3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/tdv/start

http://cmp.felk.cvut.cz mailto:sara@cmp.felk.cvut.cz phone ext. 7203

rev. October 17, 2023

Open Informatics Master's Course

Examples

Assuming orthogonal raster, unit aspect (ORUA): $\theta = \pi/2$, a = 1

$$oldsymbol{\omega} \simeq egin{bmatrix} 1 & 0 & -u_0 \ 0 & 1 & -v_0 \ -u_0 & -v_0 & f^2 + u_0^2 + v_0^2 \end{bmatrix}$$

Ex 1:

Assuming ORUA and known $m_0 = (u_0, v_0)$, two finite orthogonal vanishing points give f

$$\mathbf{\underline{v}}_1^{ op} \boldsymbol{\omega} \, \mathbf{\underline{v}}_2 = 0 \quad \Rightarrow \quad f^2 = \left| (\mathbf{v}_1 - \mathbf{m}_0)^{ op} (\mathbf{v}_2 - \mathbf{m}_0) \right|$$

in this formula, $\mathbf{v}_{1,2}$, \mathbf{m}_0 are Cartesian (not homogeneous)!

Ex 2:

Ex 2: Non-orthogonal vanishing points \mathbf{v}_i , \mathbf{v}_j , known angle ϕ : $\cos \phi = \frac{\mathbf{v}_i^{\ i} \,\omega \mathbf{v}_j}{\sqrt{\mathbf{v}_i^{\top} \,\omega \mathbf{v}_i} \sqrt{\mathbf{v}_j^{\top} \,\omega \mathbf{v}_j}}$

- leads to polynomial equations
- e.g. ORUA and $u_0 = v_0 = 0$ gives

$$(f^{2} + \mathbf{v}_{i}^{\top}\mathbf{v}_{j})^{2} = (f^{2} + \|\mathbf{v}_{i}\|^{2}) \cdot (f^{2} + \|\mathbf{v}_{j}\|^{2}) \cdot \cos^{2} \phi$$

► Camera Orientation from Two Finite Vanishing Points

Problem: Given K and two vanishing points corresponding to two known orthogonal directions d_1 , d_2 , compute camera orientation R with respect to the plane.

• 3D coordinate system choice, e.g.:

$$\mathbf{d}_1 = (1, 0, 0), \quad \mathbf{d}_2 = (0, 1, 0)$$

we know that

$$\mathbf{d}_i \simeq \mathbf{Q}^{-1} \underline{\mathbf{v}}_i = (\mathbf{K} \mathbf{R})^{-1} \underline{\mathbf{v}}_i = \mathbf{R}^{-1} \underbrace{\mathbf{K}^{-1} \underline{\mathbf{v}}_i}_{\underline{\mathbf{w}}_i}$$
$$\mathbf{R} \mathbf{d}_i \simeq \mathbf{w}_i$$

• the third column is orthogonal: ${f r}_3\simeq {f r}_1 imes {f r}_2$

$$\mathbf{R} = \begin{bmatrix} \underline{\mathbf{w}}_1 & \underline{\mathbf{w}}_2 \\ \|\underline{\mathbf{w}}_1\| & \|\underline{\mathbf{w}}_2\| & \|\underline{\mathbf{w}}_1 \times \underline{\mathbf{w}}_2\| \end{bmatrix}$$

• we have to care about the signs $\pm \mathbf{w}_i$ (such that $\det \mathbf{R} = 1$)

some suitable scenes

Application: Planar Rectification

Principle: Rotate camera (image plane) parallel to the plane of interest.

 $\underline{\mathbf{m}} \simeq \mathbf{K} \mathbf{R} \begin{bmatrix} \mathbf{I} & -\mathbf{C} \end{bmatrix} \underline{\mathbf{X}} \qquad \qquad \underline{\mathbf{m}}' \simeq \mathbf{K} \begin{bmatrix} \mathbf{I} & -\mathbf{C} \end{bmatrix} \underline{\mathbf{X}}$ $\underline{\mathbf{m}}' \simeq \mathbf{K} (\mathbf{K} \mathbf{R})^{-1} \underline{\mathbf{m}} = \mathbf{K} \mathbf{R}^{\top} \mathbf{K}^{-1} \underline{\mathbf{m}} = \mathbf{H} \underline{\mathbf{m}}$

