector (cam coords.) \rightarrow 30

 $\mathbf{\underline{m}}_{0} \simeq \mathbf{Q} \mathbf{q}_{3}$ $\boldsymbol{\underline{\rho}} = \mathbf{P}^{\top} \mathbf{\underline{n}}$ $\mathbf{K} = \begin{bmatrix} a f & -a f \cot \theta & u_{0} \\ 0 & f / \sin \theta & v_{0} \\ 0 & 0 & 1 \end{bmatrix}$ \mathbf{R} \mathbf{t}

 $\mathbf{o} = \det(\mathbf{Q}) \mathbf{q}_3$

What Can We Do with An 'Uncalibrated' Perspective Camera?

How far is the engine from a given point on the tracks?

the distance between sleepers (ties) is 0.806m but we cannot count them, the image resolution is too low

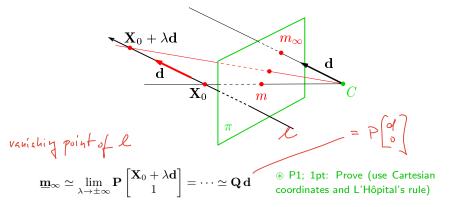
We will review some life-saving theory... ... and build a bit of geometric intuition...

In fact

• 'uncalibrated' = the image contains a 'calibrating object' that suffices for the task at hand

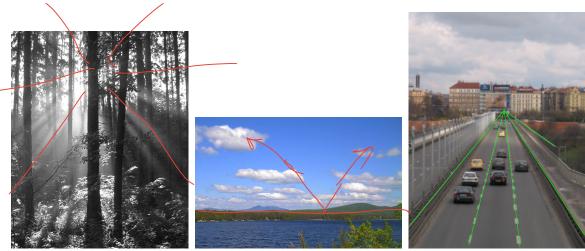
► Vanishing Point

Vanishing point (V.P.): The limit m_{∞} of the projection of a point $\mathbf{X}(\lambda)$ that moves along a space line $\mathbf{X}(\lambda) = \mathbf{X}_0 + \lambda \mathbf{d}$ infinitely in one direction. the image of the point at infinity on the line



- the V.P. of a spatial line with directional vector ${\bf d}$ is $\ \underline{{\bf m}}_{\infty}\simeq {\bf Q}\,{\bf d}$
- V.P. is independent on line position X_0 , it depends on its directional vector only
- ullet all parallel (world) lines share the same (image) V.P., including the optical ray defined by m_∞

Some Vanishing Point "Applications"

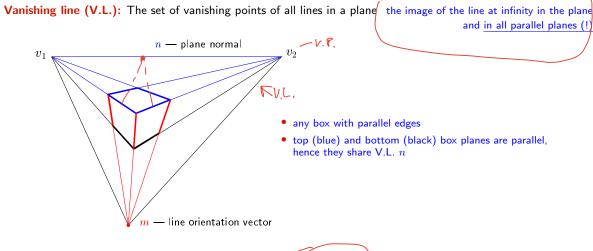


where is the sun?

what is the wind direction? (must have video)

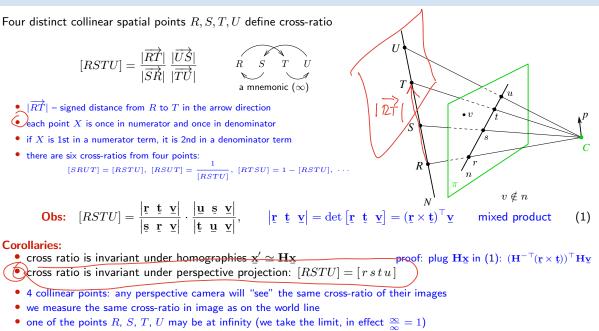
fly above the lane, at constant altitude!

► Vanishing Line



- V.L. n corresponds to spatial plane of normal vector $\mathbf{p} = \mathbf{Q}^{\top} \mathbf{\underline{n}}$
 - because this is the normal vector of a parallel optical plane (!) ightarrow 39
- a spatial plane of normal vector \mathbf{p} has a V.L. represented by $\mathbf{n} = \mathbf{Q}^{-\top} \mathbf{p}$.

► Cross Ratio



▶1D Projective Coordinates

The 1-D projective coordinate of a point P is defined by the following cross-ratio:

$$P] = [P_0 P_1 P_\infty] = [p_0 p_1 p p_\infty] = \frac{|\overline{p_0} p|}{|\overline{p_1} p_0|} \frac{|\overline{p_\infty} p_1'|}{|\overline{p_p} \infty|} = [p]$$

naming convention:

 $\begin{array}{ll} P_0 - \mbox{the origin} & [P_0] = 0 \\ P_1 - \mbox{the unit point} & [P_1] = 1 \\ P_\infty - \mbox{the supporting point} & [P_\infty] = \pm \infty \end{array}$

[P] = [p]

