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Examples

Assuming orthogonal raster, unit aspect (ORUA): 6 =7/2, a =1
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Ex 1:
Assuming ORUA and known mo = (uo,vo), two finite orthogonal vanishing points give f

vieve=0 = f°=|(vi—mo) (v2—mo)|

in this formula, v1 2, mg are Cartesian (not homogeneous)!

Ex 2:

v wv,

T i T .
VYV WViy/V; WV

Non-orthogonal vanishing points v;, v;, known angle ¢: cos¢ =

® |eads to polynomial equations

® e.g. ORUA and up = vp = 0 gives

(2 +vivy)? = (F +Ivill») - (£ + [Ivs]) - cos® ¢
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»Camera Orientation from Two Finite Vanishing Points

Problem: Given K and two vanishing points corresponding to two known orthogonal directions di, d2, compute
camera orientation R with respect to the plane.

3D coordinate system choice, e.g.:
d; = (17070)7 ds = (07170)
® we know that

di ~ Q_lyi = (KR)_IYZ' = R_l K_IVZ'

——

Rd; ~ w;

knowing d1,2 we conclude that w;/||w;|| is the i-th column r; of R

the third column is orthogonal: r3 ~ r; X ra

fwill  llwall w1 xwal|

R = |: w1 w2 Wi XWa j|

® we have to care about the signs +w; (such that detR = 1)
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Application: Planar Rectification

Principle: Rotate camera (image plane) parallel to the plane of interest.

m~KR[I -C|]X m ~K[I -C]X

m ~KKR) 'm=KR'K'm=Hm
® H is the rectifying homography
® both K and R can be calibrated from two finite vanishing points assuming ORUA —57
® not possible when one of them is (or both are) infinite

® without ORUA we would need 4 additional views to calibrate K as on —54
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»Camera Resection

Camera calibration and orientation from a known set of k > 6 reference points and their images {(X;,m;)}o_;.

® X, are considered exact

® m,; is a measurement subject to detection error
m; =m; +e; Cartesian

® where \; iy, = PX;
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Resection Targets

990000000 6600¢
9900000000006
R 222222322228
PR 222222222

calibration chart automatic calibration point detection
based on a distributed bitcode (2 x 4 = 8 bits)

® target translated at least once

® by a calibrated (known) translation

® X, point locations looked up in a table based on
their bitcode

VIV VS
WITIIZZE
14940440064

resection target with translation stage

3D Computer Vision: III. Computing with a Single Camera (p. 61/197) A R. Sara, CMP; rev. 17-Oct-2023 [Eill



» The Minimal Problem for Camera Resection

Problem: Given k = 6 corresponding pairs {(Xi, mi)}le, find P

-
q; q14 .
Aim; = PX;, P= QQT q24 Xi=(@iy21), i=12....k k=6
Qi s m; = (us,vi,1), X €R, N #0, |\ < o0
easily modifiable for infinite points X; but be aware of —64
expanded: Nowi = ] X +qua, Nivi =g Xi 4+ qoa, Ni = dy Xi + qaa

after elimination of \;: (q;TXZ + g3a)u; = qIXi + qi14, (quXz + qza)vi = quXi + q24

Then
X7 1 07T 0 —wX] —-w q
o' 0 X{ 1 —uX/ -u q14
Ag=| : 2] =0
" " 424
X; 1 0" 0 —'u,k)(;r —Ug a;
0" 0 X; 1 —wuX{ —vel | g

® we need 11 indepedent parameters for P

e Ac RQk,lQ’ q€ R12

® 6 points in a general position give rank A = 12 and there is no (non-trivial) null space
® drop one row to get rank-11 matrix, then the basis vector of the null space of A gives q

(9)
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» The Jack-Knife Solution for £k = 6

® given the 6 correspondences, we have 12 equations for the 11 parameters
® can we use all the information present in the 6 points?

