3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/tdv/start http://cmp.felk.cvut.cz mailto:sara@cmp.felk.cvut.cz phone ext. 7203

rev. November 14, 2023

Open Informatics Master's Course

▶Local Optimization for Fundamental Matrix Estimation

Summary so far

- Given a set $X = \{(x_i, y_i)\}_{i=1}^k$ of $k \gg 7$ inlier correspondences, compute a statistically efficient estimate for fundamental matrix \mathbf{F} .
 - 1. Find the conditioned (\rightarrow 93) 7-point \mathbf{F}_0 (\rightarrow 85) from a suitable 7-tuple
 - 2. Improve the \mathbf{F}_0^* using the LM optimization (\rightarrow 110–111) and the Sampson error (\rightarrow 112) on <u>all inliers</u>, reinforce rank-2, unit-norm \mathbf{F}_k^* after each LM iteration using SVD

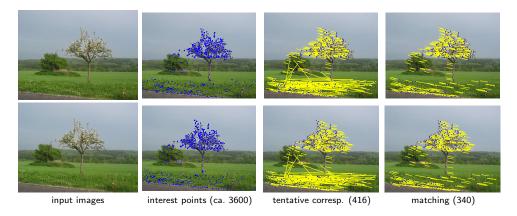
Partial conceptualization

- inlier = a correspondence (a true match)
- outlier = a non-correspondence
- binary inlier/outlier labels are <u>hidden</u>
- we can get their likely estimate only, with respect to a model

We are not yet done

- if there are no wrong correspondences (mismatches, outliers), this gives a <u>local</u> optimum given the 7-point initial estimate
- the algorithm breaks under contamination of (inlier) correspondences by outliers
- the full problem involves finding the inliers!
- in addition, we need a mechanism for jumping out of local minima (and exploring the space of all fundamental matrices)

Example Matching Results for the 7-point Algorithm with Random-Sampling Optimization



- descriptors used to obtain tentative matches but no descriptors used in the final matching
- without local optimization the minimization is over a discrete set of epipolar geometries proposable from 7-tuples
- notice the mismatches (they have wrong depth, even negative)

remember: hidden labels \rightarrow 113

- they are considered as random outliers to the epipolar model
- inlier matches will be treated as correspondences for the SfM problem

► A Preview: Optimization by Random Sampling of Geometric Primitives

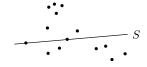
Given an optimization problem, define:

- parameters $\theta \in domain(\theta)$
- primitive geometric element $x_i \in \mathcal{P}$
- generator q of random minimal proposal s-tuples $S \in \mathcal{P}^s$ of primitive elements
- minimal-problem solver computing θ from the s-tuples: solver : $\mathcal{P}^s \to \operatorname{domain}(\theta)$
- objective function $\pi(\mathcal{P} \mid \boldsymbol{\theta})$

Examples:	θ	primitive	s	solver	$\pi(\cdot)$ terms
line fitting in 2D	$\mathbf{\underline{n}} \in \mathbb{R}^3$	point	2	$\mathbf{\underline{n}} \simeq \mathbf{\underline{x}}_1 \times \mathbf{\underline{x}}_2$	point-to-line distances
plane fitting in 3D	$\mathbf{p} \in \mathbb{R}^4$	point	3	$\mathbf{p} \simeq \operatorname{null} \left(\left[\mathbf{\underline{x}}_1, \mathbf{\underline{x}}_2, \mathbf{\underline{x}}_3 \right]^{\top} \right)$	point-to-plane distances
fundamental matrix fitting	$\bar{\mathbf{F}}$	match 2D–2D	7	7-pt alg	Sampson errors
exterior orientation	(\mathbf{R},\mathbf{t})	match 3D–2D	3	P3P alg	projection errors

Algorithm sketch:

- ullet propose a random s-tuple of primitives S using $q(\cdot)$
- run the solver on S to obtain parameters $\boldsymbol{\theta}$
- compute the value of $\pi(\mathcal{P} \mid \boldsymbol{\theta})$ on all primitives \mathcal{P}
- remember the sample which gave the best $\pi(\mathcal{P} \mid \boldsymbol{\theta})$



▶ A Preview: RANSAC with Local Optimization and Early Stopping

Given: minimal configuration C definition, proposal distribution $q(\cdot)$, minimal-problem solver, objective $\pi(\cdot)$:

- 1. initialize the best parameters $\theta_{\mathrm{best}} := \emptyset$, $\pi_{\mathrm{best}} := -\infty$, and proposal index k := 0
- 2. estimate the total number of needed proposals as $N := \binom{n}{s}$ n No. of primitives, s minimal config size
- 3. while $k \leq N$:
 - a) propose a random s-tuple S from $q(\cdot)$ b) solve the minimal problem on S to obtain θ
 - c) if $\pi(\mathcal{P} \mid \boldsymbol{\theta}) > \pi_{\text{best}}$ then accept
 - i) update the best $oldsymbol{ heta}_{ ext{best}} \coloneqq oldsymbol{ heta}$
 - ii) threshold-out outliers using e_T from (30)

iii) locally optimize θ from the inliers of θ_{best}

- iv) update θ_{best} , update inliers using (30), re-estimate the **stopping criterion** N from inlier counts $\log(1-P)$

$$N = \frac{\log(1-P)}{\log(1-\varepsilon^s)}, \quad \varepsilon = \frac{|\operatorname{inliers}(\boldsymbol{\theta}_{\operatorname{best}})|}{n},$$

- d) k := k + 1
- 4. output C_{best}
- see the MPV course for RANSAC details

see also [Fischler & Bolles 1981], [25 years of RANSAC]

 $\pi(S)$ marginalized as in (29); $\pi(S)$ includes a prior \Rightarrow MAP

LM optimization with robustified (\rightarrow 121) Sampson error possibly weighted by posterior $\pi(m_{ij})$ [Chum et al. 2003]

→117 for derivation

▶ Data-Driven Stopping Criterion

• The number of proposals N needed to hit the "true parameters" = an all-inlier configuration:

this will tell us nothing about the accuracy of the result

P ... probability that the last proposal is an all-inlier for the first time 1-P ... all previous N proposals contained outlier(s)

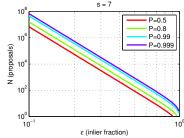
 ε ... the fraction of inliers among primitives, $\varepsilon < 1$ s ... No. of primitives in a minimal configuration

2 in line fitting, 7 in 7-point algorithm, 4 in homography fitting,...

$$N \geq \frac{\log(1-P)}{\log(1-\varepsilon^s)} \qquad \qquad \begin{tabular}{l} \bullet & \varepsilon^s & \dots \text{ proposal is all-inlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^s & \dots \text{ proposal contains at least one outlier} \\ \bullet & 1-\varepsilon^$$

- ε^s ... proposal is all-inlier
- $(1-\varepsilon^s)^N \dots N$ previous proposals contained an outlier =1-P

N for $s=7$					
	P				
ε	0.8	0.99			
0.5	205	590			
0.2	$1.3 \cdot 10^5$	$3.5 \cdot 10^5$			
0.1	$1.6 \cdot 10^7$	$4.6 \cdot 10^7$			



- N can be re-estimated using the current estimate for ε (if there is LO, then after LO)
 - the quasi-posterior estimate for ε is the average over all samples generated so far
- this shows we have a good reason to limit all possible matches to tentative matches only

not covered in this course

• for $\varepsilon \to 0$ we gain nothing over the standard MH-sampler stopping rule

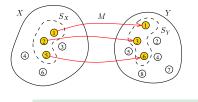
▶ Towards $\pi(\cdot)$: The Full Problem of Matching and Fundamental Matrix Estimation

Problem: Given image keypoint sets $X = \{x_i\}_{i=1}^m$ and $Y = \{y_j\}_{j=1}^n$ and their descriptors D, find the most probable

- 1. inlier keypoints $S_X \subseteq X$, $S_Y \subseteq Y$
 - 2. one-to-one perfect matching $M: S_X \to S_Y$ 3. fundamental matrix \mathbf{F} such that rank $\mathbf{F} = 2$
 - 4. such that for each $x_i \in S_X$ and $y_i = M(x_i)$ it is probable that
 - a) the image descriptor $D(x_i)$ is similar to $D(y_i)$, and
 - b) the total reprojection error $E = \sum_{ij} e_{ij}^2(\mathbf{F})$ is small
 - 5. inlier-outlier and outlier-outlier matches are improbable

perfect matching: 1-factor of the bipartite graph

note a slight change in notation: e_{ij}



$$(M^*, \mathbf{F}^*) = \arg \max_{M, \mathbf{F}} \pi(E, D, \mathbf{F}, \mathbf{M})$$

 $(E,D) \sim \mathcal{P}, \ (\mathbf{F}, M) \sim \boldsymbol{\theta}$ (24)

probabilistic model: an efficient language for problem formulation

• the (24) is a Bayesian probabilistic model • binary matching table $M_{ij} \in \{0,1\}$ of fixed size $m \times n$ it also unifies 4.a and 4.b there is a constant number of random variables!