- H is the rectifying homography
- both ${\bf K}$ and ${\bf R}$ can be calibrated from two finite vanishing points
- not possible when one of them is (or both are) infinite
- without ORUA we would need 4 additional views to calibrate ${\bf K}$ as on ${\rightarrow} 54$

3D Computer Vision: III. Computing with a Single Camera (p. 59/197) のへや

► Camera Resection

Camera <u>calibration</u> and <u>orientation</u> from a known set of $k \ge 6$ reference points and their images $\{(X_i, m_i)\}_{i=1}^6$.

- X_i are considered exact
- m_i is a measurement subject to detection error

 $\mathbf{m}_i = \hat{\mathbf{m}}_i + \mathbf{e}_i$ Cartesian

• where $\lambda_i \hat{\mathbf{m}}_i = \mathbf{P} \mathbf{X}_i$

Resection Targets

calibration chart

automatic calibration point detection based on a distributed bitcode ($2 \times 4 = 8$ bits)

resection target with translation stage

- target translated at least once
- by a calibrated (known) translation
- X_i point locations looked up in a table based on their bitcode

► The Minimal Problem for Camera Resection

Problem: Given k = 6 corresponding pairs $\{(X_i, m_i)\}_{i=1}^k$, find **P**

$$\lambda_{i}\underline{\mathbf{m}}_{i} = \mathbf{P}\underline{\mathbf{X}}_{i}, \qquad \mathbf{P} = \begin{bmatrix} \mathbf{q}_{1}^{\top} & q_{14} \\ \mathbf{q}_{2}^{\top} & q_{24} \\ \mathbf{q}_{3}^{\top} & q_{34} \end{bmatrix} \qquad \qquad \underline{\mathbf{X}}_{i} = (x_{i}, y_{i}, z_{i}, 1), \quad i = 1, 2, \dots, k, \ k = 6 \\ \underline{\mathbf{m}}_{i} = (u_{i}, v_{i}, 1), \quad \lambda_{i} \in \mathbb{R}, \ \lambda_{i} \neq 0, \ |\lambda_{i}| < \infty$$
easily modifiable for infinite points X_{i} but be aware of $\rightarrow 64$

expanded:

$$\lambda_i u_i = \mathbf{q}_1^\top \mathbf{X}_i + q_{14}, \quad \lambda_i v_i = \mathbf{q}_2^\top \mathbf{X}_i + q_{24}, \quad \lambda_i = \mathbf{q}_3^\top \mathbf{X}_i + q_{34}$$

after elimination of λ_i : $(\mathbf{q}_3^\top \mathbf{X}_i + q_{34})u_i = \mathbf{q}_1^\top \mathbf{X}_i + q_{14}$, $(\mathbf{q}_3^\top \mathbf{X}_i + q_{34})v_i = \mathbf{q}_2^\top \mathbf{X}_i + q_{24}$

Then

$$\mathbf{A} \mathbf{q} = \begin{bmatrix} \mathbf{X}_{1}^{\top} & 1 & \mathbf{0}^{\top} & 0 & -u_{1}\mathbf{X}_{1}^{\top} & -u_{1} \\ \mathbf{0}^{\top} & 0 & \mathbf{X}_{1}^{\top} & 1 & -v_{1}\mathbf{X}_{1}^{\top} & -v_{1} \\ \vdots & & & \vdots \\ \mathbf{X}_{k}^{\top} & 1 & \mathbf{0}^{\top} & 0 & -u_{k}\mathbf{X}_{k}^{\top} & -u_{k} \\ \mathbf{0}^{\top} & 0 & \mathbf{X}_{k}^{\top} & 1 & -v_{k}\mathbf{X}_{k}^{\top} & -v_{k} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{q}_{1} \\ \mathbf{q}_{2} \\ \mathbf{q}_{24} \\ \mathbf{q}_{3} \\ \mathbf{q}_{34} \end{bmatrix} = \mathbf{0}$$
(9)

- we need 11 indepedent parameters for P
- $\mathbf{A} \in \mathbb{R}^{2k,12}$, $\mathbf{q} \in \mathbb{R}^{12}$
- 6 points in a general position give $\operatorname{rank} \mathbf{A} = 12$ and there is no (non-trivial) null space
- drop one row to get rank-11 matrix, then the basis vector of the null space of ${f A}$ gives ${f q}$

The Jack-Knife Solution for k = 6

- given the 6 correspondences, we have 12 equations for the 11 parameters
- can we use all the information present in the 6 points?

