# **3D Computer Vision**

Radim Šára Martin Matoušek

Center for Machine Perception Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/tdv/start

http://cmp.felk.cvut.cz mailto:sara@cmp.felk.cvut.cz phone ext. 7203

rev. November 21, 2023



Open Informatics Master's Course

# Module VI

# **3D Structure and Camera Motion**

Reconstructing Camera System: From Triples and from Pairs

62Bundle Adjustment

#### covered by

- [1] [H&Z] Secs: 9.5.3, 10.1, 10.2, 10.3, 12.1, 12.2, 12.4, 12.5, 18.1
- Triggs, B. et al. Bundle Adjustment—A Modern Synthesis. In Proc ICCV Workshop on Vision Algorithms. Springer-Verlag. pp. 298–372, 1999.

#### additional references

D. Martinec and T. Pajdla. Robust Rotation and Translation Estimation in Multiview Reconstruction. In Proc CVPR, 2007

M. I. A. Lourakis and A. A. Argyros. SBA: A Software Package for Generic Sparse Bundle Adjustment. ACM Trans Math Software 36(1):1–30, 2009.

### ► Reconstructing Camera System by Gluing Camera Triples

Given: Calibration matrices  $\mathbf{K}_j$  and tentative correspondences per camera triples.

### Initialization

- 1. initialize camera cluster  ${\cal C}$  with a pair  ${\it P}_1$ ,  ${\it P}_2$
- 2. find essential matrix  ${\bf E}_{12}$  and matches  $M_{12}$  by the 5-point algorithm  ${\rightarrow} 89$
- 3. construct camera pair

$$\mathbf{P}_1 = \mathbf{K}_1 \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix}, \ \mathbf{P}_2 = \mathbf{K}_2 \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix}$$

- 4. triangulate  $\{X_i\}$  per match from  $M_{12} \longrightarrow 108$
- 5. initialize point cloud  $\mathcal{X}$  with  $\{X_i\}$  satisfying chirality constraint  $z_i > 0$  and apical angle constraint  $|\alpha_i| > \alpha_T$



### Attaching camera $P_j \notin C$

- 1. select points  $\mathcal{X}_j$  from  $\mathcal{X}$  that have matches to  $P_j$
- 2. estimate  $\mathbf{P}_j$  using  $\mathcal{X}_j$ , RANSAC with the 3-pt alg. (P3P), projection errors  $\mathbf{e}_{ij}$  in  $\mathcal{X}_j$
- 3. reconstruct 3D points from all tentative matches from  $P_j$  to all  $P_l$ ,  $l \neq k$  that are not in  $\mathcal{X}$
- 4. filter them by the chirality and apical angle constraints and add them to  ${\cal X}$
- 5. add  $P_j$  to C
- 6. perform bundle adjustment on  ${\mathcal X}$  and  ${\mathcal C}$

coming next  $\rightarrow$ 142

 $\rightarrow 66$ 

### ► The Projective Reconstruction Theorem

• We can run an analogical procedure when the cameras remain uncalibrated. But:

**Observation:** Unless  $P_j$  are constrained, then for any number of cameras j = 1, ..., k



when P<sub>i</sub> and X are both determined from correspondences (including calibrations K<sub>i</sub>), they are given up to a common 3D homography H

(translation, rotation, scale, shear, pure perspectivity)



• when cameras are internally calibrated ( $\mathbf{K}_j$  known) then  $\mathbf{H}$  is restricted to a similarity since it must preserve the calibrations  $\mathbf{K}_j$  [H&Z, Secs. 10.2, 10.3], [Longuet-Higgins 1981] (translation, rotation, scale)  $\rightarrow$ 137 for an indirect proof

### ▶ Reconstructing Camera System from Pairs (Correspondence-Free)

**Problem:** Given a set of p decomposed pairwise essential matrices  $\hat{\mathbf{E}}_{ij} = [\hat{\mathbf{t}}_{ij}]_{\times} \hat{\mathbf{R}}_{ij}$  and calibration matrices  $\mathbf{K}_i$  reconstruct the camera system  $\mathbf{P}_i$ , i = 1, ..., k

 ${\rightarrow}82$  and  ${\rightarrow}154$  on representing  ${\bf E}$ 



We construct calibrated camera pairs  $\hat{\mathbf{P}}_{ij} \in \mathbb{R}^{6,4}$  see (19)

$$\hat{\mathbf{P}}_{ij} = \begin{bmatrix} \mathbf{K}_i^{-1} \hat{\mathbf{P}}_i \\ \mathbf{K}_j^{-1} \hat{\mathbf{P}}_j \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \hat{\mathbf{R}}_{ij} & \hat{\mathbf{t}}_{ij} \end{bmatrix} \in \mathbb{R}^{6,4}$$

| • | singletons $i, j$ correspond to graph nodes | $k  \operatorname{nodes}$ |
|---|---------------------------------------------|---------------------------|
| • | pairs $ij$ correspond to graph edges        | $p  \operatorname{edges}$ |