- each row/column contains at most one unity
 - zero rows/columns correspond to unmatched point x_i/y_j

Deriving A Robust Matching Model by Approximate Marginalization

For algorithmic efficiency, instead of $(M^*, \mathbf{F}^*) = \arg \max_{M, \mathbf{F}} p(E, D, \mathbf{F}, M)$ solve

$$\mathbf{F}^* = \arg\max_{\mathbf{F}} p(E, D, \mathbf{F}) \tag{25}$$

 $i=1 \ j=1 \ m_{i,i} \in \{0,1\}$

by marginalization of $p(E, D, \mathbf{F}, M)$ over the set of all matchings \mathcal{M} s.t. $M \in \mathcal{M}$ this changes the problem! drop the assumption that M is a 1:1 matching, assume correspondence-wise independence:

$$p(E, D, \mathbf{F}, M) = p(E, D, \mathbf{F} \mid M) P(M) = \prod_{i=1}^{m} \prod_{j=1}^{m} p_e(e_{ij}, d_{ij}, \mathbf{F} \mid m_{ij}) P(m_{ij})$$

- e_{ij} represents (reprojection) error for match $x_i \leftrightarrow y_i$: e.g. $e_{ij}(x_i, y_i, \mathbf{F})$
- d_{ij} represents descriptor similarity for match $x_i \leftrightarrow y_i$: e.g. $d_{ij} = \|\mathbf{d}(x_i) \mathbf{d}(y_j)\|$

Approximate marginalization:

take all the 2^{mn} terms in place of M

$$p(E, D, \mathbf{F}) \approx \sum_{m_{11} \in \{0,1\}} \sum_{m_{12}} \cdots \sum_{m_{mn}} p(E, D, \mathbf{F} \mid M) P(M) = \sum_{m_{11} \in \{0,1\}} \sum_{m_{12} \in \{0,1\}} \sum_{m_{12} \in \{0,1\}} p(E, D, \mathbf{F} \mid M) P(M) = \sum_{m_{11} \in \{0,1\}} \sum_{m_{12} \in \{0,1\}} \sum_{m_{12} \in \{0,1\}} p(E, D, \mathbf{F} \mid M) P(M) = \sum_{m_{11} \in \{0,1\}} \sum_{m_{12} \in \{0,1\}} p(E, D, \mathbf{F} \mid M) P(M) = \sum_{m_{11} \in \{0,1\}} \sum_{m_{12} \in \{0,1\}} p(E, D, \mathbf{F} \mid M) P(M) = \sum_{m_{11} \in \{0,1\}} p(E, D, \mathbf{F} \mid M) P(M)$$

$$= \sum_{m_{11}} \cdots \sum_{m_{mn}} \prod_{i=1}^{m} \prod_{j=1}^{n} p_{e}(e_{ij}, d_{ij}, \mathbf{F} \mid m_{ij}) P(m_{ij}) = \stackrel{\circledast}{\cdots} = \prod_{i=1}^{m} \prod_{j=1}^{n} \sum_{m_{ij}} p_{e}(e_{ij}, d_{ij}, \mathbf{F} \mid m_{ij}) P(m_{ij})$$
(26)

we will continue with this term

Robust Matching Model (cont'd)

$$\sum_{\substack{m_{ij} \in \{0,1\}}} p_e(e_{ij}, d_{ij}, \mathbf{F} \mid m_{ij}) P(m_{ij}) = \underbrace{p_e(e_{ij}, d_{ij}, \mathbf{F} \mid m_{ij} = 1)}_{p_1(e_{ij}, d_{ij}, \mathbf{F})} \underbrace{P(m_{ij} = 1)}_{1 - P_0} + \underbrace{p_e(e_{ij}, d_{ij}, \mathbf{F} \mid m_{ij} = 0)}_{p_0(e_{ij}, d_{ij}, \mathbf{F})} \underbrace{P(m_{ij} = 0)}_{P_0} = \underbrace{(1 - P_0) p_1(e_{ij}, d_{ij}, \mathbf{F})}_{P_0} + \underbrace{P(m_{ij} = 1)}_{P_0} + \underbrace{P(m_{ij$$