Jack-knife estimation

- **1**. n := 0
- **2**. for i = 1, 2, ..., 2k do
 - a) delete *i*-th row from A, this gives A_i
 - b) if dim null $A_i > 1$ continue with the next i
 - c) n := n + 1
 - d) compute the right null-space \mathbf{q}_i of \mathbf{A}_i
 - e) $\hat{\mathbf{q}}_i := \mathbf{q}_i$ normalized to $q_{34} = 1$ and dimension-reduced
- 3. from all n vectors $\hat{\mathbf{q}}_i$ collected in Step 2.e compute

e.g. by 'economy-size' SVD assuming finite cam. with $P_{3,4} = 1$

 $\mathbf{q} = \frac{1}{n} \sum_{i=1}^{n} \hat{\mathbf{q}}_{i}, \quad \text{var}[\mathbf{q}] = \frac{n-1}{n} \operatorname{diag} \sum_{i=1}^{n} (\hat{\mathbf{q}}_{i} - \mathbf{q}) (\hat{\mathbf{q}}_{i} - \mathbf{q})^{\top} \quad \begin{array}{c} \text{regular for } n \geq 11 \\ \text{variance of the sample mean} \end{array}$

- have a solution + an error estimate, per individual elements of P (except P_{34})
- at least 5 points must be in a general position (→64)
- large error indicates near degeneracy
- computation not efficient with k > 6 points, needs $\binom{2k}{11}$ draws, e.g. $k = 7 \Rightarrow 364$ draws
- better error estimation method: decompose P_i to K_i , R_i , t_i (\rightarrow 33), represent R_i with 3 parameters (e.g. Euler angles, or in exponential map representation \rightarrow 144) and compute the errors for the parameters
- even better: use the SE(3) Lie group for $(\mathbf{R}_i, \mathbf{t}_i)$ and average its group-theoretic representations (the procedure is iterative)

Degenerate (Critical) Configurations for Camera Resection

Let $\mathcal{X} = \{X_i; i = 1, ...\}$ be a set of points and $\mathbf{P}_1 \not\simeq \mathbf{P}_j$ be two regular (rank-3) cameras. Then two configurations $(\mathbf{P}_1, \mathcal{X})$ and $(\mathbf{P}_j, \mathcal{X})$ are image-equivalent if

 $\mathbf{P}_1 \underline{\mathbf{X}}_i \simeq \mathbf{P}_j \underline{\mathbf{X}}_i \quad \text{for all} \quad X_i \in \mathcal{X}$

i.e. there is a non-trivial set of other cameras that see the same image

Results

• <u>importantly</u>: If all calibration points $X_i \in \mathcal{X}$ lie on a plane \varkappa then camera resection is non-unique and all image-equivalent camera centers lie on a spatial line \mathcal{C} with the $C_{\infty} = \varkappa \cap \mathcal{C}$ excluded

this also means we cannot resect if all X_i are infinite

- and more: by adding points $X_i \in \mathcal{X}$ to \mathcal{C} we gain nothing
- there are additional image-equivalent configurations, see next

Proof sketch: If \mathbf{Q} , \mathbf{T} are suitable homographies then $\mathbf{P}_1 \simeq \mathbf{Q} \mathbf{P}_0 \mathbf{T}$, where \mathbf{P}_0 is canonical and the analysis can be made with $\hat{\mathbf{P}}_i \simeq \mathbf{Q}^{-1} \mathbf{P}_i$

$$\mathbf{P}_{0}\underbrace{\mathbf{T}\underline{\mathbf{X}}_{i}}_{\underline{\mathbf{Y}}_{i}} \simeq \hat{\mathbf{P}}_{j}\underbrace{\mathbf{T}\underline{\mathbf{X}}_{i}}_{\underline{\mathbf{Y}}_{i}} \quad \text{for all} \quad Y_{i} \in \mathcal{Y}$$

see [H&Z, Sec. 22.1.2] for a full prof

cont'd (all cases)

