3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz
phone ext. 7203
rev. October 17, 2023

Open Informatics Master's Course

Examples

Assuming orthogonal raster, unit aspect (ORUA): $\theta=\pi / 2, a=1$

$$
\boldsymbol{\omega} \simeq\left[\begin{array}{ccc}
1 & 0 & -u_{0} \\
0 & 1 & -v_{0} \\
-u_{0} & -v_{0} & f^{2}+u_{0}^{2}+v_{0}^{2}
\end{array}\right]
$$

Ex 1:

Assuming ORUA and known $m_{0}=\left(u_{0}, v_{0}\right)$, two finite orthogonal vanishing points give f

$$
\underline{\mathbf{v}}_{1}^{\top} \boldsymbol{\omega} \underline{\mathbf{v}}_{2}=0 \quad \Rightarrow \quad f^{2}=\left|\left(\mathbf{v}_{1}-\mathbf{m}_{0}\right)^{\top}\left(\mathbf{v}_{2}-\mathbf{m}_{0}\right)\right|
$$

in this formula, $\mathbf{v}_{1,2}, \mathbf{m}_{0}$ are Cartesian (not homogeneous)!

Ex 2:

Non-orthogonal vanishing points $\mathbf{v}_{i}, \mathbf{v}_{j}$, known angle $\phi: \cos \phi=\frac{\underline{\mathbf{v}}_{i}^{\top} \omega \underline{\mathbf{v}}_{j}}{\sqrt{\underline{\mathbf{v}}_{i}^{\top} \omega \underline{\mathbf{v}}_{i}} \sqrt{\underline{\mathbf{v}}_{j}^{\top} \omega \underline{\mathbf{v}}_{j}}}$

- leads to polynomial equations
- e.g. ORUA and $u_{0}=v_{0}=0$ gives

$$
\left(f^{2}+\mathbf{v}_{i}^{\top} \mathbf{v}_{j}\right)^{2}=\left(f^{2}+\left\|\mathbf{v}_{i}\right\|^{2}\right) \cdot\left(f^{2}+\left\|\mathbf{v}_{j}\right\|^{2}\right) \cdot \cos ^{2} \phi
$$

-Camera Orientation from Two Finite Vanishing Points

Problem: Given \mathbf{K} and two vanishing points corresponding to two known orthogonal directions $\mathbf{d}_{1}, \mathbf{d}_{2}$, compute camera orientation \mathbf{R} with respect to the plane.

- 3D coordinate system choice, e.g.:

$$
\mathbf{d}_{1}=(1,0,0), \quad \mathbf{d}_{2}=(0,1,0)
$$

- we know that

$$
\mathbf{d}_{i} \simeq \mathbf{Q}^{-1} \underline{\mathbf{v}}_{i}=(\mathbf{K R})^{-1} \underline{\mathbf{v}}_{i}=\mathbf{R}^{-1} \underbrace{\mathbf{K}^{-1} \underline{\mathbf{v}}_{i}}_{\underline{\mathbf{w}}_{i}}
$$

$$
\mathbf{R} \mathbf{d}_{i} \simeq \underline{\mathbf{w}}_{i}
$$

- knowing $\mathbf{d}_{1,2}$ we conclude that $\underline{\mathbf{w}}_{i} /\left\|\underline{\mathbf{w}}_{i}\right\|$ is the i-th column \mathbf{r}_{i} of \mathbf{R}
- the third column is orthogonal: $\mathbf{r}_{3} \simeq \mathbf{r}_{1} \times \mathbf{r}_{2}$

$$
\mathbf{R}=\left[\begin{array}{lll}
\frac{\mathbf{w}_{1}}{\left\|\underline{w}_{1}\right\|} & \frac{\mathbf{w}_{2}}{\left\|\underline{\mathbf{w}}_{2}\right\|} & \frac{\mathbf{w}_{1} \times \mathbf{w}_{2}}{\left\|\underline{w}_{1} \times \underline{\mathbf{w}}_{2}\right\|}
\end{array}\right]
$$

