
3D Computer Vision
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Examples

Assuming orthogonal raster, unit aspect (ORUA): θ = π/2, a = 1

ω ≃

 1 0 −u0

0 1 −v0
−u0 −v0 f2 + u2

0 + v20


Ex 1:
Assuming ORUA and known m0 = (u0, v0), two finite orthogonal vanishing points give f

v⊤
1 ω v2 = 0 ⇒ f2 =

∣∣(v1 −m0)
⊤(v2 −m0)

∣∣
in this formula, v1,2, m0 are Cartesian (not homogeneous)!

Ex 2:

Non-orthogonal vanishing points vi, vj , known angle ϕ: cosϕ =
v⊤
i ωvj√

v⊤
i ωvi

√
v⊤
j ωvj

• leads to polynomial equations

• e.g. ORUA and u0 = v0 = 0 gives

(f2 + v⊤
i vj)

2 = (f2 + ∥vi∥2) · (f2 + ∥vj∥2) · cos2 ϕ
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▶Camera Orientation from Two Finite Vanishing Points

Problem: Given K and two vanishing points corresponding to two known orthogonal directions d1, d2, compute
camera orientation R with respect to the plane.

• 3D coordinate system choice, e.g.:

d1 = (1, 0, 0), d2 = (0, 1, 0)

• we know that

di ≃ Q−1vi = (KR)−1vi = R−1 K−1vi︸ ︷︷ ︸
wi

Rdi ≃ wi

• knowing d1,2 we conclude that wi/∥wi∥ is the i-th column ri of R

• the third column is orthogonal: r3 ≃ r1 × r2

R =
[

w1
∥w1∥

w2
∥w2∥

w1×w2
∥w1×w2∥

]
• we have to care about the signs ±wi (such that detR = 1)

.

v2
d2 d1 v1

some suitable scenes

3D Computer Vision: III. Computing with a Single Camera (p. 58/197) R. Šára, CMP; rev. 17–Oct–2023



Application: Planar Rectification

Principle: Rotate camera (image plane) parallel to the plane of interest.

m≃ KR
[
I −C

]
X m′ ≃ K

[
I −C

]
X

m′ ≃ K(KR)−1 m= KR⊤K−1 m= Hm

• H is the rectifying homography
• both K and R can be calibrated from two finite vanishing points assuming ORUA →57

• not possible when one of them is (or both are) infinite
• without ORUA we would need 4 additional views to calibrate K as on →54
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▶Camera Resection

Camera calibration and orientation from a known set of k ≥ 6 reference points and their images {(Xi,mi)}6i=1.

P

m̂i

mi

ei

Xi

• Xi are considered exact

• mi is a measurement subject to detection error

mi = m̂i + ei Cartesian

• where λi m̂i = PXi
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Resection Targets
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calibration chart automatic calibration point detection
based on a distributed bitcode (2× 4 = 8 bits)

z

• target translated at least once

• by a calibrated (known) translation

• Xi point locations looked up in a table based on
their bitcode

resection target with translation stage
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▶The Minimal Problem for Camera Resection

Problem: Given k = 6 corresponding pairs
{
(Xi, mi)

}k

i=1
, find P

λimi = PXi, P =

 q⊤
1 q14

q⊤
2 q24

q⊤
3 q34

 Xi = (xi, yi, zi, 1), i = 1, 2, . . . , k, k = 6

mi = (ui, vi, 1), λi ∈ R, λi ̸= 0, |λi| < ∞
easily modifiable for infinite points Xi but be aware of →64

expanded: λiui = q⊤
1 Xi + q14, λivi = q⊤

2 Xi + q24, λi = q⊤
3 Xi + q34

after elimination of λi: (q⊤
3 Xi + q34)ui = q⊤

1 Xi + q14, (q⊤
3 Xi + q34)vi = q⊤

2 Xi + q24

Then

Aq =


X⊤

1 1 0⊤ 0 −u1X
⊤
1 −u1

0⊤ 0 X⊤
1 1 −v1X

⊤
1 −v1

...
...

X⊤
k 1 0⊤ 0 −ukX

⊤
k −uk

0⊤ 0 X⊤
k 1 −vkX

⊤
k −vk

·


q1

q14
q2

q24
q3

q34

 = 0 (9)

• we need 11 indepedent parameters for P
• A ∈ R2k,12, q ∈ R12

• 6 points in a general position give rankA = 12 and there is no (non-trivial) null space
• drop one row to get rank-11 matrix, then the basis vector of the null space of A gives q
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▶The Jack-Knife Solution for k = 6

• given the 6 correspondences, we have 12 equations for the 11 parameters
• can we use all the information present in the 6 points?