• the $p_0(e_{ij}, d_{ij}, \mathbf{F})$ is a penalty for 'missing a correspondence' but it should be a p.d.f. (cannot be a constant) $\rightarrow 121$ for a simplification

choose
$$P_0 \to 1$$
, $p_0(\cdot) \to 0$ so that $\frac{P_0}{1 - P_0} p_0(\cdot) \approx \text{const}$

• the $p_1(e_{ij}, d_{ij}, \mathbf{F})$ is typically an easy-to-design term: assuming independence of reprojection error and descriptor similarity:

$$p_1(e_{ij}, d_{ij}, \mathbf{F}) = p_1(e_{ij} \mid \mathbf{F}) p_F(\mathbf{F}) p_1(d_{ij})$$

• we choose, e.g.

$$p_1(e_{ij} \mid \mathbf{F}) = \frac{1}{T_e(\sigma_1)} e^{-\frac{e_{ij}^2(\mathbf{F})}{2\sigma_1^2}}, \quad p_1(d_{ij}) = \frac{1}{T_d(\sigma_d, \dim \mathbf{d})} e^{-\frac{\|\mathbf{d}(x_i) - \mathbf{d}(y_j)\|^2}{2\sigma_d^2}}$$
(28)

- **F** is a random variable and σ_1 , σ_d , P_0 are parameters
- ullet the form of $T_e(\sigma_1)$ depends on the error definition, it may depend on $x_i,\,y_j$ but not on ${f F}$
- we will continue with the result from (27)

(27)

Simplified Robust Energy (Error) Function

assuming the choice of p_1 as in (28), we are simplifying (26) to

$$p(E, D, \mathbf{F}) = p(E, D \mid \mathbf{F}) p_F(\mathbf{F}) = p_F(\mathbf{F}) \prod_{i=1}^{m} \prod_{i=1}^{n} \left[(1 - P_0) p_1(e_{ij}, d_{ij} \mid \mathbf{F}) + P_0 p_0(e_{ij}, d_{ij} \mid \mathbf{F}) \right]$$

we choose $\sigma_0 \gg \sigma_1$ and omit d_{ij} for simplicity; then the square-bracket term is

$$\frac{1 - P_0}{T_e(\sigma_1)} e^{-\frac{e_{ij}^2(\mathbf{F})}{2\sigma_1^2}} + \frac{P_0}{T_e(\sigma_0)} e^{-\frac{e_{ij}^2(\mathbf{F})}{2\sigma_0^2}} = \frac{1 - P_0}{T_e(\sigma_1)} \left(e^{-\frac{e_{ij}^2(\mathbf{F})}{2\sigma_1^2}} + \frac{T_e(\sigma_1)}{1 - P_0} \frac{P_0}{T_e(\sigma_0)} e^{-\frac{e_{ij}^2(\mathbf{F})}{2\sigma_0^2}} \right)$$

• we define the 'error function' as: $V(x) = -\log p(x)$

$$V(E, D \mid \mathbf{F}) = \sum_{i=1}^{m} \sum_{j=1}^{n} \left[\underbrace{-\log \frac{1 - P_0}{T_e(\sigma_1)}}_{\Delta = \text{ const}} - \log \left(e^{-\frac{e_{ij}^2(\mathbf{F})}{2\sigma_1^2}} + \underbrace{\frac{P_0}{1 - P_0} \frac{T_e(\sigma_1)}{T_e(\sigma_0)} e^{-\frac{e_{ij}^2(\mathbf{F})}{2\sigma_0^2}}}_{t \approx \text{ const}} \right) \right] =$$

$$= m n \Delta + \sum_{i=1}^{m} \sum_{j=1}^{n} -\log \left(e^{-\frac{e_{ij}^2(\mathbf{F})}{2\sigma_1^2}} + t \right)$$

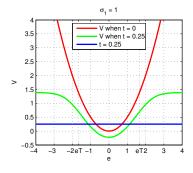
smaller
$$V$$
 is better

- the terms in (29) are: (constant) + (total robust error for all pairs in M)
- note we are summing over all m n matches (m, n are constant!)
- when t=0 we have quadratic inlier error function $\hat{V}(e_{ij})=e_{ij}^2(\mathbf{F})/(2\sigma_1^2)$

expensive but explicit matching is avoided

▶The Action of the Robust Matching Model on Data

Ex: Error function $\hat{V}(e_{ij})$ (29):



red - the (non-robust) quadratic error

$$\hat{V}(e_{ij})$$
 when $t=0$

blue – the rejected match penalty t green – robust $\hat{V}(e_{ij})$ from (29)