- points lie on three optical rays or one optical ray and one optical plane
- cameras C_1 , C_2 co-located at point ${\mathcal C}$
- Case 5: camera sees 3 isolated point images
- Case 6: cam. sees a line of points and an isolated point
- points lie on a line $\mathcal C$ and
 - 1. on two lines meeting C at C_{∞} , C'_{∞}
 - 2. or on a plane meeting ${\mathcal C}$ at C_∞
- cameras lie on a line $\mathcal{C} \setminus \{C_{\infty}, C'_{\infty}\}$
- Case 3: camera sees 2 lines of points
- Case 4: dangerous!
- points lie on a planar conic ${\mathcal C}$ and an additional line meeting ${\mathcal C}$ at C_∞
- cameras lie on $\mathcal{C} \setminus \{C_{\infty}\}$

not necessarily an ellipse

- Case 2: camera sees 2 lines of points
- points and cameras all lie on a twisted cubic C
- Case 1: camera sees points on a conic dangerous but unlikely to occur

► Three-Point Exterior Orientation Problem (P3P)

<u>Calibrated</u> camera rotation and translation from <u>Perspective</u> images of <u>3</u> reference <u>Points</u>. **Problem:** Given **K** and three corresponding pairs $\{(m_i, X_i)\}_{i=1}^3$, find **R**, **C** by solving

 $\lambda_i \underline{\mathbf{m}}_i = \mathbf{KR} (\mathbf{X}_i - \mathbf{C}), \qquad i = 1, 2, 3 \qquad \mathbf{X}_i \text{ Cartesian}$

1. Transform $\underline{\mathbf{v}}_i \stackrel{\text{def}}{=} \mathbf{K}^{-1} \underline{\mathbf{m}}_i$. Then

$$\lambda_i \underline{\mathbf{v}}_i = \mathbf{R} \left(\mathbf{X}_i - \mathbf{C} \right). \tag{10}$$

2. If there was no rotation in (10), the situation would look like this

- 3. and we could shoot 3 lines from the given points \mathbf{X}_i in given directions \mathbf{v}_i to get \mathbf{C}
- 4. given C we could solve (10) for λ_i

►P3P cont'd

If there is rotation ${\bf R}$

1. Eliminate ${f R}$ by taking

rotation preserves length: $\|\mathbf{R}\mathbf{x}\| = \|\mathbf{x}\|$

$$|\lambda_i| \cdot \|\underline{\mathbf{v}}_i\| = \|\mathbf{X}_i - \mathbf{C}\| \stackrel{\text{def}}{=} z_i \tag{11}$$

 Consider only angles among vi and apply the Cosine Law per triangle (C, Xi, Xj) i, j = 1, 2, 3, i ≠ j d²_{ij} = z²_i + z²_j - 2 z_i z_j c_{ij}, z_i = ||Xi - C||, d_{ij} = ||Xj - Xi||, c_{ij} = cos(∠vi vj)

 Solve the system of 3 quadratic eqs in 3 unknowns z_i
 [Fischler & Bolles, 1981]

there may be no real root there are up to 4 solutions that cannot be ignored

(verify on additional points)

- 5. Compute C by trilateration (3-sphere intersection) from X_i and z_i ; then λ_i from (11)
- 6. Compute **R** from (10)

we will solve this problem next \rightarrow 70

Similar problems (P4P with unknown f) at http://aag.ciirc.cvut.cz/minimal/ (papers, code)

Degenerate (Critical) Configurations for Exterior Orientation

no solution

1. C cocyclic with (X_1, X_2, X_3)

camera sees points on a line

unstable solution

• center of projection C located on the orthogonal circular cylinder with base circumscribing the three points X_i

<u>unstable</u>: a small change of X_i results in a large change of C

can be detected by error propagation

degenerate

• camera C is coplanar with points (X_1, X_2, X_3) but is not on the circumscribed circle of (X_1, X_2, X_3) camera sees points on a line

