3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz phone ext. 7203
rev. November 21, 2023

Open Informatics Master's Course

Module VI

3D Structure and Camera Motion

6.1 Reconstructing Camera System: From Triples and from Pairs
6.2 Bundle Adjustment
covered by
[1] [H\&Z] Secs: $9.5 .3,10.1,10.2,10.3,12.1,12.2,12.4,12.5,18.1$
[2] Triggs, B. et al. Bundle Adjustment-A Modern Synthesis. In Proc ICCV Workshop on Vision Algorithms. Springer-Verlag. pp. 298-372, 1999.
additional references
D. Martinec and T. Pajdla. Robust Rotation and Translation Estimation in Multiview Reconstruction. In Proc CVPR, 2007

R M. I. A. Lourakis and A. A. Argyros. SBA: A Software Package for Generic Sparse Bundle Adjustment. ACM Trans Math Software 36(1):1-30, 2009.

Reconstructing Camera System by Gluing Camera Triples

Given: Calibration matrices \mathbf{K}_{j} and tentative correspondences per camera triples.
 Initialization
 1. initialize camera cluster \mathcal{C} with a pair P_{1}, P_{2}
 2. find essential matrix \mathbf{E}_{12} and matches M_{12} by the 5-point algorithm
 3. construct camera pair
 $$
\mathbf{P}_{1}=\mathbf{K}_{1}\left[\begin{array}{ll} \mathbf{I} & \mathbf{0} \end{array}\right], \mathbf{P}_{2}=\mathbf{K}_{2}\left[\begin{array}{ll} \mathbf{R} & \mathbf{t} \end{array}\right]
$$
 4. triangulate $\left\{X_{i}\right\}$ per match from M_{12}
 5. initialize point cloud \mathcal{X} with $\left\{X_{i}\right\}$ satisfying chirality constraint $z_{i}>0$ and apical angle constraint $\left|\alpha_{i}\right|>\alpha_{T}$

Attaching camera $P_{j} \notin \mathcal{C}$

1. select points \mathcal{X}_{j} from \mathcal{X} that have matches to P_{j}
2. estimate \mathbf{P}_{j} using \mathcal{X}_{j}, RANSAC with the 3-pt alg. (P3P), projection errors $\mathbf{e}_{i j}$ in \mathcal{X}_{j}
3. reconstruct 3D points from all tentative matches from P_{j} to all $P_{l}, l \neq k$ that are not in \mathcal{X}
4. filter them by the chirality and apical angle constraints and add them to \mathcal{X}
5. add P_{j} to \mathcal{C}
6. perform bundle adjustment on \mathcal{X} and \mathcal{C}

－The Projective Reconstruction Theorem

－We can run an analogical procedure when the cameras remain uncalibrated．But：
Observation：Unless \mathbf{P}_{j} are constrained，then for any number of cameras $j=1, \ldots, k$

$$
\underline{\mathbf{m}}_{i j} \simeq \mathbf{P}_{j} \underline{\mathbf{X}}_{i}=\underbrace{\mathbf{P}_{j} \mathbf{H}^{-1}}_{\mathbf{P}_{j}^{\prime}} \underbrace{\mathbf{H} \underline{\mathbf{X}}_{i}}_{\underline{\mathbf{X}}_{i}^{\prime}}=\mathbf{P}_{j}^{\prime} \underline{\mathbf{X}}_{i}^{\prime}
$$

－when \mathbf{P}_{i} and $\underline{\mathbf{X}}$ are both determined from correspondences（including calibrations \mathbf{K}_{i} ），they are given up to a common 3D homography \mathbf{H}
（translation，rotation，scale，shear，pure perspectivity）

－when cameras are internally calibrated（ \mathbf{K}_{j} known）then \mathbf{H} is restricted to a similarity since it must preserve the calibrations \mathbf{K}_{j} （translation，rotation，scale）
［H\＆Z，Secs．10．2，10．3］，［Longuet－Higgins 1981］ $\rightarrow 137$ for an indirect proof

