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▶Bundle Adjustment

Goal: Use a good (and expensive) error model and improve the initial estimates of all parameters

Given:
1. set of 3D points {Xi}pi=1

2. set of cameras {Pj}cj=1

3. correspondence & fixed tentative projections mij

Required:
1. corrected 3D points {X′i}pi=1

2. corrected cameras {P′j}cj=1

Latent:
1. visibility decision vij ∈ {0, 1} per mij

P1 Xi
ei1(Xi;P1) eij(Xi;Pj)mijPjP2mi1 mi2

• for simplicity, X, m are considered Cartesian (not homogeneous)
• we have projection error eij(Xi,Pj) = xi −mi per image feature, where xi = PjXi

• for simplicity, we will work with scalar error eij = ∥eij∥
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Robust Objective Function for Bundle Adjustment

The data model is constructed by marginalization over vij , as in the Robust Matching Model →120

p({e} | {P,X}) =
p∏

pts:i=1

c∏
cams:j=1

(
(1− P0)p1(eij | Xi,Pj) + P0 p0(eij | Xi,Pj)

)
the marginalized negative log-density is (→121)

− log p({e} | {P,X}) =
∑
i

∑
j

− log
(
e
−

e2ij(Xi,Pj)

2σ2
1 + t

)
︸ ︷︷ ︸
ρ(e2ij(Xi,Pj)) = ν2

ij(Xi,Pj)

def
=
∑
i

∑
j

ν2ij(Xi,Pj)

• θ = {P,X}
• we can use LM, eij is the exact projection error function (not Sampson error)
• νij is a ‘robust’ error fcn.; it is non-robust (νij = eij) when t = 0
• ρ(·) is a ‘robustification function’ often found in M-estimation
• the Lij in Levenberg-Marquardt changes to vector

(Lij)l =
∂νij

∂θl
=

1

1 + t e
e2ij(θ)/(2σ

2
1)︸ ︷︷ ︸

small for eij ≫ σ1

·
1

νij(θ)
·

1

4σ2
1

·
∂e2ij(θ)

∂θl
(35)

but the LM method stays the same as before →110–111
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• outliers (wrong vij): almost no impact on ds in normal equations because the red term in (35) scales contributions to
both sums down for the particular ij

−
∑
i,j

L⊤ij νij(θ
s) =

( k∑
i,j

L⊤ijLij

)
ds
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Radim Šára



▶Sparsity in Bundle Adjustment

We have q = 3p+ 11k parameters: θ = (X1,X2, . . . ,Xp; P1,P2, . . . ,Pk) points, cameras

We will use a multi-index r = 1, . . . , z, z = p · k . Then r correspond to point-cam pairs (i, j)

θ∗ = argmin
θ

z∑
r=1

ν2r (θ), θs+1 := θs + ds, −
z∑

r=1

L⊤r νr(θ
s) =

(
z∑

r=1

L⊤r Lr + λ diag(L⊤r Lr)

)
ds

The block-form of Lr in Levenberg-Marquardt (→110) is zero except in columns i and j:
r-th error term is ν2r = ρ(e2ij(Xi,Pj))

Lr =
i j r = (i, j) blocks:

: Xi, 1× 3
: Pj , 1× 11

L⊤r Lr =

jij
i

blocks:
: Xi −Xi, 3× 3
: Xi −Pj , 3× 11
: Pj −Pj , 11× 11

z∑
r=1

L⊤r Lr =

3p

3p

11k

• “points-first-then-cameras” parameterization scheme
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▶Choleski Decomposition for B. A.

The most expensive computation in B. A. is solving the normal eqs:

find x such that b
def
= −

z∑
r=1

L⊤r νr(θ
s) =

( z∑
r=1

L⊤r Lr + λ diag
(
L⊤r Lr

))
x

def
= Ax

• A is very large approx. 3 · 104 × 3 · 104 for a small problem of 10000 points and 5 cameras

• A is sparse, symmetric, positive definite, A−1 is dense direct matrix inversion is prohibitive

Choleski: A symmetric positive definite matrixA can be decomposed toA = LL⊤,
where L is lower triangular. If A is sparse then L is sparse, too.

1. decompose A = LL⊤ L = chol(A); transforms the problem to LL⊤x︸ ︷︷ ︸
c

= b

2. solve for x in two passes:

Lc = b ci := L−1
ii

(
bi −

∑
j<i

Lijcj
)

forward substitution, i = 1, . . . , q (params)

L⊤x = c xi := L−1
ii

(
ci −

∑
j>i

Ljixj

)
back-substitution

• Choleski decomposition is fast (does not touch zero blocks)
non-zero elements are 9p + 121k + 66pk ≈ 3.4 · 106; ca. 250× fewer than all elements

• it can be computed on single elements or on entire blocks
• use profile Choleski for sparse A and diagonal pivoting for semi-definite A see above; [Triggs et al. 1999]

• λ controls the definiteness
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Profile Choleski Decomposition is Simple

function L = pchol(A)
%
% PCHOL profile Choleski factorization,
% L = PCHOL(A) returns lower-triangular sparse L such that A = L*L’
% for sparse square symmetric positive definite matrix A,
% especially efficient for arrowhead sparse matrices.