Jack-knife estimation
1. n:=0
2. fori=1,2,...,2k do

a) delete i-th row from A, this gives A;

b) if dimnull A; > 1 continue with the next ¢

c) n:i=n+1

d) compute the right null-space q; of A; e.g. by ‘economy-size’ SVD
e) q,;:= q; normalized to ¢34 = 1 and dimension-reduced assuming finite cam. with P3 4 = 1

3. from all n vectors q; collected in Step 2.e compute

1 - N n—1 .. ~ R R T regular for n > 11
Q= ﬁ ; Qs Var[q] = n dlag;(qi B q)(qi o q) variance of the sample mean
® have a solution + an error estimate, per individual elements of P (except Ps4)
® at least 5 points must be in a general position (—64)
® large error indicates near degeneracy
® computation not efficient with k£ > 6 points, needs ?If) draws, e.g. k = 7 = 364 draws

® better error estimation method: decompose P; to K;, R;, t; (—33), represent R; with 3 parameters (e.g. Euler angles, or in
exponential map representation —144) and compute the errors for the parameters

® even better: use the SE(3) Lie group for (R, t;) and average its group-theoretic representations (the procedure is iterative)
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»Degenerate (Critical) Configurations for Camera Resection

Let X ={X;; i =1,...} be a set of points and P1 % P; be two regular (rank-3) cameras. Then two
configurations (P1, X) and (P;, X) are image-equivalent if

P1X; ~ Pin forall X; e X

i.e. there is a non-trivial set of other cameras that see the same image

Results
® importantly: If all calibration points X; € X lie on a plane 3¢ then camera
resection is non-unique and all image-equivalent camera centers lie on a
spatial line C with the C'-c = >N C excluded
this also means we cannot resect if all X; are infinite

® and more: by adding points X; € X to C we gain nothing

® there are additional image-equivalent configurations, see next

Case 4

Proof sketch: If Q, T are suitable homographies then P; ~ QPyT, where Pg is canonical and the analysis can be made
with Pj ~ Qilpj
PoTX; ~P; TX; forall Y;€Y
e el

see [H&Z, Sec. 22.1.2] for a full prof
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cont'd (all cases)

C C

Case 5 Case 6

points lie on three optical rays or one optical ray and one
optical plane

cameras (1, (5 co-located at point C

Case 5: camera sees 3 isolated point images
Case 6: cam. sees a line of points and an isolated point

!

o

Case 3 Case 4

points lie on a line C and

1. on two lines meeting C at Co, CL
2. or on a plane meeting C at C

cameras lie on a line C\ {C,C._}

Case 3: camera sees 2 lines of points
Case 4: dangerous!

points lie on a planar conic C and an additional line meeting C
at C'o

Case 2 . 7 , . .
cameras lie on C\ {Co} not necessarily an ellipse
Case 2: camera sees 2 lines of points
points and cameras all lie on a twisted cubic C

Case 1

Case 1: camera sees points on a conic
dangerous but unlikely to occur
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» Three-Point Exterior Orientation Problem (P3P)

Calibrated camera rotation and translation from Perspective images of 3 reference Points.
3 . .
find R, C by solving

i=1"'

Problem: Given K and three corresponding pair;{(mi, Xi)}
Aim; = KR (X; — C), 1=1,2,3 X; Cartesian
1. Transform v; def K 'm;. Then

2. If there was no rotation in (10), the situation would look like this

3. and we could shoot 3 lines from the given points X, in given directions v; to get C

4. given C we could solve (10) for \;
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»P3P cont’d

If there is rotation R

1. Eliminate R by taking rotation preserves length: ||Rx| = ||x||
def
il - Nlvill = 1X: = C|| = (11)

2. Consider only angles among v; and apply the Cosine Law per triangle
(C7X27XJ) Z?J - 172737 275.7

d?j = ZLZ —+ Zf — 22’7' Zj Cij,
zi = |Xi = C|l, dij = [|1X; — X, ¢ij = cos(Lv; v;)

4. Solve the system of 3 quadratic eqs in 3 unknowns z;
[Fischler & Bolles, 1981]

there may be no real root
there are up to 4 solutions that cannot be ignored (verify on additional points)

5. Compute C by trilateration (3-sphere intersection) from X; and z;; then \;
from (11)

6. Compute R from (10) we will solve this problem next —70

Similar problems (P4P with unknown f) at http://aag.ciirc.cvut.cz/minimal/ (papers, code)
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Degenerate (Critical) Configurations for Exterior Orientation