Reconstructing Camera System from Pairs（Correspondence－Free）

Problem：Given a set of p decomposed pairwise essential matrices $\hat{\mathbf{E}}_{i j}=\left[\hat{\mathbf{t}}_{i j}\right]_{\times} \hat{\mathbf{R}}_{i j}$ and calibration matrices \mathbf{K}_{i} reconstruct the camera system $\mathbf{P}_{i}, i=1, \ldots, k$

$$
\rightarrow 82 \text { and } \rightarrow 154 \text { on representing } \mathbf{E}
$$

We construct calibrated camera pairs $\hat{\mathbf{P}}_{i j} \in \mathbb{R}^{6,4}$

$$
\hat{\mathbf{P}}_{i j}=\left[\begin{array}{l}
\mathbf{K}_{i}^{-1} \hat{\mathbf{P}}_{i} \tag{19}\\
\mathbf{K}_{j}^{-1} \hat{\mathbf{P}}_{j}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
\hat{\mathbf{R}}_{i j} & \hat{\mathbf{t}}_{i j}
\end{array}\right] \in \mathbb{R}^{6,4}
$$

－singletons i, j correspond to graph nodes
k nodes
－pairs $i j$ correspond to graph edges p edges
$\hat{\mathbf{P}}_{i j}$ are in different coordinate systems but these are related by similarities $\hat{\mathbf{P}}_{i j} \mathbf{H}_{i j}=\mathbf{P}_{i j}$

$$
\mathbf{H}_{i j} \in \operatorname{SIM}(3)
$$

$$
\underbrace{\left[\begin{array}{cc}
\mathbf{I} & \mathbf{0} \tag{31}\\
\hat{\mathbf{R}}_{i j} & \hat{\mathbf{t}}_{i j}
\end{array}\right]}_{\in \mathbb{R}^{6,4}} \underbrace{\left[\begin{array}{cc}
\mathbf{R}_{i j} & \mathbf{t}_{i j} \\
\mathbf{0}^{\top} & s_{i j}
\end{array}\right]}_{\mathbf{H}_{i j} \in \mathbb{R}^{4,4}} \stackrel{!}{=} \underbrace{\left[\begin{array}{ll}
\mathbf{R}_{i} & \mathbf{t}_{i} \\
\mathbf{R}_{j} & \mathbf{t}_{j}
\end{array}\right]}_{\in \mathbb{R}^{6,4}}
$$

－（31）is a system of $24 p$ eqs．in $7 p+6 k$ unknowns
$24=6 \cdot 4,7 p \sim\left(\mathbf{t}_{i j}, \mathbf{R}_{i j}, s_{i j}\right), 6 k \sim\left(\mathbf{R}_{i}, \mathbf{t}_{i}\right)$
－each $\hat{\mathbf{P}}_{i}=\left(\mathbf{R}_{i}, \mathbf{t}_{i}\right)$ appears on the RHS as many times as is the degree of node \mathbf{P}_{i}

cont'd

Eq. (31) implies

$$
\left[\begin{array}{c}
\mathbf{R}_{i j} \\
\hat{\mathbf{R}}_{i j} \mathbf{R}_{i j}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{R}_{i} \\
\mathbf{R}_{j}
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{c}
\mathbf{t}_{i j} \\
\hat{\mathbf{R}}_{i j} \mathbf{t}_{i j}+s_{i j} \hat{\mathbf{t}}_{i j}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{t}_{i} \\
\mathbf{t}_{j}
\end{array}\right]
$$

- $\mathbf{R}_{i j}$ and $\mathrm{t}_{i j}$ can be eliminated:

$$
\begin{equation*}
\hat{\mathbf{R}}_{i j} \mathbf{R}_{i}=\mathbf{R}_{j}, \quad \hat{\mathbf{R}}_{i j} \mathbf{t}_{i}+s_{i j} \hat{\mathbf{t}}_{i j}=\mathbf{t}_{j}, \quad s_{i j}>0 \tag{32}
\end{equation*}
$$

- note transformations that do not change these equations assuming no error in $\hat{\mathbf{R}}_{i j}$

