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▶Basic Stereoscopic Matching Models

• notice many small isolated errors in the ML matching

• Q: how to reduce the noisiness? A: a stronger model

Potential models for M (from weaker to stronger)

1. Uniqueness: Every image point matches at most once

• excludes semi-transparent objects
• used in the ML matching algorithm (but not in the WTA algorithm)

2. Monotonicity: Matched pixel ordering is preserved →189

• for all (i, j) ∈ M, (k, l) ∈ M, k > i ⇒ l > j
Notation: (i, j) ∈ M or j = M(i) – left-image pixel i matches right-image pixel j

• excludes thin objects close to the cameras
• used in 3-Label Dynamic Programming (3LDP) [SP]

3. Coherence: Objects occupy well-defined 3D volumes

• concept by [Prazdny 85]
• algorithms are based on image/disparity map segmentation
• a popular model (segment-based, bilateral filtering and their successors)
• used in Stable Segmented 3LDP [Aksoy et al. PRRS 2008]

4. (Piecewise) binocular continuity: The scene images continuously w/o self-occlusions

• disparities do not differ much in neighboring pixels (except at object boundaries)
• full binocular continuity too strong, except in some applications
• piecewise binocular continuity is combined with monotonicity in 3LDP
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Some Results: AppleTree

left image right image ML →184

3LDP with ordering näıve DP Stable Segmented 3LDP
[SP] [Cox et al. 1992] [Aksoy et al. PRRS 2008]

• 3LDP parameters αi, Ve learned on Middlebury stereo data http://vision.middlebury.edu/stereo/
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Some Results: Larch

left image right image ML →184

3LDP w/ordering [SP] näıve DP Stable Segmented 3LDP

• näıve DP: no mutual occlusion model, ignores symmetry, has no similarity distribution model, ignores T \M
• but even 3LDP has errors in mutually occluded region
• Stable Segmented 3LDP: few errors in mutually occluded region since it uses a coherence model
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Binocular Discontinuities in Matching Table

right image pixel index
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binocularly visible foreground points

binocularly visible background pts violating ordering

dk critical disparity

monocularly visible points (half-occluded in the other cam)

• this leads to the concept of ‘forbidden zone’
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Formally: Uniqueness and Ordering in Matching Table T

X-zone and F -zone

�2
�1X(p)

F (p)pi pj
pj /∈ X(pi), pj /∈ F (pi)

• Uniqueness Constraint:

A set of pairs M = {pi}ni=1, pi ∈ T is a matching iff

∀pi, pj ∈ M : pj /∈ X(pi).

X-zone, pi ̸∈ X(pi)

• Ordering Constraint:

Matching M is monotonic iff

∀pi, pj ∈ M : pj /∈ F (pi).

F -zone, pi ̸∈ F (pi)

• ordering constraint: matched points form a monotonic set in both images

• ordering is a powerful constraint: in n× n table we have:
monotonic matchings O(4n) ≪ O(n!) all matchings

⊛ 2: how many are there maximal monotonic matchings? (e.g. 27 for n = 4; hard!)

• uniqueness constraint is a basic occlusion model

• ordering constraint is a weak continuity model and partly also an occlusion model

• monotonic matchings can be found by dynamic programming
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Algorithm Comparison

Marroquin’s Winner-Take-All (WTA →178)

• the ur-algorithm very weak model

• dense disparity map
• O(N3) algorithm, simple but it rarely works

Maximum Likelihood Matching (ML →184)

• semi-dense disparity map
• many small isolated errors
• models basic occlusion
• O(N3 log(NV )) algorithm max-flow by cost scaling

MAP with Min-Cost Labeled Path (3LDP)

• semi-dense disparity map
• models occlusion in flat, piecewise binocularly continuous

scenes
• has ‘illusions’ if ordering does not hold
• O(N3) algorithm

Stable Segmented 3LDP

• better than 3LDP fewer errors at any given density

• O(N3 logN) algorithm
• requires image segmentation itself a difficult task
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3LDP (3.65 ± 0.26)