 $\left[P\right]$ is equal to Euclidean coordinate along N

 $\left[p\right]$ is its measurement in the image plane

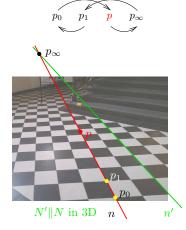
if the sign is not of interest, any cross-ratio containing $\left|p_{0}\,p\right|$ does the job

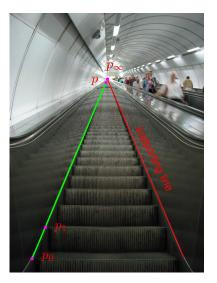
Applications

- Given the image of a 3D line N, the origin, the unit point, and the vanishing point, then the Euclidean coordinate of any point $P \in N$ can be determined
- Finding V.P. of a line through a regular object

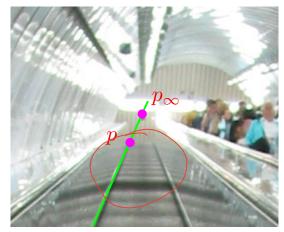
 $\rightarrow 48$

 $\rightarrow 49$





• Namesti Miru underground station in Prague

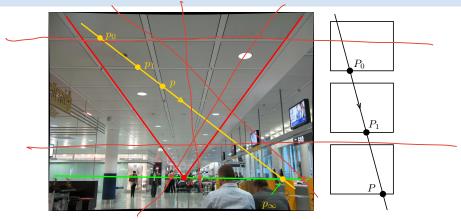


detail around the vanishing point (w/ strong aliasing)

Result: [P] = 214 steps (correct answer is 216 steps)

4Mpx camera

Application: Finding the Horizon from Repetitions



in 3D: $|P_0P| = 2|P_0P_1|$ then

[H&Z, p. 218]

$$[P_0 P_1 P P_\infty] = \frac{|P_0 P|}{|P_1 P_0|} = 2 \quad \Rightarrow \quad x_\infty = \frac{x_0 (2x - x_1) - x x_1}{x + x_0 - 2x_1}$$

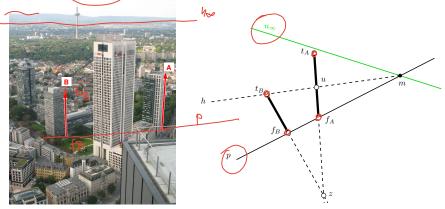
- x 1D coordinate along the yellow line, positive in the arrow direction
- was the photopropher sithing or standing? • could be applied to counting steps $(\rightarrow 48)$ if there was no supporting line
- ⊛ P1; 1pt: How high is the camera above the floor?

3D Computer Vision: II. Perspective Camera (p. 49/197) つくや

Homework Problem

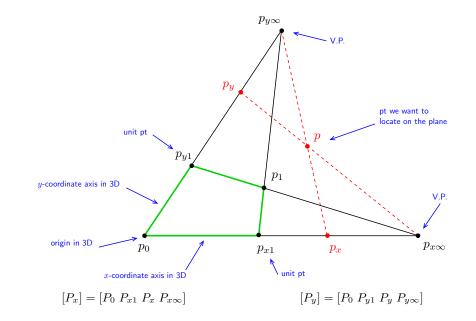
 \circledast H2; 3pt: What is the ratio of heights of Building A to Building B?

- expected; conceptual solution; use notation from this figure
- deadline: LD+2 weeks



Hints

- 1. What are the interesting properties of line h connecting the top t_B of Building B with the point m at which the horizon intersects the line p joining the foots f_A , f_B of both buildings? [1 point]
- 2. How do we actually get the horizon n_{∞} ? (we do not see it directly, there are some hills there...) [1 point]
- 3. Give a formula for measuring the length ratio. Make sure you distinguish points in 3D from their images. [formula = 1 point]



Application: Measuring on the Floor (Wall, etc)

San Giovanni in Laterano, Rome

- measuring distances on the floor in terms of tile units
- what are the dimensions of the seal? Is it circular (assuming square tiles)?
- needs no explicit camera calibration

because we can see the calibrating object (vanishing points)

Module III

Computing with a Single Camera

Calibration: Internal Camera Parameters from Vanishing Points and Lines

BExterior Orientation: Camera Rotation and Translation from 3 Known Points

Relative Orientation Problem: Rotation and Translation between Two Point Sets

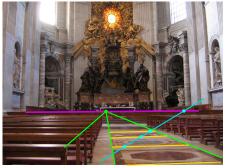
covered by

- [1] [H&Z] Secs: 8.6, 7.1, 22.1
- [2] Fischler, M.A. and Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. *Communications of the ACM* 24(6):381–395, 1981
- [3] [Golub & van Loan 2013, Sec. 2.5]

Obtaining Vanishing Points and Lines

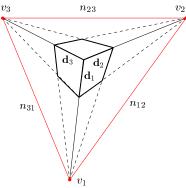
• orthogonal direction pairs can be collected from multiple images by camera rotation

• vanishing line can be obtained from vanishing points and/or regularities (\rightarrow 49)