1. $\mathbf{R}_{i} \mapsto \mathbf{R}_{i} \mathbf{R}$,
2. $\quad \mathbf{t}_{i} \mapsto \sigma \mathbf{t}_{i}$ and $s_{i j} \mapsto \sigma s_{i j}$,
3. $\mathbf{t}_{i} \mapsto \mathbf{t}_{i}+\mathbf{R}_{i} \mathbf{t}$

- the global frame is fixed, e.g. by selecting

$$
\begin{equation*}
\mathbf{R}_{1}=\mathbf{I}, \quad \sum_{i=1}^{k} \mathrm{t}_{i}=\mathbf{0}, \quad \frac{1}{p} \sum_{i, j} s_{i j}=1 \tag{33}
\end{equation*}
$$

- rotation equations are decoupled from translation equations
- in principle, $s_{i j}$ could correct the sign of $\hat{\mathbf{t}}_{i j}$ from essential matrix decomposition
but \mathbf{R}_{i} cannot correct the α sign in $\hat{\mathbf{R}}_{i j} \quad \Rightarrow$ therefore make sure all points are in front of cameras and constrain $s_{i j}>0 ; \rightarrow 84$
+ pairwise correspondences are sufficient
- suitable for well-distributed cameras only (dome-like configurations) otherwise intractable or numerically unstable

Finding The Rotation Component in Eq. (32)

1. Poor Man's Algorithm:

a) create a Minimum Spanning Tree of \mathcal{G} from $\rightarrow 136$
b) propagate rotations from $\mathbf{R}_{1}=\mathbf{I}$ via $\hat{\mathbf{R}}_{i j} \mathbf{R}_{i}=\mathbf{R}_{j}$ from (32)

2. Rich Man's Algorithm:

Consider $\hat{\mathbf{R}}_{i j} \mathbf{R}_{i}=\mathbf{R}_{j},(i, j) \in E(\mathcal{G})$, where \mathbf{R} are a 3×3 rotation matrices Errors per columns $c=1,2,3$ of \mathbf{R}_{j} :

$$
\mathbf{e}_{i j}^{c}=\hat{\mathbf{R}}_{i j} \mathbf{r}_{i}^{c}-\mathbf{r}_{j}^{c}, \quad \text { for all } i, j
$$

Solve

$$
\arg \min \sum_{(i, j) \in E(\mathcal{G})} \sum_{c=1}^{3}\left(\mathbf{e}_{i j}^{c}\right)^{\top} \mathbf{e}_{i j}^{c} \quad \text { s.t. } \quad\left(\mathbf{r}_{i}^{k}\right)^{\top}\left(\mathbf{r}_{j}^{l}\right)= \begin{cases}1 & i=j \wedge k=l \\ 0 & i \neq j \wedge k=l \\ 0 & i=j \wedge k \neq l\end{cases}
$$

this is a quadratic programming problem
3. SVD-Lover's Algorithm:

Ignore the constraints and project the solution onto rotation matrices

SVD Algorithm（cont＇d）

Per columns $c=1,2,3$ of \mathbf{R}_{j} ：

$$
\begin{equation*}
\hat{\mathbf{R}}_{i j} \mathbf{r}_{i}^{c}-\mathbf{r}_{j}^{c}=\mathbf{0}, \quad \text { for all } i, j \tag{34}
\end{equation*}
$$

－fix c and denote $\mathbf{r}^{c}=\left[\mathbf{r}_{1}^{c}, \mathbf{r}_{2}^{c}, \ldots, \mathbf{r}_{k}^{c}\right]^{\top} \quad c$－th columns of all rotation matrices stacked； $\mathbf{r}^{c} \in \mathbb{R}^{3 k}$
－then（34）becomes $\mathbf{D r}^{c}=\mathbf{0}$
－ $3 p$ equations for $3 k$ unknowns $\rightarrow p \geq k$
in a 1－connected graph we have to fix $\mathbf{r}_{1}^{c}=[1,0,0]$
Ex：$(k=p=3)$