WTA (4.71 ± 0.17)

ML (4.60 ± 0.65)

GCS (4.29 ± 1.47)

• ROC-like curve captures the density/accuracy
tradeoff

• numbers: AUC (smaller is better)

• GCS is the one used in the exercises

• more algorithms at
http://vision.middlebury.edu/stereo/
(good luck!)
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GCS: Growing Correspondence Seeds

Alg: [Cech & Sara, BenCOS 2007]
1. Grow seed correspondences until they violate uniqueness severely by a X-zone test

2. Select final unique matches by match competition in the X/FX-zone by the stable matching algorithm

click for video

• explores only the “promising” regions in disparity space
• does not need “good” seeds because the competition revises them
• requires good-accuracy epipolar rectification as all the algorithms mentioned do
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Create videos with https://clipchamp.com/en/video-editor - free online video editor, video compressor, video converter.



Module IX

Additional Topics

9.1Real Camera with Radial Distortion

covered by

[H&Z] Sec 7.4
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Real Camera with Radial Distortion

image with no radial distortion an extreme case of barrel radial distortion image undistorted by division model

distortion types

none (λ = 0) barrel (λ = 0.3) pincushion (λ = −0.3)
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The Radial Distortion Mapping

y0
ryR yL • everything is happening in the image plane

y0 – center of radial distortion (usually the principal point)

yL – linearly projected point (unknown)

yR – radially distorted point (known)

• radial distortion r maps yL to yR along the radial direction

• magnitude of the transfer depends on the radius ρ = ∥yR − y0∥ only

• circles centered at y0 map to centered circles, lines incident on y0 map on themselves
• the mapping r() can be scaled to a r() so that a particular circle Cn of radius ρn does not scale

distortion inside Cn outside Cn

barrel expanding contracting
pincushion contracting expanding

ρn

ρn

r(ρ)

ρ

a r(ρ)

r(ρ)

r(ρ) = ρ
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Radial Distortion Models

y0

Cn

yR

yL

yn

barrel distortion
arrows represent zR − r(zL)

• let z = y − y0 non-homogeneous

• we have zR = r(zL) zL – linear, zR – distorted

• but we are often interested in yL = r−1(yR)

• yn – a no-distortion point on Cn: r(yn) = yn

• zn = yn − y0

• yn: a boundary point that preserves image content within the image size

yn

Cn

in pincushion in barrel

Division Model

zL =
1− λ

1− λ ∥zR∥2
∥zn∥2

zR and zR =
ẑ

1 +
√

1 + λ ∥ẑ∥2
∥zn∥2

, where ẑ =
2 zL
1− λ

• single parameter −1 ≤ λ < 1: λ > 0 – barrel distortion, λ < 0 – pincushion distortion
• has a closed-form inverse
• models even some fish-eye lenses
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cont’d

Polynomial Model

zL =
D(zR; zn,k)

1 +
∑n

i=1 ki
zR ,

D(zR; zn,k) = 1 + k1ρ
2 + k2ρ

4 + · · ·+ knρ
2n, ρ =

∥zR∥
∥zn∥

, k = (k1:n)

• e.g. ki ≥ 0 – barrel distortion, ki ≤ 0 – pincusion distortion, i = 1, . . . , n
• typically n = 3
• no closed-form inverse
• may loose monotonicity without requiring equal signs in all ki the undistorted image may then fold over itself
• hard to calibrate higher coefficients tend to dominate

• Zernike orthogonal polynomials R0
i are a better choice

R0
2(ρ) = 2ρ2 − 1, R0

4(ρ) = 6ρ4 − 6ρ2 + 1, R0
6(ρ) = 20ρ6 − 30ρ4 + 12ρ2 − 1, · · ·

yn • then D(zR; zn,k) = 1 + k1 R
0
2(ρ) + k2 R

0
4(ρ) + · · ·+ kn R0

2n(ρ)