- we have to care about the signs $\pm \underline{\mathbf{w}}_{i}$ (such that $\operatorname{det} \mathbf{R}=1$)
some suitable scenes

Application: Planar Rectification

Principle: Rotate camera (image plane) parallel to the plane of interest.

$$
\begin{array}{rlr}
\underline{\mathbf{m}} \simeq \mathbf{K R}\left[\begin{array}{lll}
\mathbf{I} & -\mathbf{C}
\end{array}\right] \underline{\mathbf{X}} & \underline{\mathbf{m}}^{\prime} \simeq \mathbf{K} \\
& \underline{\mathbf{m}}^{\prime} \simeq \mathbf{K}(\mathbf{K R})^{-1} \underline{\mathbf{m}}=\mathbf{K} \mathbf{R}^{\top} \mathbf{K}^{-1} \underline{\mathbf{m}}=\mathbf{H} \underline{\mathbf{m}}
\end{array}
$$

$$
\underline{\mathbf{m}}^{\prime} \simeq \mathbf{K}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right] \underline{\mathbf{X}}
$$

- \mathbf{H} is the rectifying homography
- both \mathbf{K} and \mathbf{R} can be calibrated from two finite vanishing points
- not possible when one of them is (or both are) infinite
- without ORUA we would need 4 additional views to calibrate \mathbf{K} as on $\rightarrow 54$

－Camera Resection

Camera calibration and orientation from a known set of $k \geq 6$ reference points and their images $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{6}$ ．

－X_{i} are considered exact
－m_{i} is a measurement subject to detection error

$$
\mathbf{m}_{i}=\hat{\mathbf{m}}_{i}+\mathbf{e}_{i} \quad \text { Cartesian }
$$

－where $\lambda_{i} \underline{\hat{\mathbf{m}}}_{i}=\mathbf{P} \underline{\mathbf{X}}_{i}$

Resection Targets

calibration chart

automatic calibration point detection based on a distributed bitcode（ $2 \times 4=8$ bits）
－target translated at least once
－by a calibrated（known）translation
－X_{i} point locations looked up in a table based on their bitcode

－The Minimal Problem for Camera Resection

Problem：Given $k=6$ corresponding pairs $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{k}$ ，find \mathbf{P}

$$
\lambda_{i} \underline{\mathbf{m}}_{i}=\mathbf{P} \underline{\mathbf{X}}_{i}, \quad \mathbf{P}=\left[\begin{array}{ll}
\mathbf{q}_{1}^{\top} & q_{14} \\
\mathbf{q}_{2}^{\top} & q_{24} \\
\mathbf{q}_{3}^{\top} & q_{34}
\end{array}\right]
$$

$$
\begin{aligned}
& \underline{\mathbf{X}}_{i}=\left(x_{i}, y_{i}, z_{i}, 1\right), \quad i=1,2, \ldots, k, k=6 \\
& \underline{\mathbf{m}}_{i}=\left(u_{i}, v_{i}, 1\right), \quad \lambda_{i} \in \mathbb{R}, \lambda_{i} \neq 0,\left|\lambda_{i}\right|<\infty
\end{aligned}
$$

easily modifiable for infinite points X_{i} but be aware of $\rightarrow 64$
expanded：

$$
\lambda_{i} u_{i}=\mathbf{q}_{1}^{\top} \mathbf{X}_{i}+q_{14}, \quad \lambda_{i} v_{i}=\mathbf{q}_{2}^{\top} \mathbf{X}_{i}+q_{24}, \quad \lambda_{i}=\mathbf{q}_{3}^{\top} \mathbf{X}_{i}+q_{34}
$$

after elimination of $\lambda_{i}: \quad\left(\mathbf{q}_{3}^{\top} \mathbf{X}_{i}+q_{34}\right) u_{i}=\mathbf{q}_{1}^{\top} \mathbf{X}_{i}+q_{14}, \quad\left(\mathbf{q}_{3}^{\top} \mathbf{X}_{i}+q_{34}\right) v_{i}=\mathbf{q}_{2}^{\top} \mathbf{X}_{i}+q_{24}$

