
3D Computer Vision
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Module VI

3D Structure and Camera Motion

6.1Reconstructing Camera System: From Triples and from Pairs

6.2Bundle Adjustment

covered by

[1] [H&Z] Secs: 9.5.3, 10.1, 10.2, 10.3, 12.1, 12.2, 12.4, 12.5, 18.1

[2] Triggs, B. et al. Bundle Adjustment—A Modern Synthesis. In Proc ICCV Workshop on Vision Algorithms.
Springer-Verlag. pp. 298–372, 1999.

additional references

D. Martinec and T. Pajdla. Robust Rotation and Translation Estimation in Multiview Reconstruction. In Proc CVPR, 2007

M. I. A. Lourakis and A. A. Argyros. SBA: A Software Package for Generic Sparse Bundle Adjustment. ACM Trans Math Software

36(1):1–30, 2009.
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▶Reconstructing Camera System by Gluing Camera Triples

Given: Calibration matrices Kj and tentative correspondences per camera triples.

Initialization

1. initialize camera cluster C with a pair P1, P2

2. find essential matrix E12 and matches M12 by the
5-point algorithm →89

3. construct camera pair

P1 = K1

[
I 0

]
, P2 = K2

[
R t

]
4. triangulate {Xi} per match

from M12 →108

5. initialize point cloud X with {Xi} satisfying
chirality constraint zi > 0 and apical angle
constraint |αi| > αT

mi1

mi2

ei1(Xi,P1)
eij(Xi,Pj)

mij

PjP2

P1

Xi

αi

Attaching camera Pj /∈ C
1. select points Xj from X that have matches to Pj

2. estimate Pj using Xj , RANSAC with the 3-pt alg. (P3P), projection errors eij in Xj →66

3. reconstruct 3D points from all tentative matches from Pj to all Pl, l ̸= k that are not in X
4. filter them by the chirality and apical angle constraints and add them to X
5. add Pj to C
6. perform bundle adjustment on X and C coming next →142

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 134/199) R. Šára, CMP; rev. 21–Nov–2023



▶The Projective Reconstruction Theorem

• We can run an analogical procedure when the cameras remain uncalibrated. But:

Observation: Unless Pj are constrained, then for any number of cameras j = 1, . . . , k

mij ≃ PjXi = PjH
−1︸ ︷︷ ︸

P′
j

HXi︸ ︷︷ ︸
X′

i

= P′
j X

′
i

• when Pi and X are both determined from correspondences (including calibrations Ki), they are given up to a
common 3D homography H

(translation, rotation, scale, shear, pure perspectivity)

�1 �2 −→

m1 m2 X X ′

• when cameras are internally calibrated (Kj known) then H is restricted to a similarity since it must preserve
the calibrations Kj [H&Z, Secs. 10.2, 10.3], [Longuet-Higgins 1981]

(translation, rotation, scale) →137 for an indirect proof
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▶Reconstructing Camera System from Pairs (Correspondence-Free)

Problem: Given a set of p decomposed pairwise essential matrices Êij = [t̂ij ]×R̂ij and calibration matrices Ki

reconstruct the camera system Pi, i = 1, . . . , k
→82 and →154 on representing E

P1 P8 P5P6Ê78P7
P4P3P2Ê12 Ê82Ê18 We construct calibrated camera pairs P̂ij ∈ R6,4 see (19)

P̂ij =

[
K−1

i P̂i

K−1
j P̂j

]
=

[
I 0

R̂ij t̂ij

]
∈ R6,4

• singletons i, j correspond to graph nodes k nodes

• pairs ij correspond to graph edges p edges

P̂ij are in different coordinate systems but these are related by similarities P̂ijHij = Pij Hij ∈ SIM(3)[
I 0

R̂ij t̂ij

]
︸ ︷︷ ︸

∈R6,4

[
Rij tij
0⊤ sij

]
︸ ︷︷ ︸

Hij∈R4,4

!
=

[
Ri ti
Rj tj

]
︸ ︷︷ ︸

∈R6,4

(31)

• (31) is a system of 24p eqs. in 7p+ 6k unknowns 24 = 6 · 4, 7p ∼ (tij ,Rij , sij), 6k ∼ (Ri, ti)

• each P̂i = (Ri, ti) appears on the RHS as many times as is the degree of node Pi eg. P5 3×
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▶cont’d

Eq. (31) implies

[
Rij

R̂ijRij

]
=

[
Ri

Rj

]
and

[
tij

R̂ijtij + sij t̂ij

]
=

[
ti
tj

]
• Rij and tij can be eliminated:

R̂ijRi = Rj , R̂ijti + sij t̂ij = tj , sij > 0 (32)

• note transformations that do not change these equations assuming no error in R̂ij

1. Ri 7→ RiR, 2. ti 7→ σ ti and sij 7→ σsij , 3. ti 7→ ti +Rit

• the global frame is fixed, e.g. by selecting

R1 = I,
k∑

i=1

ti = 0,
1

p

∑
i,j

sij = 1 (33)