• additional critical configurations depend on the quadratic equations solver

[Haralick et al. IJCV 1994]

problem	given	unknown	slide
camera resection	6 world-image correspondences $\left\{ (X_i, m_i) ight\}_{i=1}^6$	Р	→62
exterior orientation	K, 3 world–image correspondences $\left\{ \left(X_{i},m_{i} ight) ight\} _{i=1}^{3}$	R , C	\rightarrow 66
next: relative orientation	3 world-world correspondences $\left\{ \left(X_{i},Y_{i} ight) ight\} _{i=1}^{3}$	R, t	→70

• camera resection and exterior orientation are similar problems in a sense:

- we do resectioning when our camera is uncalibrated
- we do orientation when our camera is calibrated
- relative orientation involves no camera (see next)
- more problems to come

it is a recurring problem in 3D vision

► The Relative Orientation Problem

Problem: Given point triples (X_1, X_2, X_3) and (Y_1, Y_2, Y_3) in a general position in \mathbb{R}^3 such that the correspondence $X_i \leftrightarrow Y_i$ is known, determine the relative orientation (\mathbb{R}, \mathbf{t}) that maps \mathbf{X}_i to \mathbf{Y}_i , i.e.

 $\mathbf{Y}_i = \mathbf{R}\mathbf{X}_i + \mathbf{t}, \quad i = 1, 2, 3.$

Applies to:

- 3D scanners
- · merging partial reconstructions from different viewpoints
- generalization of the last step of P3P

Obs: Let the centroid be $\bar{\mathbf{X}} = \frac{1}{3} \sum_{i} \mathbf{X}_{i}$ and analogically for $\bar{\mathbf{Y}}$. Then

 $\bar{\mathbf{Y}} = \frac{\mathbf{R}\bar{\mathbf{X}} + \mathbf{t}}{\mathbf{R}}.$

Therefore

$$\mathbf{Z}_i \stackrel{\text{def}}{=} (\mathbf{Y}_i - \bar{\mathbf{Y}}) = \mathbf{R}(\mathbf{X}_i - \bar{\mathbf{X}}) \stackrel{\text{def}}{=} \mathbf{R}\mathbf{W}_i$$

If all dot products are equal, $\mathbf{Z}_i^{\top} \mathbf{Z}_j = \mathbf{W}_i^{\top} \mathbf{W}_j$ for i, j = 1, 2, 3, we have

$$\mathbf{R}^* = \begin{bmatrix} \mathbf{W}_1 & \mathbf{W}_2 & \mathbf{W}_3 \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{Z}_1 & \mathbf{Z}_2 & \mathbf{Z}_3 \end{bmatrix}$$

Poor man's solver:

- normalize \mathbf{W}_i , \mathbf{Z}_i to unit length, use the above formula, and then find the closest rotation matrix
- but this is equivalent to a non-optimal objective

it ignores errors in vector lengths

An Optimal Algorithm for Relative Orientation

We setup a minimization problem

$$\mathbf{R}^* = \arg\min_{\mathbf{R}} \sum_{i=1}^{3} \|\mathbf{Z}_i - \mathbf{R}\mathbf{W}_i\|^2 \quad \text{s.t.} \quad \mathbf{R}^\top \mathbf{R} = \mathbf{I}, \quad \det \mathbf{R} = 1$$

$$\arg\min_{\mathbf{R}}\sum_{i} \|\mathbf{Z}_{i} - \mathbf{R}\mathbf{W}_{i}\|^{2} = \arg\min_{\mathbf{R}}\sum_{i} \left(\|\mathbf{Z}_{i}\|^{2} - 2\mathbf{Z}_{i}^{\top}\mathbf{R}\mathbf{W}_{i} + \|\mathbf{W}_{i}\|^{2}\right) = \dots = \arg\max_{\mathbf{R}}\sum_{i}\mathbf{Z}_{i}^{\top}\mathbf{R}\mathbf{W}_{i}$$

Obs 1: Let $\mathbf{A} : \mathbf{B} = \sum_{i,j} a_{ij} b_{ij}$ be the dot-product (Frobenius inner product) over real matrices. Then

$$\mathbf{A}: \mathbf{B} = \mathbf{B}: \mathbf{A} = \operatorname{tr}(\mathbf{A}^\top \mathbf{B}) = \operatorname{vec}(\mathbf{A})^\top \operatorname{vec}(\mathbf{B}) = \mathbf{a} \cdot \mathbf{b}$$