Then

$$
\mathbf{A} \mathbf{q}=\left[\begin{array}{cccccc}
\mathbf{X}_{1}^{\top} & 1 & \mathbf{0}^{\top} & 0 & -u_{1} \mathbf{X}_{1}^{\top} & -u_{1} \tag{9}\\
\mathbf{0}^{\top} & 0 & \mathbf{X}_{1}^{\top} & 1 & -v_{1} \mathbf{X}_{1}^{\top} & -v_{1} \\
\vdots & & & & & \vdots \\
\mathbf{X}_{k}^{\top} & 1 & \mathbf{0}^{\top} & 0 & -u_{k} \mathbf{X}_{k}^{\top} & -u_{k} \\
\mathbf{0}^{\top} & 0 & \mathbf{X}_{k}^{\top} & 1 & -v_{k} \mathbf{X}_{k}^{\top} & -v_{k}
\end{array}\right] \cdot\left[\begin{array}{c}
\mathbf{q}_{1} \\
q_{14} \\
\mathbf{q}_{2} \\
q_{24} \\
\mathbf{q}_{3} \\
q_{34}
\end{array}\right]=\mathbf{0}
$$

－we need 11 indepedent parameters for \mathbf{P}
－ $\mathbf{A} \in \mathbb{R}^{2 k, 12}, \mathbf{q} \in \mathbb{R}^{12}$
－ 6 points in a general position give rank $\mathbf{A}=12$ and there is no（non－trivial）null space
－drop one row to get rank－11 matrix，then the basis vector of the null space of \mathbf{A} gives \mathbf{q}

-The Jack-Knife Solution for $k=6$

- given the 6 correspondences, we have 12 equations for the 11 parameters
- can we use all the information present in the 6 points?

Jack-knife estimation

1. $n:=0$
2. for $i=1,2, \ldots, 2 k$ do
a) delete i-th row from \mathbf{A}, this gives \mathbf{A}_{i}
b) if dim null $\mathbf{A}_{i}>1$ continue with the next i

c) $n:=n+1$
d) compute the right null-space \mathbf{q}_{i} of \mathbf{A}_{i}
e) $\hat{\mathbf{q}}_{i}:=\mathbf{q}_{i}$ normalized to $q_{34}=1$ and dimension-reduced
e.g. by 'economy-size' SVD assuming finite cam. with $P_{3,4}=1$
3. from all n vectors $\hat{\mathbf{q}}_{i}$ collected in Step 2.e compute

$$
\mathbf{q}=\frac{1}{n} \sum_{i=1}^{n} \hat{\mathbf{q}}_{i}, \quad \operatorname{var}[\mathbf{q}]=\frac{n-1}{n} \operatorname{diag} \sum_{i=1}^{n}\left(\hat{\mathbf{q}}_{i}-\mathbf{q}\right)\left(\hat{\mathbf{q}}_{i}-\mathbf{q}\right)^{\top} \quad \begin{aligned}
& \text { regular for } n \geq 11 \\
& \text { variance of the sample mean }
\end{aligned}
$$

- have a solution + an error estimate, per individual elements of \mathbf{P} (except P_{34})
- at least 5 points must be in a general position $(\rightarrow 64)$
- large error indicates near degeneracy
- computation not efficient with $k>6$ points, needs $\binom{2 k}{11}$ draws, e.g. $k=7 \Rightarrow 364$ draws
- better error estimation method: decompose \mathbf{P}_{i} to $\mathbf{K}_{i}, \mathbf{R}_{i}, \mathbf{t}_{i}(\rightarrow 33)$, represent \mathbf{R}_{i} with 3 parameters (e.g. Euler angles, or in exponential map representation $\rightarrow 144$) and compute the errors for the parameters
- even better: use the $\mathrm{SE}(3)$ Lie group for $\left(\mathbf{R}_{i}, \mathbf{t}_{i}\right)$ and average its group-theoretic representations (the procedure is iterative)