Jack-knife estimation
1. n := 0

2. for i = 1, 2, . . . , 2k do
a) delete i-th row from A, this gives Ai

b) if dimnullAi > 1 continue with the next i
c) n := n+ 1
d) compute the right null-space qi of Ai e.g. by ‘economy-size’ SVD

e) q̂i:= qi normalized to q34 = 1 and dimension-reduced assuming finite cam. with P3,4 = 1

3. from all n vectors q̂i collected in Step 2.e compute

q =
1

n

n∑
i=1

q̂i, var[q] =
n− 1

n
diag

n∑
i=1

(q̂i − q)(q̂i − q)⊤
regular for n ≥ 11

variance of the sample mean

• have a solution + an error estimate, per individual elements of P (except P34)
• at least 5 points must be in a general position (→64)

• large error indicates near degeneracy

• computation not efficient with k > 6 points, needs
(2k
11

)
draws, e.g. k = 7 ⇒ 364 draws

• better error estimation method: decompose Pi to Ki, Ri, ti (→33), represent Ri with 3 parameters (e.g. Euler angles, or in
exponential map representation →144) and compute the errors for the parameters

• even better: use the SE(3) Lie group for (Ri, ti) and average its group-theoretic representations (the procedure is iterative)
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▶Degenerate (Critical) Configurations for Camera Resection

Let X = {Xi; i = 1, . . .} be a set of points and P1 ̸≃ Pj be two regular (rank-3) cameras. Then two
configurations (P1,X ) and (Pj ,X ) are image-equivalent if

P1Xi ≃ PjXi for all Xi ∈ X

i.e. there is a non-trivial set of other cameras that see the same image{C1C2C1C
Case 4

Results
• importantly: If all calibration points Xi ∈ X lie on a plane κ then camera

resection is non-unique and all image-equivalent camera centers lie on a
spatial line C with the C∞ = κ ∩ C excluded

this also means we cannot resect if all Xi are infinite

• and more: by adding points Xi ∈ X to C we gain nothing

• there are additional image-equivalent configurations, see next

Proof sketch: If Q, T are suitable homographies then P1 ≃ QP0T, where P0 is canonical and the analysis can be made

with P̂j ≃ Q−1Pj

P0 TXi︸ ︷︷ ︸
Yi

≃ P̂j TXi︸ ︷︷ ︸
Yi

for all Yi ∈ Y

see [H&Z, Sec. 22.1.2] for a full prof
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cont’d (all cases)C C
Case 5 Case 6

• points lie on three optical rays or one optical ray and one
optical plane

• cameras C1, C2 co-located at point C
• Case 5: camera sees 3 isolated point images
• Case 6: cam. sees a line of points and an isolated pointC C1

C 01C1C2 {C1C2C1C
Case 3 Case 4

• points lie on a line C and

1. on two lines meeting C at C∞, C′
∞

2. or on a plane meeting C at C∞

• cameras lie on a line C \ {C∞, C′
∞}

• Case 3: camera sees 2 lines of points
• Case 4: dangerous!

Case 2

CC2
C1C1 • points lie on a planar conic C and an additional line meeting C

at C∞
• cameras lie on C \ {C∞} not necessarily an ellipse

• Case 2: camera sees 2 lines of points

Case 1 CC1 C2 • points and cameras all lie on a twisted cubic C
• Case 1: camera sees points on a conic

dangerous but unlikely to occur
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▶Three-Point Exterior Orientation Problem (P3P)

Calibrated camera rotation and translation from Perspective images of 3 reference Points.

Problem: Given K and three corresponding pairs
{
(mi, Xi)

}3

i=1
, find R, C by solving

λimi = KR (Xi −C), i = 1, 2, 3 Xi Cartesian

1. Transform vi
def
= K−1mi. Then

λivi = R (Xi −C). (10)

2. If there was no rotation in (10), the situation would look like this

X3X1 v2
X2z1 v1 v3z2

C
d12

3. and we could shoot 3 lines from the given points Xi in given directions vi to get C

4. given C we could solve (10) for λi
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▶P3P cont’d

If there is rotation R

1. Eliminate R by taking rotation preserves length: ∥Rx∥ = ∥x∥

|λi| · ∥vi∥ = ∥Xi −C∥ def
= zi (11)

2. Consider only angles among vi and apply the Cosine Law per triangle
(C,Xi,Xj) i, j = 1, 2, 3, i ̸= j

d2ij = z2i + z2j − 2 zi zj cij ,

zi = ∥Xi −C∥, dij = ∥Xj −Xi∥, cij = cos(∠vi vj)

4. Solve the system of 3 quadratic eqs in 3 unknowns zi
[Fischler & Bolles, 1981]

there may be no real root

there are up to 4 solutions that cannot be ignored (verify on additional points)

5. Compute C by trilateration (3-sphere intersection) from Xi and zi; then λi

from (11)

6. Compute R from (10) we will solve this problem next →70

X3X1 v2
X2z1 v1 v3z2

C
d12

Similar problems (P4P with unknown f) at http://aag.ciirc.cvut.cz/minimal/ (papers, code)
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Degenerate (Critical) Configurations for Exterior Orientation