 $\hat{\mathbf{P}}_{ij}$  are in different coordinate systems but these are related by similarities  $\hat{\mathbf{P}}_{ij}\mathbf{H}_{ij} = \mathbf{P}_{ij}$   $\mathbf{H}_{ij} \in \mathrm{SIM}(3)$ 

$$\underbrace{\begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \hat{\mathbf{R}}_{ij} & \hat{\mathbf{t}}_{ij} \end{bmatrix}}_{\in \mathbb{R}^{6,4}} \underbrace{\begin{bmatrix} \mathbf{R}_{ij} & \mathbf{t}_{ij} \\ \mathbf{0}^{\top} & s_{ij} \end{bmatrix}}_{\mathbf{H}_{ij} \in \mathbb{R}^{4,4}} \stackrel{!}{=} \underbrace{\begin{bmatrix} \mathbf{R}_{i} & \mathbf{t}_{i} \\ \mathbf{R}_{j} & \mathbf{t}_{j} \end{bmatrix}}_{\in \mathbb{R}^{6,4}}$$
(31)

• (31) is a system of 24p eqs. in 7p + 6k unknowns

- $24 = 6 \cdot 4, \ 7p \sim (\mathbf{t}_{ij}, \mathbf{R}_{ij}, s_{ij}), \ 6k \sim (\mathbf{R}_i, \mathbf{t}_i)$
- each  $\hat{f P}_i=({f R}_i,{f t}_i)$  appears on the RHS as many times as is the degree of node  $f P_i$

eg.  $P_5 3 \times$ 

### ▶cont'd

Eq. (31) implies

$$\begin{bmatrix} \mathbf{R}_{ij} \\ \hat{\mathbf{R}}_{ij}\mathbf{R}_{ij} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_i \\ \mathbf{R}_j \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \mathbf{t}_{ij} \\ \hat{\mathbf{R}}_{ij}\mathbf{t}_{ij} + s_{ij}\hat{\mathbf{t}}_{ij} \end{bmatrix} = \begin{bmatrix} \mathbf{t}_i \\ \mathbf{t}_j \end{bmatrix}$$

•  $\mathbf{R}_{ij}$  and  $\mathbf{t}_{ij}$  can be eliminated:

$$\hat{\mathbf{R}}_{ij}\mathbf{R}_i = \mathbf{R}_j, \qquad \hat{\mathbf{R}}_{ij}\mathbf{t}_i + s_{ij}\hat{\mathbf{t}}_{ij} = \mathbf{t}_j, \qquad s_{ij} > 0$$
(32)

• note transformations that do not change these equations

assuming no error in  $\hat{\mathbf{R}}_{ij}$ 

- 1.  $\mathbf{R}_i \mapsto \mathbf{R}_i \mathbf{R}$ , 2.  $\mathbf{t}_i \mapsto \sigma \mathbf{t}_i$  and  $s_{ij} \mapsto \sigma s_{ij}$ , 3.  $\mathbf{t}_i \mapsto \mathbf{t}_i + \mathbf{R}_i \mathbf{t}$
- the global frame is fixed, e.g. by selecting

**R**<sub>1</sub> = **I**, 
$$\sum_{i=1}^{k} \mathbf{t}_{i} = \mathbf{0}, \quad \frac{1}{p} \sum_{i,j} s_{ij} = 1$$
 (33)

- rotation equations are decoupled from translation equations
- in principle,  $s_{ij}$  could correct the sign of  $\hat{\mathbf{t}}_{ij}$  from essential matrix decomposition  $\rightarrow$ 82 but  $\mathbf{R}_i$  cannot correct the  $\alpha$  sign in  $\hat{\mathbf{R}}_{ij} \Rightarrow$  therefore make sure all points are in front of cameras and constrain  $s_{ij} > 0$ ;  $\rightarrow$ 84
- + pairwise correspondences are sufficient
- suitable for well-distributed cameras only (dome-like configurations) otherwise intractable or numerically unstable

### Finding The Rotation Component in Eq. (32)

#### 1. Poor Man's Algorithm:

- a) create a Minimum Spanning Tree of  ${\cal G}$  from  ${
  ightarrow}136$
- b) propagate rotations from  $\mathbf{R}_1 = \mathbf{I}$  via  $\hat{\mathbf{R}}_{ij}\mathbf{R}_i = \mathbf{R}_j$  from (32)

#### 2. Rich Man's Algorithm:

Consider  $\hat{\mathbf{R}}_{ij}\mathbf{R}_i = \mathbf{R}_j$ ,  $(i, j) \in E(\mathcal{G})$ , where  $\mathbf{R}$  are a  $3 \times 3$  rotation matrices Errors per columns c = 1, 2, 3 of  $\mathbf{R}_j$ :

$$\mathbf{e}_{ij}^c = \hat{\mathbf{R}}_{ij}\mathbf{r}_i^c - \mathbf{r}_j^c, \qquad \text{for all } i, j$$

.