Degenerate (Critical) Configurations for Camera Resection

Let $\mathcal{X}=\left\{X_{i} ; i=1, \ldots\right\}$ be a set of points and $\mathbf{P}_{1} \nsim \mathbf{P}_{j}$ be two regular (rank-3) cameras. Then two configurations $\left(\mathbf{P}_{1}, \mathcal{X}\right)$ and $\left(\mathbf{P}_{j}, \mathcal{X}\right)$ are image-equivalent if

$$
\mathbf{P}_{1} \underline{\mathbf{X}}_{i} \simeq \mathbf{P}_{j} \underline{\mathbf{X}}_{i} \quad \text { for all } \quad X_{i} \in \mathcal{X}
$$

i.e. there is a non-trivial set of other cameras that see the same image

Case 4

Results

- importantly: If all calibration points $X_{i} \in \mathcal{X}$ lie on a plane \varkappa then camera resection is non-unique and all image-equivalent camera centers lie on a spatial line \mathcal{C} with the $C_{\infty}=\varkappa \cap \mathcal{C}$ excluded
this also means we cannot resect if all X_{i} are infinite
- and more: by adding points $X_{i} \in \mathcal{X}$ to \mathcal{C} we gain nothing
- there are additional image-equivalent configurations, see next

Proof sketch: If \mathbf{Q}, \mathbf{T} are suitable homographies then $\mathbf{P}_{1} \simeq \mathbf{Q} \mathbf{P}_{0} \mathbf{T}$, where \mathbf{P}_{0} is canonical and the analysis can be made with $\hat{\mathbf{P}}_{j} \simeq \mathbf{Q}^{-1} \mathbf{P}_{j}$

$$
\mathbf{P}_{0} \underbrace{\mathbf{T} \underline{\mathbf{X}}_{i}}_{\underline{\mathbf{Y}}_{i}} \simeq \hat{\mathbf{P}}_{j} \underbrace{\mathbf{T} \underline{\mathbf{X}}_{i}}_{\underline{\mathbf{Y}}_{i}} \quad \text { for all } \quad Y_{i} \in \mathcal{Y}
$$

cont＇d（all cases）

Case 4
－points lie on three optical rays or one optical ray and one optical plane
－cameras C_{1}, C_{2} co－located at point \mathcal{C}
－Case 5：camera sees 3 isolated point images
－Case 6：cam．sees a line of points and an isolated point
－points lie on a line \mathcal{C} and
1．on two lines meeting \mathcal{C} at $C_{\infty}, C_{\infty}^{\prime}$
2．or on a plane meeting \mathcal{C} at C_{∞}
－cameras lie on a line $\mathcal{C} \backslash\left\{C_{\infty}, C_{\infty}^{\prime}\right\}$
－Case 3：camera sees 2 lines of points
－Case 4：dangerous！

－points lie on a planar conic \mathcal{C} and an additional line meeting \mathcal{C} at C_{∞}
－cameras lie on $\mathcal{C} \backslash\left\{C_{\infty}\right\} \quad$ not necessarily an ellipse
－Case 2：camera sees 2 lines of points
－points and cameras all lie on a twisted cubic \mathcal{C}
－Case 1：camera sees points on a conic dangerous but unlikely to occur

- Three－Point Exterior Orientation Problem（P3P）

Calibrated camera rotation and translation from Perspective images of $\underline{3}$ reference Points． Problem：Given \mathbf{K} and three corresponding pairs $\left\{\left(m_{i}, X_{i}\right)\right\}_{i=1}^{3}$ ，find $\overline{\mathbf{R}}, \mathbf{C}$ by solving

$$
\lambda_{i} \underline{\mathbf{m}}_{i}=\mathbf{K R}\left(\mathbf{X}_{i}-\mathbf{C}\right), \quad i=1,2,3 \quad \mathbf{X}_{i} \text { Cartesian }
$$