Camera Calibration from Vanishing Points and Lines

Problem: Given finite vanishing points and/or vanishing lines, compute \mathbf{K}



3. orthogonal ray and plane $\mathbf{d}_k \parallel \mathbf{p}_{ij}$, $k \neq i,j$

vanishing lines, compute
$$\mathbf{K}$$
 $\lambda_{i} \neq \delta_{j}$ $\Lambda_{i} \neq O$
 $\mathbf{d}_{i} = \lambda_{i} \mathbf{Q}^{-1} \mathbf{v}_{i}, \quad i = 1, 2, 3 \rightarrow 43$
 $\mathbf{p}_{ij} = \mu_{ij} \mathbf{Q}^{\top} \mathbf{n}_{ij}, \quad i, j = 1, 2, 3, i \neq j \rightarrow 39$
• method: eliminate $\lambda_{i}, \mu_{ij}, \mathbf{R}$ from (2) and solve for \mathbf{K} .
Configurations allowing elimination of \mathbf{R}

1. orthogonal rays $\mathbf{d}_1 \perp \mathbf{d}_2$ in space then $(\mathcal{Q} \land \mathcal{D})^\top \ \hat{\mathcal{Q}} = \mathcal{K} \land \mathcal{R}$ $0 = \mathbf{d}_1^\top \mathbf{d}_2 = \mathbf{y}_1^\top \mathbf{Q}^{-\top} \mathbf{Q}^{-1} \mathbf{y}_2 = \mathbf{y}_1^\top \underbrace{(\mathbf{K}\mathbf{K}^\top)^{-1}}_{\boldsymbol{\omega} \text{ (IAC)}} \mathbf{y}_2^{\mathcal{Q}^\top} \mathbf{y}_2^{\mathsf{T}}$ 2. orthogonal planes $\mathbf{p}_{ij} \perp \mathbf{p}_{ik}$ in space

$$0 = \mathbf{p}_{ij}^{\top} \mathbf{p}_{ik} = \mathbf{\underline{n}}_{ij}^{\top} \mathbf{Q} \mathbf{Q}^{\top} \mathbf{\underline{n}}_{ik} = \mathbf{\underline{n}}_{ij}^{\top} \boldsymbol{\omega}^{-1} \mathbf{\underline{n}}_{ik}$$

normal parallel to optical ray

 $\mathbf{p}_{ij} \simeq \mathbf{d}_k \quad \Rightarrow \quad \mathbf{Q}^\top \underline{\mathbf{n}}_{ij} = \frac{\lambda_i}{\mu_{ij}} \mathbf{Q}^{-1} \underline{\mathbf{v}}_k \quad \Rightarrow \quad \underline{\mathbf{n}}_{ij} = \varkappa \, \mathbf{Q}^{-\top} \mathbf{Q}^{-1} \underline{\mathbf{v}}_k = \varkappa \, \boldsymbol{\omega} \, \underline{\mathbf{v}}_k, \quad \varkappa \neq 0$

- n_{ij} may be constructed from non-orthogonal v_i and v_j , e.g. using the cross-ratio
- $\boldsymbol{\omega}$ is a homogeneous, symmetric, definite 3×3 matrix (5 DoF)
- equations are quadratic in ${f K}$ but linear in ${m \omega}$

IAC = Image of Absolute Conic

▶cont'd

	configuration	equation	# constraints
(3)	orthogonal vanishing points	$\mathbf{\underline{v}}_i^{ op} oldsymbol{\omega} \mathbf{\underline{v}}_j = 0$	1
(4)	orthogonal vanishing lines	$\underline{\mathbf{n}}_{ij}^{\top} \boldsymbol{\omega}^{-1} \underline{\mathbf{n}}_{ik} = 0$	1
(5)	vanishing points orthogonal to vanishing lines	${ar{ extbf{n}}}_{ij}=arkappaoldsymbol{\omega}oldsymbol{arkappa}_k$	2
(6)	orthogonal image raster $\theta=\pi/2$	$\omega_{12} = \omega_{21} = 0$	1
(7)	unit aspect $a=1$ when $\theta=\pi/2$	$\omega_{11} - \omega_{22} = 0$	1
(8)	known principal point $u_0 = v_0 = 0$	$\omega_{13} = \omega_{31} = \omega_{23} = \omega_{32} = 0$) 2

- These are homogeneous linear equations for the 5 parameters in ω or ω⁻¹ κ can be eliminated from (5)
 When w = vec(ω) ∈ ℝ⁶, it has the form of Dw = 0, D ∈ ℝ^{k×6} λW λ ∈ R
- With k = 5 constraints, we have rank(D) = 5, hence there is a unique solution for the homogeneous w.
- We get **K** from $\omega^{-1} = \mathbf{K}\mathbf{K}^{\top}$ by Choleski decomposition

the decomposition returns a positive definite upper triangular matrix one avoids solving an explicit set of quadratic equations for the parameters in K

Thank You