• must know the field of view of the lens in the image plane; since ρ must satisfy 0 ≤ ρ ≤ 1

• coefficients ki will typically decrease in magnitude with increasing i
unlike in the plain polynomial model
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Real and Linear Camera Models

Ar xR ≃ A r
(
K0

[
R t

]
X
)

(real camera)
X

yL yR

xL ≃ AK0

[
R t

]
X (linear camera)A

undistortion: xL = A r−1(A−1xR)

K0

[
R t

]

perspective projection distortion scanning

K0 =

f 0 0
0 f 0
0 0 1

 ‘ideal’ calibration matrix AK0 =

f s f u0

0 a f v0
0 0 1


A =

1 s u0

0 a v0
0 0 1

 everything affecting radial distortion center, skew, aspect ratio

r radial distortion function including the conversion from/to
homogeneous representation!

• assumption: the principal point and the center of radial distortion coincide
• f included in K0 to make radial distortion independent of focal length
• A makes radial lens distortion an elliptic image distortion

• it suffices in practice that r−1 is an analytic function (r need not be)
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Calibrating Radial Distortion

• radial distortion calibration includes at least 5 parameters: θ = (λ, u0, v0, s, a)
• we may asume ORUA: s = 0, a = 1

Alg:
1. detect a set of straight line segment images {si}ni=1 from a calibration target checkerboard patterns have many

2. select a suitable set of k measurement points per segment checkerboard: given, in general: how to select k?

3. define (rotation/translation-) invariant radial transfer error per measurement point ei,j in segment i:

e2i (θ) =

k−2∑
j=1

e2i,j(θ) eg. line fit residual (closed form)

4. minimize total radial transfer error while preserving yn to avoid collapse to a point

arg min
θ=(λ, u0, v0, s, a)

n∑
i=1

e2i (θ) s.t. yn preserved

• line segments from real-world images requires segmentation to inliers/outliers inliers = lines that are straight in reality

• marginalisation over the hidden inlier/outlier label gives a ‘robust’ error, e.g. → Slide 121

ε2i = − log

(
e
−

e2i
2σ2 + t

)
, t > 0

• direct optimization usually suffices but in general such optimization is unstable
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Example Calibrations

Low-resolution (VGA) wide field-of-view (130◦) camera

Camera 0, im. 6: Reprojection errors (16x)
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Camera 0: Error histogram.

Cam 0
RMS [px] 0.33
max [px] 1.97

f [px] 94.59
a [-] 1.0951

u0 [px] 243.26
v0 [px] 353.37

(poly) k1 +0.8256
k2 −0.2261
k3 +1.2524

4 Mpix consumer camera with a zoom
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• polynomial model suffices for greater focal
lengths

• above: alternating signs and
similar-magnitude coefficients ki are a sign
of a low efficiency of the plain polynomial
model

• below: radial distortion is slightly dependend
on focal length
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A Summary of This Course Highlights

• homography as a two-image model

• epipolar geometry as a two-image model
• core algorithms for 3D vision:

• simple intrinsic calibration methods
• 6-pt alg for camera resection and 3-pt alg for exterior orientation (calibrated resection)
• 7-pt alg for fundamental matrix, 5-pt alg for essential matrix
• essential matrix decomposition to rotation and translation
• efficient accurate triangulation
• robust matching by RANSAC sampling
• camera system reconstruction
• efficient bundle adjustment
• stereoscopic matching basics

• statistical robustness as a way to work with partially unknown information

What can we do with these tools?

• perspective image rectification
• 3D scene reconstruction
• motion capture
• visual odometry
• robotic self-localization and mapping (SLAM) for navigation and motion planning

we did not cover 3D aggregation in scene maps
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Thank You
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Camera 0, im. 6: Reprojection errors (16x)
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