Obs 2: (cyclic property for matrix trace)

$$tr(ABC) = tr(CAB)$$

Obs 3: (\mathbf{Z}_i , \mathbf{W}_i are vectors)

$$\mathbf{Z}_i^{\top} \mathbf{R} \mathbf{W}_i = \operatorname{tr}(\mathbf{Z}_i^{\top} \mathbf{R} \mathbf{W}_i) \stackrel{\text{O2}}{=} \operatorname{tr}(\mathbf{W}_i \mathbf{Z}_i^{\top} \mathbf{R}) \stackrel{\text{O1}}{=} (\mathbf{Z}_i \mathbf{W}_i^{\top}) : \mathbf{R} = \mathbf{R} : (\mathbf{Z}_i \mathbf{W}_i^{\top})$$

• Then we can factor the ${f R}$ out of the sum

$$\sum_{i} \mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i} = \mathbf{R} : \left(\sum_{i} \mathbf{Z}_{i} \mathbf{W}_{i}^{\top} \right) \stackrel{\text{def}}{=} \mathbf{R} : \mathbf{M}$$

• Consider the SVD of $\mathbf{M}:\ \mathbf{M}=\mathbf{U}\mathbf{D}\mathbf{V}^{\top}.$ Then

$$\mathbf{R}: \mathbf{M} = \mathbf{R}: (\mathbf{U}\mathbf{D}\mathbf{V}^{\top}) \stackrel{\text{O1}}{=} \operatorname{tr}(\mathbf{R}^{\top}\mathbf{U}\mathbf{D}\mathbf{V}^{\top}) \stackrel{\text{O2}}{=} \operatorname{tr}(\mathbf{V}^{\top}\mathbf{R}^{\top}\mathbf{U}\mathbf{D}) \stackrel{\text{O1}}{=} (\mathbf{U}^{\top}\mathbf{R}\mathbf{V}): \mathbf{D}$$

cont'd: The Algorithm

We are solving

$$\mathbf{R}^* = \arg \max_{\mathbf{R}} \sum_i \mathbf{Z}_i^\top \mathbf{R} \mathbf{W}_i = \arg \max_{\mathbf{R}} \left(\mathbf{U}^\top \mathbf{R} \mathbf{V} \right) : \mathbf{D}$$

A particular solution is found as follows:

- $\mathbf{U}^{\top}\mathbf{R}\mathbf{V}$ must be (1) orthogonal, and closest to: (2) diagonal and (3) positive definite \mathbf{D}
- Since U, V are orthogonal matrices then the solution to the problem is among $\mathbf{R}^* = \mathbf{U} \mathbf{S} \mathbf{V}^{\top}$, where S is diagonal and orthogonal, i.e. one of

 $\pm \operatorname{diag}(1,1,1), \quad \pm \operatorname{diag}(1,-1,-1), \quad \pm \operatorname{diag}(-1,1,-1), \quad \pm \operatorname{diag}(-1,-1,1)$

- $\mathbf{U}^{\top}\mathbf{V}$ is not necessarily positive definite
- We choose ${\bf S}$ so that $({\bf R}^*)^\top {\bf R}^* = {\bf I}$

Alg:

- 1. Compute matrix $\mathbf{M} = \sum_i \mathbf{Z}_i \mathbf{W}_i^{\top}$.
- 2. Compute SVD $\mathbf{M} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$.
- 3. Compute all $\mathbf{R}_k = \mathbf{U}\mathbf{S}_k\mathbf{V}^{\top}$ that give $\mathbf{R}_k^{\top}\mathbf{R}_k = \mathbf{I}$.
- 4. Compute $\mathbf{t}_k = \bar{\mathbf{Y}} \mathbf{R}_k \bar{\mathbf{X}}$.
- The algorithm can be used for more than 3 points
- Triple pairs can be pre-filtered based on motion invariants (lengths, angles)
- Can be used for the last step of the exterior orientation (P3P) problem ${\rightarrow}66$

Thank You