% (c) 2010 Radim Sara (sara@cmp.felk.cvut.cz)

[p,q] = size(A);
if p ~= q, error ’Matrix A is not square’; end

L = sparse(q,q);
F = ones(q,1);
for i=1:q
F(i) = find(A(i,:),1); % 1st non-zero on row i; we are building F gradually
for j = F(i):i-1
k = max(F(i),F(j));
a = A(i,j) - L(i,k:(j-1))*L(j,k:(j-1))’;
L(i,j) = a/L(j,j);

end
a = A(i,i) - sum(full(L(i,F(i):(i-1))).^2);
if a < 0, error ’Matrix A is not positive definite’; end
L(i,i) = sqrt(a);

end
end
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▶Gauge Freedom (kalibračńı invariance)

1. The external frame is not fixed: See the Projective Reconstruction Theorem →135

mij ≃ PjXi = PjH
−1HXi = P′jX

′
i

2. Some representations are not minimal, e.g.

• P is 12 numbers for 11 parameters
• we may represent P in decomposed form K, R, t 5 + 3 + 3 = 11
• but R is 9 numbers representing the 3 parameters of rotation

If ignored, then

• there is no unique solution
• matrix

∑
r L
⊤
r Lr is singular

Solutions

1. fixing the external frame (e.g. a selected camera frame) explicitly or by constraints

2. fixing the scale (e.g. s1,2 = 1)

3a. either imposing constraints on projective entities
• cameras, e.g. P3,4 = 1 this excludes affine cameras
• points, e.g. (Xi)4 = 1 or ∥Xi∥2 = 1 the 2nd: can represent points at infinity

3b. or using minimal representations
• points in their Cartesian representation Xi but finite points may be an unrealistic model
• rotation matrices can be represented by (the exponential of) skew-symmetric matrices →152
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Implementing Simple Linear Constraints (by programmatic elimination)

What for?

1. fixing external frame as in θi = ti, skl = 1 for some i, k, l ‘trivial gauge’

2. representing additional knowledge as in θi = θj e.g. cameras share calibration matrix K

Introduce reduced parameters θ̂ and replication
matrix T:

θ = T θ̂ + t, T ∈ Rp,p̂, p̂ ≤ p

then Lr in LM changes to LrT and everything else
stays the same →110

θ3

θ4
θ5

T = t =

θ2

θ̂1 θ̂2 θ̂3 θ̂4

θ1 1

1

1

1

1

these T, t represent

θ1 = θ̂1 no change

θ2 = θ̂2 no change

θ3 = t3 constancy

θ4 = θ5 = θ̂4 equality

• T deletes columns of Lr that correspond to fixed parameters it reduces the problem size

• consistent initialisation: θ0 = T θ̂0 + t or filter the init by pseudoinverse θ0 7→ T†θ0

• no need for computing derivatives for θj corresponding to all-zero rows of T fixed θ

• constraining projective entities →152–154
• more complex constraints tend to make normal equations dense
• implementing constraints is safer than reparameterization, it gives a flexibility to experiment
• other methods are much more involved, see [Triggs et al. 1999]
• BA resource: http://www.ics.forth.gr/~lourakis/sba/ [Lourakis 2009]
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Matrix Exponential: A Path to Minimal Parameterization and Motion Representation

• for any square matrix we define

expm(A) =
∞∑

k=0

1

k!
Ak

note: A0 = I

• some properties:

expm(x) = ex, x ∈ R, expm0 = I, expm(−A) =
(
expmA

)−1
,

expm(aA+ bA) = expm(aA) expm(bA), expm(A+B) ̸= expm(A) expm(B)

expm(A⊤) = (expmA)⊤ hence if A is skew symmetric then expmA is orthogonal:(
expm(A)

)⊤
= expm(A⊤) = expm(−A) =

(
expm(A)

)−1

det
(
expmA

)
= etrA

Some consequences

• traceless matrices (trA = 0) map to unit-determinant matrices ⇒ we can represent homogeneous matrices

• skew-symmetric matrices map to orthogonal matrices ⇒ we can represent rotations

• matrix exponential provides the exponential map from the powerful (matrix) Lie group theory
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Lie Groups Useful in 3D Vision

group matrix represent

special linear SL(3,R) real 3× 3, unit determinant H 2D homography

special linear SL(4,R) real 4× 4, unit determinant H 3D homography

special orthogonal SO(3) real 3× 3 orthogonal R 3D rotation

special Euclidean SE(3) 4× 4
[
R t
0 1

]
, R ∈ SO(3), t ∈ R3 3D rigid motion

similarity Sim(3) 4× 4
[
R t
0 s−1

]
, s ∈ R \ 0 rigid motion + scale

• Lie group G = topological group that is also a smooth manifold with nice properties

• Lie algebra g = vector space associated with a Lie group (tangent space of the manifold)

• group: this is where we need to work

• algebra: this is how to represent group elements with a minimal number of parameters

• Exponential map = map between algebra and its group exp: g → G

• for matrices exp = expm

• in most of the above groups we a have a closed-form formula for the exponential and for its principal inverse