- if the error of a correspondence exceeds a limit, it is ignored
- then $\hat{V}(e_{ij}) = \mathrm{const}$ and we just count outliers in (29)
- ullet t controls the 'turn-off' point
- the inlier/outlier threshold is e_T the error for which $(1-P_0)\,p_1(e_T)=P_0\,p_0(e_T)$: note that $t\approx 0$

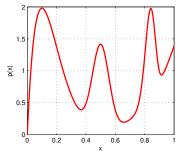
$$e_T = \sigma_1 \sqrt{-\log t^2}, \ t = e^{-\frac{1}{2} \left(\frac{e_T}{\sigma_1}\right)^2} \text{ e.g. } e_T = 4\sigma_1 \to t \approx 3.4 \cdot 10^{-4}$$
 (30)

The full optimization problem (25) uses (29):

$$\mathbf{F}^* = \arg\max_{\mathbf{F}} \ \frac{\overbrace{p(E,D \mid \mathbf{F}) \cdot p(\mathbf{F})}^{\text{prior}}}{\underbrace{p(E,D)}_{\text{interpolation}}} \approx \arg\min_{\mathbf{F}} \left[V(\mathbf{F}) + \sum_{i=1}^m \sum_{j=1}^n \log \left(e^{-\frac{e_{ij}^2(\mathbf{F})}{2\sigma_1^2}} + t \right) \right]$$

- typically we take $V(\mathbf{F}) = -\log p(\mathbf{F}) = 0$ unless we need to stabilize a computation, e.g. when video camera moves smoothly (on a high-mass vehicle) and we have a prediction for \mathbf{F}
- the evidence is not needed unless we want to compare different models (e.g. homography vs. epipolar geometry)

How To Find the Global Maxima (Modes) of a PDF?



- exhaustive randomized MH crawl Gibbs 2000 3000 4000 5000 1000 iterations
 - number of proposals before $|x - x_{\text{true}}| \leq \text{step}$ averaged over 10^4 trials

- given a toy probability distribution p(x) at left consider several methods:
 - 1 exhaustive search step = 1/(iterations-1); for x = 0:step:1 if p(x) > bestpbestx = x; bestp = p(x);end

end

end

2. randomized search with uniform sampling while t < iterations

```
x = rand(1):
if p(x) > bestp
 bestx = x; bestp = p(x);
end
t = t+1; % time
```

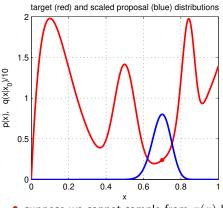
- 3. random sampling from p(x) (Gibbs sampler)
 - faster algorithm fast to implement but often infeasible (e.g. when p(x) is data dependent (our case in correspondence prob.))
- 4. Metropolis-Hastings sampling
 - almost as fast (with care) not so fast to implement

• simpler (unimodal) distributions result in faster convergence

• rarely infeasible • RANSAC belongs here

- $\theta = x$, p.d.f. on [0, 1], mode at 0.1
 - slow algorithm (definite quantization)
 - fast to implement
 - equally slow algorithm
 - fast to implement

How To Generate Random Samples from a Complex Distribution?



red: probability density function $\pi(x)$ of the toy distribution on the unit interval target distribution

$$\pi(x) = \sum_{i=1}^{4} \gamma_i \operatorname{Be}(x; \alpha_i, \beta_i), \quad \sum_{i=1}^{4} \gamma_i = 1, \ \gamma_i \ge 0$$

$$Be(x; \alpha, \beta) = \frac{1}{B(\alpha, \beta)} \cdot x^{\alpha - 1} (1 - x)^{\beta - 1}, \quad \alpha, \beta \ge 0$$

- lacktriangle alg. for generating samples from $\mathrm{Be}(x;lpha,eta)$ is known
- ullet \Rightarrow we can generate samples from $\pi(x)$

• suppose we cannot sample from $\pi(x)$ but we can sample from some 'simple' proposal distribution $q(x \mid x_0)$, given the previous sample x_0 (blue)

$$q(x \mid x_0) = \begin{cases} \mathbf{U}_{0,1}(x) & \text{(independent) uniform sampling } = \mathrm{Be}(x,1,1) \\ \mathrm{Be}(x; \frac{x_0}{T} + 1, \frac{1 - x_0}{T} + 1) & \text{`beta' diffusion (crawler)} \quad T - \text{temperature} \\ \pi(x) & \text{(independent) Gibbs sampler} \end{cases}$$

- note we have unified all the random sampling methods from the previous slide
- how to redistribute proposal samples $q(x \mid x_0)$ to target distribution $\pi(x)$ samples?

how?

