## 3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz phone ext. 7203
rev. December 12, 2023


Open Informatics Master's Course

## How Difficult Is Stereo?



Centrum för teknikstudier at Malmö Högskola, Sweden
The Vyšehrad Fortress, Prague

- top: easy interpretation from even a single image
- bottom left: we have no help from image interpretation
- bottom right: ambiguous interpretation due to a combination of missing texture and occlusion


## A Summary of Our Observations and an Outlook

1. simple matching algorithms do not work

- the success of a model-free stereo matching is unlikely $\rightarrow 158$
- without scene recognition or use high-level constraints the problem seems difficult

2. stereopsis requires image interpretation in sufficiently complex scenes or another-modality measurement

$$
\text { we have a tradeoff: model strength } \leftrightarrow \text { universality }
$$

## Outlook:

1. represent the occlusion constraint: correspondences are not independent due to occlusions

- disparity in rectified images
- uniqueness as an occlusion constraint

2. represent piecewise continuity
the weakest of interpretations; piecewise: object boundaries

- ordering as a weak continuity model

3. use a consistent framework

- finding the most probable solution (MAP)


## Structural Ambiguity in Stereovision

- suppose we can recognize local matches independently but have no scene model
- lack of an occlusion model
- lack of a continuity model

$$
\Rightarrow
$$

structural ambiguity in the presence of repetitions (or lack of texture)

left image

matching/interpretation 1

right image

interpretation 2

- Illustration of the problem
- Keypoints: Window detections
- Repetitive keypoints $\Rightarrow$ non-unique matching
- Cameras are not canonical; constant-depth surface is not a plane


## Understanding Basic Occlusion Types



half occlusion

mutual occlusion

mutual occlusion in the wall hole

- surface point at the intersection of rays $l$ and $r_{1}$ occludes a world point at the intersection ( $l, r_{3}$ ) and implies the world point $\left(l, r_{2}\right)$ is transparent, therefore

$$
\left(l, r_{3}\right) \text { and }\left(l, r_{2}\right) \text { are excluded by }\left(l, r_{1}\right)
$$

- in half-occlusion, every 3D point such as $X_{1}$ or $X_{2}$ is excluded by a binocularly visible surface point such as $Y_{1}, Y_{2}, Y_{3}$ $\Rightarrow$ decisions on correspondences are not independent
- in mutual occlusion this is no longer the case: any $X$ in the yellow zone above is not excluded
$\Rightarrow$ decisions inside the zone are independent on the rest



## Matching Table

Based on scene opacity and the observation on mutual exclusion we expect each pixel to match at most once.


matching table $T$
matching table

- rows and columns represent optical rays
- nodes: possible correspondence pairs
- full nodes: matches
- numerical values associated with nodes: descriptor similarities


## -Constructing An Image Similarity Cost

- let $p_{i}=(l, r)$ and $\mathbf{L}(l), \mathbf{R}(r)$ be (left, right) image descriptors (vectors) constructed from local image neighborhood windows

'block' in the left image $\mapsto$ 'a set of random-variable samples':

- a simple block (dis-) similarity is $\operatorname{SAD}(l, r)=\|\mathbf{L}(l)-\mathbf{R}(r)\|_{1} \quad L_{1}$ metric (sum of absolute differences; smaller is better)
- a scaled-descriptor (dis-) similarity is $\operatorname{sim}(l, r)=\frac{\|\mathbf{L}(l)-\mathbf{R}(r)\|^{2}}{\sigma_{I}^{2}(l, r)}$ smaller is better
- $\sigma_{I}^{2}$ - the difference scale; a suitable (plug-in) estimate is $\frac{1}{2}[\operatorname{var}(\mathbf{L}(l))+\operatorname{var}(\mathbf{R}(r))]$, giving

$$
\operatorname{sim}(l, r)=1-\underbrace{\frac{2 \operatorname{cov}(\mathbf{L}(l), \mathbf{R}(r))}{\operatorname{var}(\mathbf{L}(l))+\operatorname{var}(\mathbf{R}(r))}}_{\rho(\mathbf{L}(l), \mathbf{R}(r))} \quad \begin{align*}
& \operatorname{var}(\cdot), \operatorname{cov}(\cdot) \text { is sample (co-)variance, }  \tag{38}\\
& \text { not invariant to scale difference }
\end{align*}
$$

- $\rho-$ MNCC - Moravec's Normalized Cross-Correlation similarity
bigger is better [Moravec 1977]

$$
\rho^{2} \in[0,1], \quad \operatorname{sign} \rho \sim \text { 'phase' }
$$

- another successful (dis-)similarity is the Hamming Distance over the Census Transform