Solve

$$\arg\min\sum_{(i,j)\in E(\mathcal{G})}\sum_{c=1}^{3} (\mathbf{e}_{ij}^{c})^{\top}\mathbf{e}_{ij}^{c} \quad \text{s.t.} \quad (\mathbf{r}_{i}^{k})^{\top}(\mathbf{r}_{j}^{l}) = \begin{cases} 1 & i=j \land k=l\\ 0 & i\neq j \land k=l\\ 0 & i=j \land k\neq l \end{cases}$$

this is a quadratic programming problem

#### 3. SVD-Lover's Algorithm:

Ignore the constraints and project the solution onto rotation matrices

see next

## SVD Algorithm (cont'd)

Per columns c = 1, 2, 3 of  $\mathbf{R}_j$ :

$$\hat{\mathbf{R}}_{ij}\mathbf{r}_{i}^{c}-\mathbf{r}_{j}^{c}=\mathbf{0},\qquad\text{for all }i,\ j$$
(34)

- fix c and denote  $\mathbf{r}^c = \begin{bmatrix} \mathbf{r}_1^c, \mathbf{r}_2^c, \dots, \mathbf{r}_k^c \end{bmatrix}^\top c$ -th columns of all rotation matrices stacked;  $\mathbf{r}^c \in \mathbb{R}^{3k}$
- then (34) becomes  $\mathbf{D} \mathbf{r}^c = \mathbf{0}$
- 3p equations for 3k unknowns  $\rightarrow p \ge k$

Ex: (k = p = 3)  $\hat{\mathbf{E}}_{13}$   $\hat{\mathbf{E}}_{23}$   $\hat{\mathbf{E}}_{23}$   $\hat{\mathbf{R}}_{23}\mathbf{r}_{2}^{c} - \mathbf{r}_{3}^{c} = \mathbf{0}$  $\hat{\mathbf{R}}_{13}\mathbf{r}_{1}^{c} - \mathbf{r}_{3}^{c} = \mathbf{0}$ 

$$\mathbf{D}\,\mathbf{r}^c = egin{bmatrix} \hat{\mathbf{R}}_{12} & -\mathbf{I} & \mathbf{0} \ \mathbf{0} & \hat{\mathbf{R}}_{23} & -\mathbf{I} \ \hat{\mathbf{R}}_{13} & \mathbf{0} & -\mathbf{I} \end{bmatrix} egin{bmatrix} \mathbf{r}_1^c \ \mathbf{r}_2^c \ \mathbf{r}_3^c \end{bmatrix} = \mathbf{0}$$

• must hold for any c

[Martinec & Pajdla CVPR 2007] D is sparse, use [V,E] = eigs(D'\*D,3,0); (Matlab) 3 smallest eigenvectors

in a 1-connected graph we have to fix  $\mathbf{r}_1^c = [1, 0, 0]$ 

because  $\|\mathbf{r}^c\| = 1$  is necessary but insufficient  $\mathbf{R}^*_i = \mathbf{U}\mathbf{V}^\top$ , where  $\mathbf{R}_i = \mathbf{U}\mathbf{D}\mathbf{V}^\top$ 

#### Idea:

- 1. find the space of all  $\mathbf{r}^c \in \mathbb{R}^{3k}$  that solve (34)
- 2. choose 3 unit orthogonal vectors in this space
- 3. find closest rotation matrices per cam. using SVD
- global world rotation is arbitrary

 $\mathbf{D} \in \mathbb{R}^{3p,3k}$ 

Finding The Translation Component in Eq. (32)



### cont'd

Linear equations in (32) and (33) can be rewritten to

$$\mathbf{Dt} = \mathbf{0}, \qquad \mathbf{t} = \begin{bmatrix} \mathbf{t}_1^\top, \mathbf{t}_2^\top, \dots, \mathbf{t}_k^\top, s_{12}, \dots, s_{ij}, \dots \end{bmatrix}^\top$$

assuming measurement errors  $\mathbf{Dt} = \boldsymbol{\epsilon}$  and d = 3, we have

$$\mathbf{t} \in \mathbb{R}^{3k+p}, \quad \mathbf{D} \in \mathbb{R}^{3p,3k+p}$$
 sparse

and

$$\mathbf{t}^* = \operatorname*{arg\,min}_{\mathbf{t},\,s_{ij}>0} \mathbf{t}^\top \mathbf{D}^\top \mathbf{D} \, \mathbf{t}$$

- this is a quadratic programming problem (mind the constraints!)
  - z = zeros(3\*k+p,1); t = quadprog(D.'\*D, z, diag([zeros(3\*k,1); -ones(p,1)]), z);
- but check the rank first!

Thank You