1．Transform $\underline{\mathbf{v}}_{i} \stackrel{\text { def }}{=} \mathbf{K}^{-1} \underline{\mathbf{m}}_{i}$ ．Then

$$
\begin{equation*}
\lambda_{i} \underline{\mathbf{v}}_{i}=\mathbf{R}\left(\mathbf{X}_{i}-\mathbf{C}\right) \tag{10}
\end{equation*}
$$

2．If there was no rotation in（10），the situation would look like this

3．and we could shoot 3 lines from the given points \mathbf{X}_{i} in given directions $\underline{\mathbf{v}}_{i}$ to get \mathbf{C}
4．given C we could solve（10）for λ_{i}

P3P cont＇d

If there is rotation \mathbf{R}

1．Eliminate \mathbf{R} by taking rotation preserves length：$\|\mathbf{R x}\|=\|\mathbf{x}\|$

$$
\begin{equation*}
\left|\lambda_{i}\right| \cdot\left\|\underline{\mathbf{v}}_{i}\right\|=\left\|\mathbf{X}_{i}-\mathbf{C}\right\| \stackrel{\text { def }}{=} z_{i} \tag{11}
\end{equation*}
$$

2．Consider only angles among $\underline{\mathbf{v}}_{i}$ and apply the Cosine Law per triangle $\left(\mathbf{C}, \mathbf{X}_{i}, \mathbf{X}_{j}\right) i, j=1,2,3, i \neq j$

$$
d_{i j}^{2}=z_{i}^{2}+z_{j}^{2}-2 z_{i} z_{j} c_{i j}
$$

$z_{i}=\left\|\mathbf{X}_{i}-\mathbf{C}\right\|, \quad d_{i j}=\left\|\mathbf{X}_{j}-\mathbf{X}_{i}\right\|, \quad c_{i j}=\cos \left(\angle \underline{\mathbf{v}}_{i} \underline{\mathbf{v}}_{j}\right)$
4．Solve the system of 3 quadratic eqs in 3 unknowns z_{i}
［Fischler \＆Bolles，1981］
 there may be no real root
（verify on additional points）
5．Compute \mathbf{C} by trilateration（3－sphere intersection）from \mathbf{X}_{i} and z_{i} ；then λ_{i} from（11）
6．Compute \mathbf{R} from（10） we will solve this problem next $\rightarrow 70$

Similar problems（P4P with unknown f ）at http：／／aag．ciirc．cvut．cz／minimal／（papers，code）

Degenerate (Critical) Configurations for Exterior Orientation

no solution

1. C cocyclic with $\left(X_{1}, X_{2}, X_{3}\right)$
camera sees points on a line

unstable solution

- center of projection C located on the orthogonal circular cylinder with base circumscribing the three points X_{i}
unstable: a small change of X_{i} results in a large change of C
can be detected by error propagation
degenerate
- camera C is coplanar with points $\left(X_{1}, X_{2}, X_{3}\right)$ but is not on the circumscribed circle of $\left(X_{1}, X_{2}, X_{3}\right) \quad$ camera sees points on a line
- additional critical configurations depend on the quadratic equations solver
[Haralick et al. IJCV 1994]

Populating A Little ZOO of Minimal Geometric Problems in CV

problem	given	unknown	slide
camera resection	6 world－image correspondences $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{6}$	\mathbf{P}	$\rightarrow 62$
exterior orientation	$\mathbf{K}, 3$ world－image correspondences $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{3}$	\mathbf{R}, \mathbf{C}	$\rightarrow 66$
next：relative orientation	3 world－world correspondences $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{3}$	\mathbf{R}, t	$\rightarrow 70$

－camera resection and exterior orientation are similar problems in a sense：
－we do resectioning when our camera is uncalibrated
－we do orientation when our camera is calibrated
－relative orientation involves no camera（see next）
it is a recurring problem in 3D vision
－more problems to come