## Census Transform (CT)

- CT: Per-pixel binarization, given reference value (e.g the window center)
- For a grayscale image:

$$
\varkappa\left(x_{i j} ; r\right)= \begin{cases}0 & x_{i j} \leq r \\ 1 & x_{i j}>r\end{cases}
$$

| 189 | 235 | 181 |
| :---: | :---: | :---: |
| 217 | 185 | 228 |
| 231 | 61 | 254 |
| input window |  |  |


| 1 | 1 | 0 |
| :--- | :--- | :--- |
| 1 | 0 | 1 |
| 1 | 0 | 1 |
| bits |  |  |$=483$ (new value for the central pixel)


input image

$\varkappa:$ RGB CT, 2-bit per pixel, $3 \times 3$ window

- preserves sharp boundaries
- may or may not use windowing (cost aggregation)

How A Scene Looks in The Filled－In Matching Table

－MNCC $\rho$ used （ $\alpha=1.5, \beta=1$ ） $\rightarrow 182$
－high－similarity structures correspond to scene objects

Things to notice：
constant disparity
－a diagonal in the matching table
－zero disparity is the main diagonal
assuming standard stereopair
depth discontinuity
－horizontal or vertical jump in matching table large image window
－similarity values have better discriminability
－worse occlusion localization repeated texture
－horizontal and vertical block repetition

## Image Point Descriptors And Their Similarity

Descriptors: Image points are tagged by their (viewpoint-invariant) physical properties:

- texture window
[Moravec 77]
- Census Transform
- a descriptor like DAISY
- learned descriptors
- reflectance profile under a moving illuminant
- (pixelwise) photometric ratios
- dual photometric stereo
[Wolff \& Angelopoulou 93-94]
- (pixelwise) polarization signature
- ...
- similar points are more likely to match
- image similarity values for all 'match candidates' give the 3D matching table also called: 'disparity volume'

click for video


## Marroquin's Winner Take All (WTA) Matching Algorithm

Alg: Per left-image pixel: The most SAD-similar pixel along the right epipolar line

1. select disparity range
this is a critical weak point
2. represent the matching table diagonals in a compact form


3. use the 'image sliding \& cost aggregation algorithm'
4. take the maximum over disparities $d$
5. threshold results by the maximal allowed SAD dissimilarity (or minimal MNCC similarity)

## A Matlab Code for WTA

```
function dmap = marroquin(iml, imr, disparityRange)
% iml, imr - rectified gray-scale images
% disparityRange - non-negative disparity range
% (c) Radim Sara (sara@cmp.felk.cvut.cz) FEE CTU Prague, 10 Dec 12
thr = 20; % bad match rejection threshold
r = 2;
winsize = 2*r+[1 1]; % 5x5 window (neighborhood) for r=2
N = boxing(ones(size(iml)), winsize); % the size of each local patch is
    % N = (2r+1)^2 except for boundary pixels
% --- compute dissimilarity per pixel and disparity --->
for d = 0:disparityRange % cycle over all disparities
    slice = abs(imr(:,1:end-d) - iml(:,d+1:end)); % pixelwise dissimilarity (unscaled SAD)
    V(:,d+1:end,d+1) = boxing(slice, winsize)./N; % window aggregation
    end
% --- collect winners, threshold, output disparity map --->
```



```
end % of marroquin
function c = boxing(im, wsz)
    % if the mex is not found, run this slow version:
    c = conv2(ones(1,wsz(1)), ones(wsz(2),1), im, 'same');
end % of boxing
```


## WTA: Some Results



- results are fairly bad
- false matches in textureless image regions and on repetitive structures (book shelf)
- a more restrictive threshold (thr $=10$ ) does not work as expected
- we searched the true disparity range, results get worse if the range is set wider
- chief failure reasons:
- unnormalized image dissimilarity does not work well
- no occlusion model (it just ignores the occlusion structure we have discussed $\rightarrow 172$ )


## - A Principled Approach to Similarity

Empirical Distribution of MNCC $\rho$ for Matches (green) and Non-Matches (red)


- histograms of $\rho$ computed from $5 \times 5$ correlation window
- KITTI dataset
- $4.2 \cdot 10^{6}$ ground-truth (LiDAR) matches for $p_{1}(\rho)$ (green),
- $4.2 \cdot 10^{6}$ random non-matches for $p_{0}(\rho)$ (red)


## Obs:

- non-matches (red) may have arbitrarily large $\rho$
- matches (green) may have arbitrarily low $\rho$
- $\rho=1$ is improbable for matches