X, ,
o----- 2l .
e o no solution
)\(‘0-____—0;( 1. C cocyclic with (X1, X2, X3) camera sees points on a line
1 A2
. unstable solution
e O | ® center of projection C' located on the orthogonal circular cylinder with base
k. A circumscribing the three points X;
! E unstable: a small change of X results in a large change of
DX ‘ can be detected by error propagation
| e !
! ) degenerate
Te-___-®
Xy Xo ® camera (' is coplanar with points (X1, X2, X3) but is not on the
circumscribed circle of (X1, X2, X3) camera sees points on a line
® additional critical configurations depend on the quadratic equations solver [Haralick et al. [JCV 1994]
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»Populating A Little ZOO of Minimal Geometric Problems in CV

problem given unknown | slide
. . 6
camera resection 6 world—image correspondences {(X;, mi)}._, P —62
. . . . 3
exterior orientation K, 3 world—image correspondences {(Xi, mi)}h1 R, C —66
. . . 3
next: relative orientation | 3 world-world correspondences {(Xi, Yi)}iﬂ R, t —70
® camera resection and exterior orientation are similar problems in a sense:
® we do resectioning when our camera is uncalibrated
® we do orientation when our camera is calibrated
® relative orientation involves no camera (see next) it is a recurring problem in 3D vision

® more problems to come
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» The Relative Orientation Problem

Problem: Given point triples (X1, X2, X3) and (Y1, Y2,Y3) in a general position in R?® such that the
correspondence X; <> Y; is known, determine the relative orientation (R, t) that maps X; to Y, i.e.

Y, =RX;+t, i=1,2,3.
Applies to:
® 3D scanners

® merging partial reconstructions from different viewpoints

® generalization of the last step of P3P

Obs: Let the centroid be X = %ZZ X; and analogically for Y. Then
Y =RX +t.

Therefore
Z; ¥ (v, - ¥V)=R(X; - X) ¥ rwW;,

If all dot products are equal, ZZTZ]' = WiTWj fori,j =1,2,3, we have
-1
R* = [Wl W, Wg} [Zl Zo Zg}
Poor man'’s solver:
® normalize W3, Z; to unit length, use the above formula, and then find the closest rotation matrix

® but this is equivalent to a non-optimal objective it ignores errors in vector lengths

3D Computer Vision: III. Computing with a Single Camera (p. 70/197) Q¢ R. Sara, CMP; rev. 17-Oct-2023 [Eill



An Optimal Algorithm for Relative Orientation

We setup a minimization problem

3
R = arg min E |Z; — RW;||© st. R R=I detR=1

i=1
argml{nz Z; — RW;||? = argm}{nz (HZZH2 —2ZTRW, + ||W1H2) == argmr%xZZ;rRWi
K2 K2 1

Obs 1: Let A: B =3}, ; a;jb;; be the dot-product (Frobenius inner product) over real matrices. Then
A:B=B:A=tr(A"B) =vec(A)" vec(B) =a-b
Obs 2: (cyclic property for matrix trace)
tr(ABC) = tr(CAB)
Obs 3: (Z;, W, are vectors)

Z] RW,; = tr(Z] RW;) £ tr(W,Z] R) £ (Z;W]) : R =R : (Z;W] )
® Then we can factor the R out of the sum
S Z/RW;=R: <Zziwj> ©R:M
1 i

® Consider the SVD of M: M = UDV . Then
R:M=R:(UDV) 2 t®RTUDV) Zu(vTRTUD) 2 (UTRV): D
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cont'd: The Algorithm

We are solving
R" =arg mlgxz Z; RW; = arg max (UTRV) :D
3
A particular solution is found as follows:

® UTRV must be (1) orthogonal, and closest to: (2) diagonal and (3) positive definite D

® Since U, V are orthogonal matrices then the solution to the problem is among R* = USV ", where S is
diagonal and orthogonal, i.e. one of

+diag(1,1,1), =+£diag(l,—-1,-1), =+diag(-1,1,—-1), =+diag(—1,-1,1)
® UV is not necessarily positive definite
® We choose S so that (R*)"R* =1

Alg:
1. Compute matrix M =3, Z; W, .
2. Compute SVD M =UDV .
3. Compute all Ry = US, VT that give R/ Ry =1
4. Compute t, =Y — RpX.

® The algorithm can be used for more than 3 points
® Triple pairs can be pre-filtered based on motion invariants (lengths, angles)
® Can be used for the last step of the exterior orientation (P3P) problem —66
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Thank You






3D Computer V.
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