X1X3 X2C no solution

1. C cocyclic with (X1, X2, X3) camera sees points on a line

X1X3 X2
C unstable solution

• center of projection C located on the orthogonal circular cylinder with base
circumscribing the three points Xi

unstable: a small change of Xi results in a large change of C
can be detected by error propagation

degenerate

• camera C is coplanar with points (X1, X2, X3) but is not on the
circumscribed circle of (X1, X2, X3) camera sees points on a line

• additional critical configurations depend on the quadratic equations solver [Haralick et al. IJCV 1994]
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▶Populating A Little ZOO of Minimal Geometric Problems in CV

problem given unknown slide

camera resection 6 world–image correspondences
{
(Xi, mi)

}6

i=1
P →62

exterior orientation K, 3 world–image correspondences
{
(Xi, mi)

}3

i=1
R, C →66

next: relative orientation 3 world-world correspondences
{
(Xi, Yi)

}3

i=1
R, t →70

• camera resection and exterior orientation are similar problems in a sense:
• we do resectioning when our camera is uncalibrated
• we do orientation when our camera is calibrated

• relative orientation involves no camera (see next) it is a recurring problem in 3D vision

• more problems to come
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▶The Relative Orientation Problem

Problem: Given point triples (X1, X2, X3) and (Y1, Y2, Y3) in a general position in R3 such that the
correspondence Xi ↔ Yi is known, determine the relative orientation (R, t) that maps Xi to Yi, i.e.

Yi = RXi + t, i = 1, 2, 3 .

Applies to:

• 3D scanners

• merging partial reconstructions from different viewpoints

• generalization of the last step of P3P

Obs: Let the centroid be X̄ = 1
3

∑
i Xi and analogically for Ȳ. Then

Ȳ = RX̄+ t.

Therefore

Zi
def
= (Yi − Ȳ) = R(Xi − X̄)

def
= RWi

If all dot products are equal, Z⊤
i Zj = W⊤

i Wj for i, j = 1, 2, 3, we have

R∗ =
[
W1 W2 W3

]−1 [
Z1 Z2 Z3

]
Poor man’s solver:

• normalize Wi, Zi to unit length, use the above formula, and then find the closest rotation matrix

• but this is equivalent to a non-optimal objective it ignores errors in vector lengths
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An Optimal Algorithm for Relative Orientation

We setup a minimization problem

R∗ = argmin
R

3∑
i=1

∥Zi −RWi∥2 s.t. R⊤R = I, detR = 1

argmin
R

∑
i

∥Zi −RWi∥2 = argmin
R

∑
i

(
∥Zi∥2 − 2Z⊤

i RWi + ∥Wi∥2
)
= · · · = argmax

R

∑
i

Z⊤
i RWi

Obs 1: Let A : B =
∑

i,j aijbij be the dot-product (Frobenius inner product) over real matrices. Then

A : B = B : A = tr(A⊤B) = vec(A)⊤ vec(B) = a · b
Obs 2: (cyclic property for matrix trace)

tr(ABC) = tr(CAB)

Obs 3: (Zi, Wi are vectors)

Z⊤
i RWi = tr(Z⊤

i RWi)
O2
= tr(WiZ

⊤
i R)

O1
= (ZiW

⊤
i ) : R = R : (ZiW

⊤
i )

• Then we can factor the R out of the sum∑
i

Z⊤
i RWi = R :

(∑
i

ZiW
⊤
i

)
def
= R : M

• Consider the SVD of M: M = UDV⊤. Then

R : M = R : (UDV⊤)
O1
= tr(R⊤UDV⊤)

O2
= tr(V⊤R⊤UD)

O1
= (U⊤RV) : D
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cont’d: The Algorithm

We are solving

R∗ = argmax
R

∑
i

Z⊤
i RWi = argmax

R

(
U⊤RV

)
: D

A particular solution is found as follows:
• U⊤RV must be (1) orthogonal, and closest to: (2) diagonal and (3) positive definite D
• Since U, V are orthogonal matrices then the solution to the problem is among R∗ = USV⊤, where S is

diagonal and orthogonal, i.e. one of

± diag(1, 1, 1), ±diag(1,−1,−1), ±diag(−1, 1,−1), ±diag(−1,−1, 1)

• U⊤V is not necessarily positive definite
• We choose S so that (R∗)⊤R∗ = I

Alg:
1. Compute matrix M =

∑
i ZiW

⊤
i .

2. Compute SVD M = UDV⊤.

3. Compute all Rk = USkV
⊤ that give R⊤

k Rk = I.

4. Compute tk = Ȳ −RkX̄.

• The algorithm can be used for more than 3 points
• Triple pairs can be pre-filtered based on motion invariants (lengths, angles)
• Can be used for the last step of the exterior orientation (P3P) problem →66
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Thank You
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