Idea：

1．find the space of all $\mathbf{r}^{c} \in \mathbb{R}^{3 k}$ that solve（34）
2．choose 3 unit orthogonal vectors in this space
3．find closest rotation matrices per cam．using SVD
－global world rotation is arbitrary
［Martinec \＆Pajdla CVPR 2007］
\mathbf{D} is sparse，use $[\mathrm{V}, \mathrm{E}]=\operatorname{eigs}\left(\mathrm{D}^{\prime} * \mathrm{D}, 3,0\right)$ ；（Matlab）
3 smallest eigenvectors

$$
\text { because }\left\|\mathbf{r}^{c}\right\|=1 \text { is necessary but insufficient }
$$

$$
\mathbf{R}_{i}^{*}=\mathbf{U V}^{\top} \text {, where } \mathbf{R}_{i}=\mathbf{U D V}^{\top}
$$

Finding The Translation Component in Eq. (32)

From (32) and (33):
(a): $\hat{\mathbf{R}}_{i j} \mathbf{t}_{i}+s_{i j} \hat{\mathbf{t}}_{i j}-\mathbf{t}_{j}=\mathbf{0}$,
(b): $\quad \begin{array}{r}0<d \\ \sum_{i=1}^{k} \mathrm{t}_{i}=\mathbf{0},\end{array}$
(c): $\sum_{i, j} s_{i j}=p$,
$s_{i j}>0$,
$\mathrm{t}_{i} \in \mathbb{R}^{d}$

- in rank $d: \underbrace{d \cdot p}_{\text {(a) }}+\underbrace{d}_{\text {(b) }}+\underbrace{1}_{\text {(c) }}$ indep. eqns for $\underbrace{d \cdot k}_{\mathbf{t}_{i}}+\underbrace{p}_{s_{i j}}$ unknowns $\rightarrow p \geq \frac{d(k-1)-1}{d-1} \stackrel{\text { def }}{=} Q(d, k)$

Ex: Chains, circuits construction of \mathbf{t}_{i} from sticks of known orientation $\hat{\mathbf{t}}_{i j}$ and unknown length $s_{i j}$ up to overall scale?

$$
p=k-1
$$

$$
k=p=3
$$

$$
k=p=4
$$

$3 \geq d \geq 3$: non-planar ok

- equations insufficient for chains, trees, or when $d=1$
collinear cameras
- 3-connectivity implies sufficient equations for $d=3$ cams. in general pos. in 3D
- s-connected graph has $p \geq\left\lceil\frac{s k}{2}\right\rceil$ edges for $s \geq 2$, hence $p \geq\left\lceil\frac{3 k}{2}\right\rceil \geq Q(3, k)=\frac{3 k}{2}-2$
- 4-connectivity implies sufficient eqns. for any k when $d=2$
coplanar cams
- since $p \geq\lceil 2 k\rceil \geq Q(2, k)=2 k-3$
- maximal planar tringulated graphs have $p=3 k-6$ and give a solution for $k \geq 3$
maximal planar triangulated graph example:

cont'd

Linear equations in (32) and (33) can be rewritten to

$$
\mathbf{D} \mathbf{t}=\mathbf{0}, \quad \mathbf{t}=\left[\mathbf{t}_{1}^{\top}, \mathbf{t}_{2}^{\top}, \ldots, \mathbf{t}_{k}^{\top}, s_{12}, \ldots, s_{i j}, \ldots\right]^{\top}
$$

assuming measurement errors $\mathbf{D t}=\boldsymbol{\epsilon}$ and $d=3$, we have

$$
\mathbf{t} \in \mathbb{R}^{3 k+p}, \quad \mathbf{D} \in \mathbb{R}^{3 p, 3 k+p} \quad \text { sparse }
$$

and

$$
\mathbf{t}^{*}=\underset{\mathbf{t}, s_{i j}>0}{\arg \min } \mathbf{t}^{\top} \mathbf{D}^{\top} \mathbf{D} \mathbf{t}
$$

- this is a quadratic programming problem (mind the constraints!)

```
z = zeros(3*k+p,1);
t = quadprog(D.'*D, z, diag([zeros(3*k,1); -ones(p,1)]), z);
```

- but check the rank first!

Thank You