－The Relative Orientation Problem

Problem：Given point triples $\left(X_{1}, X_{2}, X_{3}\right)$ and $\left(Y_{1}, Y_{2}, Y_{3}\right)$ in a general position in \mathbf{R}^{3} such that the correspondence $X_{i} \leftrightarrow Y_{i}$ is known，determine the relative orientation（ \mathbf{R}, \mathbf{t} ）that maps \mathbf{X}_{i} to \mathbf{Y}_{i} ，i．e．

$$
\mathbf{Y}_{i}=\mathbf{R} \mathbf{X}_{i}+\mathbf{t}, \quad i=1,2,3 .
$$

Applies to：

－3D scanners
－merging partial reconstructions from different viewpoints
－generalization of the last step of P3P
Obs：Let the centroid be $\overline{\mathbf{X}}=\frac{1}{3} \sum_{i} \mathbf{X}_{i}$ and analogically for $\overline{\mathbf{Y}}$ ．Then

$$
\overline{\mathbf{Y}}=\mathrm{R} \overline{\mathbf{X}}+\mathrm{t} .
$$

Therefore

$$
\mathbf{Z}_{i} \stackrel{\text { def }}{=}\left(\mathbf{Y}_{i}-\overline{\mathbf{Y}}\right)=\mathbf{R}\left(\mathbf{X}_{i}-\overline{\mathbf{X}}\right) \stackrel{\text { def }}{=} \mathbf{R} \mathbf{W}_{i}
$$

If all dot products are equal， $\mathbf{Z}_{i}^{\top} \mathbf{Z}_{j}=\mathbf{W}_{i}^{\top} \mathbf{W}_{j}$ for $i, j=1,2,3$ ，we have

$$
\mathbf{R}^{*}=\left[\begin{array}{lll}
\mathbf{W}_{1} & \mathbf{W}_{2} & \mathbf{W}_{3}
\end{array}\right]^{-1}\left[\begin{array}{lll}
\mathbf{Z}_{1} & \mathbf{Z}_{2} & \mathbf{Z}_{3}
\end{array}\right]
$$

Poor man＇s solver：
－normalize $\mathbf{W}_{i}, \mathbf{Z}_{i}$ to unit length，use the above formula，and then find the closest rotation matrix
－but this is equivalent to a non－optimal objective
it ignores errors in vector lengths

An Optimal Algorithm for Relative Orientation

We setup a minimization problem

$$
\mathbf{R}^{*}=\arg \min _{\mathbf{R}} \sum_{i=1}^{3}\left\|\mathbf{Z}_{i}-\mathbf{R} \mathbf{W}_{i}\right\|^{2} \quad \text { s.t. } \quad \mathbf{R}^{\top} \mathbf{R}=\mathbf{I}, \quad \operatorname{det} \mathbf{R}=1
$$

$$
\arg \min _{\mathbf{R}} \sum_{i}\left\|\mathbf{Z}_{i}-\mathbf{R} \mathbf{W}_{i}\right\|^{2}=\arg \min _{\mathbf{R}} \sum_{i}\left(\left\|\mathbf{Z}_{i}\right\|^{2}-2 \mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}+\left\|\mathbf{W}_{i}\right\|^{2}\right)=\cdots=\arg \max _{\mathbf{R}} \sum_{i} \mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}
$$

Obs 1: Let $\mathbf{A}: \mathbf{B}=\sum_{i, j} a_{i j} b_{i j}$ be the dot-product (Frobenius inner product) over real matrices. Then

$$
\mathbf{A}: \mathbf{B}=\mathbf{B}: \mathbf{A}=\operatorname{tr}\left(\mathbf{A}^{\top} \mathbf{B}\right)=\operatorname{vec}(\mathbf{A})^{\top} \operatorname{vec}(\mathbf{B})=\mathbf{a} \cdot \mathbf{b}
$$