• rotation equations are decoupled from translation equations
• in principle, sij could correct the sign of t̂ij from essential matrix decomposition →82

but Ri cannot correct the α sign in R̂ij ⇒ therefore make sure all points are in front of cameras and constrain sij > 0; →84

+ pairwise correspondences are sufficient

– suitable for well-distributed cameras only (dome-like configurations) otherwise intractable or numerically unstable
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Finding The Rotation Component in Eq. (32)

1. Poor Man’s Algorithm:
a) create a Minimum Spanning Tree of G from →136

b) propagate rotations from R1 = I via R̂ijRi = Rj from (32)

2. Rich Man’s Algorithm:
Consider R̂ijRi = Rj , (i, j) ∈ E(G), where R are a 3× 3 rotation matrices
Errors per columns c = 1, 2, 3 of Rj :

ec
ij = R̂ijr

c
i − rcj , for all i, j

Solve

argmin
∑

(i,j)∈E(G)

3∑
c=1

(ec
ij)

⊤ec
ij s.t. (rki )

⊤(rlj) =


1 i = j ∧ k = l

0 i ̸= j ∧ k = l

0 i = j ∧ k ̸= l

this is a quadratic programming problem

3. SVD-Lover’s Algorithm:
Ignore the constraints and project the solution onto rotation matrices see next
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SVD Algorithm (cont’d)

Per columns c = 1, 2, 3 of Rj :

R̂ijr
c
i − rcj = 0, for all i, j (34)

• fix c and denote rc =
[
rc1, r

c
2, . . . , r

c
k

]⊤
c-th columns of all rotation matrices stacked; rc∈R3k

• then (34) becomes Drc = 0 D ∈ R3p,3k

• 3p equations for 3k unknowns → p ≥ k in a 1-connected graph we have to fix rc1 = [1, 0, 0]

Ex: (k = p = 3)Ê23P1Ê13 Ê12P3P2 →
R̂12r

c
1 − rc2 = 0

R̂23r
c
2 − rc3 = 0

R̂13r
c
1 − rc3 = 0

→ Drc =

R̂12 −I 0

0 R̂23 −I

R̂13 0 −I

rc1rc2
rc3

 = 0

• must hold for any c

Idea: [Martinec & Pajdla CVPR 2007]

1. find the space of all rc ∈ R3k that solve (34) D is sparse, use [V,E] = eigs(D’*D,3,0); (Matlab)

2. choose 3 unit orthogonal vectors in this space 3 smallest eigenvectors

3. find closest rotation matrices per cam. using SVD because ∥rc∥ = 1 is necessary but insufficient

R∗
i = UV⊤, where Ri = UDV⊤

• global world rotation is arbitrary
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Finding The Translation Component in Eq. (32)

From (32) and (33): 0 < d ≤ 3 – rank of camera center set, p – #pairs, k – #cameras

(a): R̂ijti + sij t̂ij − tj = 0, (b):
k∑

i=1

ti = 0, (c):
∑
i,j

sij = p, sij > 0, ti ∈ Rd

• in rank d: d · p︸︷︷︸
(a)

+ d︸︷︷︸
(b)

+ 1︸︷︷︸
(c)

indep. eqns for d · k︸︷︷︸
ti

+ p︸︷︷︸
sij

unknowns → p ≥ d(k−1)−1
d−1

def
= Q(d, k)

Ex: Chains, circuits construction of ti from sticks of known orientation t̂ij and unknown length sij up to overall scale?

p = k − 1 k = p = 3 k = p = 4 k = p > 4

k ≤ 2 for any d 3 ≥ d ≥ 2: non-collinear ok 3 ≥ d ≥ 3: non-planar ok 3 ≥ d ≥ k − 1: impossible

• equations insufficient for chains, trees, or when d = 1 collinear cameras

• 3-connectivity implies sufficient equations for d = 3 cams. in general pos. in 3D

– s-connected graph has p ≥ ⌈ sk
2
⌉ edges for s ≥ 2, hence p ≥ ⌈ 3k

2
⌉ ≥ Q(3, k) = 3k

2
− 2

• 4-connectivity implies sufficient eqns. for any k when d = 2 coplanar cams

– since p ≥ ⌈2k⌉ ≥ Q(2, k) = 2k − 3

– maximal planar tringulated graphs have p = 3k − 6
and give a solution for k ≥ 3 maximal planar triangulated graph example:
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cont’d

Linear equations in (32) and (33) can be rewritten to

Dt = 0, t =
[
t⊤1 , t

⊤
2 , . . . , t

⊤
k , s12, . . . , sij , . . .

]⊤
assuming measurement errors Dt = ϵ and d = 3, we have

t ∈ R3k+p, D ∈ R3p,3k+p sparse

and
t∗ = argmin

t, sij>0
t⊤D⊤Dt

• this is a quadratic programming problem (mind the constraints!)

z = zeros(3*k+p,1);
t = quadprog(D.’*D, z, diag([zeros(3*k,1); -ones(p,1)]), z);

• but check the rank first!
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