► Metropolis-Hastings (MH) Sampling

$$C,\,S$$
 – configurations: carry information about $oldsymbol{ heta}$

e.g. $C = \theta = x$ in $\rightarrow 124$, C - s-tuple on $\rightarrow 115$

Goal: Generate a sequence of random samples $\{C_t\}$ from target distribution $\pi(C)$ Idea: Setup a Markov chain with a suitable transition probability to generate the sequence

Sampling procedure

1. given current configuration C_t , propose (draw a random) configuration sample S from $q(S \mid C_t)$ q may use some information from C_t (Hastings)

2. compute acceptance probability

the redistribution filter; note the evidence term drops out

$$a=\min\left\{1,\;\frac{\pi(S)}{\pi(C_t)}\cdot\frac{q(C_t\mid S)}{q(S\mid C_t)}\right\} \qquad \qquad C_{t-1} \qquad C_t \qquad a \rightarrow o \qquad C_{t+1}=S$$
 3. accept S with probability a

- - a) draw a random number u from unit-interval uniform distribution $U_{0,1}$ b) if u < a then $C_{t+1} := S$ else $C_{t+1} := C_t$

'Programming' an MH sampler

- 1. design a proposal distribution (mixture) q and a sampler from q
- 2. express functions $q(C_t \mid S)$ and $q(S \mid C_t)$ as proper distributions

not always simple

very slow

Finding the mode

- remember the best sample

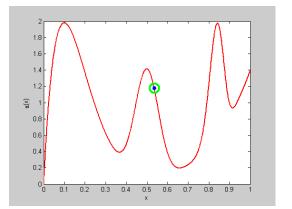
 - use simulated annealing
- use the sampler as an explorer and do local optimization from the accepted sample a trade-off between speed and accuracy

an optimal algorithm does not use just the best sample: a Stochastic EM Algorithm (e.g. SAEM)

fast implementation but must wait long to hit the mode

R. Šára, CMP: rev. 14-Nov-2023

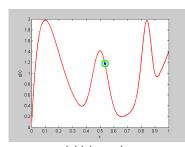
MH Sampling Demo



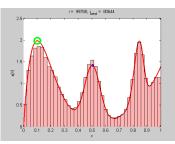
sampling process (100k samples; video, 7:33) click for video

 $quality = \pi(x)$

- blue point: current sample
- green circle: best sample so far
- histogram: current distribution of visited states
- the vicinity of modes are the most often visited states



initial sample



final distribution of visited states

Demo Source Code (Matlab)

```
function x = proposal_gen(x0)
% proposal generator q(x | x0)
T = 0.01; % temperature
x = betarnd(x0/T+1,(1-x0)/T+1);
end
function p = proposal q(x, x0)
% proposal distribution q(x | x0)
T = 0.01:
p = betapdf(x, x0/T+1, (1-x0)/T+1);
end
function p = target p(x)
% target distribution p(x)
 % shape parameters:
 a = [2 	 40 	 100 	 6];
 b = [10 \ 40 \ 20 \ 1];
 % mixing coefficients:
 w = [1 \ 0.4 \ 0.253 \ 0.50]; w = w/sum(w);
for i = 1:length(a)
  p = p + w(i)*betapdf(x,a(i),b(i));
 end
end
```

```
%% DEMO script
k = 10000:
              % number of samples
X = NaN(1,k); % list of samples
x0 = proposal_gen(0.5);
for i = 1 \cdot k
 x1 = proposal_gen(x0);
a = target_p(x1)/target_p(x0) * ...
     proposal_q(x0,x1)/proposal_q(x1,x0);
 if rand(1) < a
 X(i) = x1; x0 = x1;
 else
 X(i) = x0;
 end
end
figure(1)
x = 0:0.001:1:
plot(x, target p(x), 'r', 'linewidth',2):
hold on
binw = 0.025; % histogram bin width
n = histc(X, 0:binw:1):
h = bar(0:binw:1, n/sum(n)/binw, 'histc');
set(h, 'facecolor', 'r', 'facealpha', 0.3)
xlim([0 1]); ylim([0 2.5])
xlabel 'x'
ylabel 'p(x)'
title 'MH demo'
hold off
```