Obs 2: (cyclic property for matrix trace)

$$
\operatorname{tr}(\mathbf{A B C})=\operatorname{tr}(\mathbf{C A B})
$$

Obs 3: ($\mathbf{Z}_{i}, \mathbf{W}_{i}$ are vectors)

$$
\mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}=\operatorname{tr}\left(\mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}\right) \stackrel{\mathrm{O} 2}{=} \operatorname{tr}\left(\mathbf{W}_{i} \mathbf{Z}_{i}^{\top} \mathbf{R}\right) \stackrel{\mathrm{O} 1}{=}\left(\mathbf{Z}_{i} \mathbf{W}_{i}^{\top}\right): \mathbf{R}=\mathbf{R}:\left(\mathbf{Z}_{i} \mathbf{W}_{i}^{\top}\right)
$$

- Then we can factor the \mathbf{R} out of the sum

$$
\sum_{i} \mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}=\mathbf{R}:\left(\sum_{i} \mathbf{Z}_{i} \mathbf{W}_{i}^{\top}\right) \stackrel{\text { def }}{=} \mathbf{R}: \mathbf{M}
$$

- Consider the SVD of $\mathbf{M}: \mathbf{M}=\mathbf{U D V}^{\top}$. Then

$$
\mathbf{R}: \mathbf{M}=\mathbf{R}:\left(\mathbf{U D} \mathbf{V}^{\top}\right) \stackrel{\mathrm{O} 1}{=} \operatorname{tr}\left(\mathbf{R}^{\top} \mathbf{U D} \mathbf{V}^{\top}\right) \stackrel{\mathrm{O2}}{=} \operatorname{tr}\left(\mathbf{V}^{\top} \mathbf{R}^{\top} \mathbf{U D}\right) \stackrel{\mathrm{O1}}{=}\left(\mathbf{U}^{\top} \mathbf{R} \mathbf{V}\right): \mathbf{D}
$$

cont＇d：The Algorithm

We are solving

$$
\mathbf{R}^{*}=\arg \max _{\mathbf{R}} \sum_{i} \mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i}=\arg \max _{\mathbf{R}}\left(\mathbf{U}^{\top} \mathbf{R} \mathbf{V}\right): \mathbf{D}
$$

A particular solution is found as follows：
－ $\mathbf{U}^{\top} \mathbf{R V}$ must be（1）orthogonal，and closest to：（2）diagonal and（3）positive definite \mathbf{D}
－Since \mathbf{U}, \mathbf{V} are orthogonal matrices then the solution to the problem is among $\mathbf{R}^{*}=\mathbf{U S V}{ }^{\top}$ ，where \mathbf{S} is diagonal and orthogonal，i．e．one of

$$
\pm \operatorname{diag}(1,1,1), \quad \pm \operatorname{diag}(1,-1,-1), \quad \pm \operatorname{diag}(-1,1,-1), \quad \pm \operatorname{diag}(-1,-1,1)
$$

－ $\mathbf{U}^{\top} \mathbf{V}$ is not necessarily positive definite
－We choose \mathbf{S} so that $\left(\mathbf{R}^{*}\right)^{\top} \mathbf{R}^{*}=\mathbf{I}$

Alg：

1．Compute matrix $\mathbf{M}=\sum_{i} \mathbf{Z}_{i} \mathbf{W}_{i}^{\top}$ ．
2．Compute SVD $\mathbf{M}=\mathbf{U D V}{ }^{\top}$ ．
3．Compute all $\mathbf{R}_{k}=\mathbf{U S} \mathbf{S}_{k} \mathbf{V}^{\top}$ that give $\mathbf{R}_{k}^{\top} \mathbf{R}_{k}=\mathbf{I}$ ．
4．Compute $\mathbf{t}_{k}=\overline{\mathbf{Y}}-\mathbf{R}_{k} \overline{\mathbf{X}}$ ．
－The algorithm can be used for more than 3 points
－Triple pairs can be pre－filtered based on motion invariants（lengths，angles）
－Can be used for the last step of the exterior orientation（P3P）problem $\rightarrow 66$

Thank You