• Jacobians are also readily available for SO(3), SE(3) [Solà 2020]
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Homography

H = expm(Z)

• SL(3,R) group element

H =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 s.t. det(H) = 1

• sl(3,R) algebra element 8 parameters

Z =

z11 z12 z13
z21 z22 z23
z31 z32 −(z11 + z22)


• note that trZ = 0
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▶Rotation in 3D

R = expm [ϕ]×, ϕ = (ϕ1, ϕ2, ϕ3) = φ eφ ∈ R3, 0 ≤ φ < π, ∥eφ∥ = 1

• SO(3) group element

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 s.t. R−1 = R⊤

• so(3) algebra element 3 parameters

[ϕ]× =

 0 −ϕ3 ϕ2

ϕ3 0 −ϕ1

−ϕ2 ϕ1 0


• exponential map in closed form Rodrigues’ formula

R = expm [ϕ]× =

∞∑
n=0

[ϕ]n×
n!

=
⊛ 1· · · = I+

sinφ

φ
[ϕ]× +

1− cosφ

φ2
[ϕ]2×

• (principal) logarithm log is a periodic function

0 ≤ φ < π, cosφ =
1

2
(tr(R)− 1) , [ϕ]× =

φ

2 sinφ
(R−R⊤),

• ϕ is rotation axis vector eφ scaled by rotation angle φ in radians

• finite limits for φ → 0 exist: sin(φ)/φ → 1, (1− cosφ)/φ2 → 1/2
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3D Rigid Motion

M = expm [ν]∧ , ν ∈ R6

• SE(3) group element 4× 4 matrix

M =

[
R t
0 1

]
s.t. R ∈ SO(3), t ∈ R3

• se(3) algebra element 4× 4 matrix; ∧ = × in SO(3)

[ν]∧ =

[
[ϕ]× ρ
0 0

]
s.t. ϕ ∈ R3, φ = ∥ϕ∥ < π, ρ ∈ R3

• exponential map in closed form

R = expm [ϕ]×, t = dexpm([ϕ]×)ρ

dexpm([ϕ]×) =

∞∑
n=0

[ϕ]n×
(n+ 1)!

= I+
1− cosφ

φ2
[ϕ]× +

φ− sinφ

φ3
[ϕ]2×

dexpm−1([ϕ]×) = I− 1

2
[ϕ]× +

1

φ2

(
1− φ

2
cot

φ

2

)
[ϕ]2×

• dexpm: differential of the exponential in SO(3)
• (principal) logarithm via a similar trick as in SO(3)
• finite limits exist: (φ− sinφ)/φ3 → 1/6
• this form is preferred to SO(3)× R3
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▶Minimal Representations for Other Entities

• fundamental matrix via SO(3)× SO(3)× R+

F = UDV⊤, D = diag(1, d2, 0), U,V ∈ SO(3), 3 + 1 + 3 = 7 DOF

• essential matrix via SO(3)× R3

E = [−t]×R, R ∈ SO(3), t ∈ R3, ∥t∥ = 1, 3 + 2 = 5 DOF

• camera pose via SO(3)× R3 or SE(3)

P = K
[
R t

]
=
[
K 0

]
M, 5 + 3 + 3 = 11 DOF M ∈ SE(3)

• Sim(3) useful for SfM without scale

• closed-form formulae still exist but they are a bit too messy [Eade(2017)]

• a (bit too brief) intro to Lie groups in 3D vision/robotics and SW:

J. Solà, J. Deray, and D. Atchuthan. A micro Lie theory for state estimation in robotics. arXiv:1812.01537v7

[cs.RO], August 2020.

E. Eade. Lie groups for 2D and 3D transformations. On-line at http://www.ethaneade.org/, May 2017.
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Motion Interpolation

• let G be a Lie group like SO(3), SE(3)

• let M ∈ G be motion from time t = 0 to time t = 1

• then the motion from t = 0 to t is interpolated as

M(t) = exp
(
t log(M)

)
, t ∈ [0, 1]

• the trajectory is constant-speed,

• and the speed is log(M)

Examples in SE(3):
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Distance between Lie Group Elements

• Integration formula the motion is along the geodesic (shortest-distance curve)

lim
n→∞

n∏
i=1

exp

(
1

n
log(M)

)
= M

• hat and vee functions:
• [a]∧ maps vector a ∈ Rd to algebra g element (matrix)
• (B)∨ maps algebra element B ∈ g to vector element,

(
[a]∧

)
∨ = a

• the Log function is a composition of log and vee, Log : G → Rd, Log(M) = (log(M))∨ G → g → Rd

• then: left/right difference Y
←
⊖ X ∈ Rd

Y
←
⊖X = Log(YX−1) , Y

→
⊖X = Log(X−1Y)

• skew-symmetry

Y
←
⊖X = −(X

←
⊖Y) , Y

→
⊖X = −(X

→
⊖Y)

• left/right distance
←
d (X,Y) = ∥Y

←
⊖X∥ ,

→
d (X,Y) = ∥Y

→
⊖X∥

• not equal but both are non-negative, symmetric + additional properties, e.g. left/right invariance,. . .
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