## Match Likelihood

- $\rho$ is just a normalized measurement
- we need a probability distribution on $[0,1]$ e.g. the histogram or the Beta distribution:

$$
p_{1}(\rho)=\frac{1}{B(\alpha, \beta)}|\rho|^{\alpha-1}(1-|\rho|)^{\beta-1}
$$

- note that uniform distribution is obtained for $\alpha=\beta=1$
- when $\alpha=2$ and $\beta=1$ then $p_{1}(\cdot)=2|\rho|$

- the mode is at $\sqrt{\frac{\alpha-1}{\alpha+\beta-2}} \approx 0.9733$ for $\alpha=10, \beta=1.5$
- if we chose $\beta=1$ then the mode was at $\rho=1$
- perfect similarity is 'suspicious' (depends on expected camera noise level)
- from now on we will work with negative log-likelihood cost

$$
\begin{equation*}
V_{1}(\rho(l, r))=-\log p_{1}(\rho(l, r)) \quad \text { smaller is better } \tag{39}
\end{equation*}
$$

- we should also define similarity (and negative $\log$-likelihood $V_{0}(\rho(l, r))$ ) for non-matches


## A Principled Approach to Matching：Formulating＇What We Want＇

－given matching $M$ in table $T$ ，what is the likelihood of observed data $D$ ？
－data－all cost pairs $\left(V_{0}, V_{1}\right)$ in the matching table $T$
－matches－pairs $p_{i}=\left(l_{i}, r_{i}\right) \in M \subset T, \quad i=1, \ldots, n$
－matching：partitioning matching table $T$ to matched $M$ and excluded $E$ pairs


$$
T=M \cup E, \quad M \cap E=\emptyset
$$

－matching cost（negative log－likelihood，smaller is better）
constant number of variables in $T$

$$
V(D \mid M, T)=\sum_{p \in M} V_{1}(D \mid p)+\sum_{p \in T \backslash M} V_{0}(D \mid p)
$$

$V_{1}(D \mid p)$－negative log－probability of data $D$ at matched pixel $p$（39）
$V_{0}(D \mid p)$－ditto at unmatched pixel $p$
－matching problem

$$
M^{*}=\arg \min _{M \in \mathcal{M}(T)} V(D \mid M, T)
$$

$\mathcal{M}(T)$－the set of all matchings in table $T$
－symmetric：formulated over pairs，invariant to left $\leftrightarrow$ right image swap

## (cont'd) Log-Likelihood Ratio

- we need to reduce the matching to a standard polynomial-complexity problem

1. convert the matching cost to an 'easier' sum

$$
\begin{aligned}
V(D \mid M, T) & =\sum_{p \in M} V_{1}(D \mid p)+\sum_{p \in T \backslash M} V_{0}(D \mid p)+\overbrace{\sum_{p \in M} V_{0}(D \mid p)-\sum_{p \in M} V_{0}(D \mid p)}^{0} \\
& =\sum_{p \in M} \underbrace{\left(V_{1}(D \mid p)-V_{0}(D \mid p)\right)}_{-L(D \mid p)}+\underbrace{\sum_{p \in T \backslash M} V_{0}(D \mid p)+\sum_{p \in M} V_{0}(D \mid p)}_{\sum_{p \in T} V_{0}(D \mid p)=\mathrm{const}}
\end{aligned}
$$

2. hence

$$
\begin{equation*}
\arg \min _{M \in \mathcal{M}(T)} V(D \mid M)=\arg \max _{M \in \mathcal{M}(T)} \sum_{p \in M} L(D \mid p) \tag{40}
\end{equation*}
$$

$L(D \mid p)$ - logarithm of matched-to-unmatched likelihood ratio (bigger is better)
why this way: we want to use maximum-likelihood on the entire $T$
3. (40) is max-cost matching (maximum assignment) for the maximum-likelihood (ML) matching problem

- use the Hungarian (Munkres) algorithm and threshold the result with $\tau$ : $L(D \mid p)>\tau \geq 0$
or approximate the problem by sacrificing symmetry and accuracy to speed and use dynamic programming

Some Results for the Maximum-Likelihood (ML) Matching

$4.3 \% / 76 \%$

- unlike the WTA we can efficiently control the density/accuracy tradeoff with $\tau$
- middle row: threshold $\tau$ for $L(D \mid p)$ set to achieve error rate of $3 \%$ (and $61 \%$ density results)
- bottom row: threshold $\tau$ set to achieve density of $76 \%$ (and $4.3 \%$ error rate results)

Thank You










