3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/tdv/start

http://cmp.felk.cvut.cz mailto:sara@cmp.felk.cvut.cz phone ext. 7203

rev. December 5, 2023

Open Informatics Master's Course

Module VII

Stereovision

Introduction
Epipolar Rectification
Binocular Disparity and Matching Table
Image Similarity
Marroquin's Winner Take All Algorithm
Maximum Likelihood Matching
Uniqueness and Ordering as Occlusion Models

mostly covered by

Šára, R. How To Teach Stereoscopic Vision. Proc. ELMAR 2010

referenced as [SP]

additional references

- C. Geyer and K. Daniilidis. Conformal rectification of omnidirectional stereo pairs. In *Proc Computer Vision and Pattern Recognition Workshop*, p. 73, 2003.
- J. Gluckman and S. K. Nayar. Rectifying transformations that minimize resampling effects. In Proc IEEE CS Conf on Computer Vision and Pattern Recognition, vol. 1:111–117. 2001.
- M. Pollefeys, R. Koch, and L. V. Gool. A simple and efficient rectification method for general motion. In *Proc Int Conf on Computer Vision*, vol. 1:496–501, 1999.

Stereovision = Getting Relative Distances Per Pixel given the Epipolar Geometry

The success of a model-free stereo matching algorithm is unlikely:

WTA Matching:

For <u>every</u> left-image pixel find the most similar right-image pixel along the corresponding epipolar line. [Marroquin 83]

disparity map from WTA

a good disparity map

- monocular vision already gives a rough 3D sketch because we understand the scene
- pixelwise independent matching without any problem understanding is difficult
- matching can benefit from a geometric simplification of the problem: epipolar rectification

► Linear Epipolar Rectification for Easier Correspondence Search

Obs:

- epipoles and epipolars are elements of \mathbb{P}^2 , they may be mapped by homographies
- if we map epipoles to infinity, epipolars become parallel
- we then rotate them to become horizontal
- we then scale the images to make corresponding epipolars colinear
- this can be achieved by a pair of (non-unique) homographies applied to the images

Problem: Given fundamental matrix \mathbf{F} or camera matrices \mathbf{P}_1 , \mathbf{P}_2 , compute a pair of homographies that maps epipolars to horizontal lines with the same row coordinate.

Procedure:

1. find a pair of rectification homographies \mathbf{H}_1 and \mathbf{H}_2 .

2. warp images using \mathbf{H}_1 and \mathbf{H}_2 and transform the fundamental matrix $\mathbf{F} \mapsto \mathbf{H}_2^{-\top} \mathbf{F} \mathbf{H}_1^{-1}$ or the cameras

 $\mathbf{P}_1\mapsto \mathbf{H}_1\mathbf{P}_1, \ \mathbf{P}_2\mapsto \mathbf{H}_2\mathbf{P}_2.$

► Rectification Homographies

Assumption: Cameras $(\mathbf{P}_1, \mathbf{P}_2)$ are rectified by a homography pair $(\mathbf{H}_1, \mathbf{H}_2)$:

$$\mathbf{P}_{i}^{*} \simeq \mathbf{H}_{i} \mathbf{P}_{i} = \begin{bmatrix} \mathbf{Q}_{i} & \mathbf{q}_{i} \end{bmatrix} = \mathbf{H}_{i} \mathbf{K}_{i} \mathbf{R}_{i} \begin{bmatrix} \mathbf{I} & -\mathbf{C}_{i} \end{bmatrix}, \quad i = 1, 2$$

$$v \sqrt{\frac{m_{1}^{*} = (u_{1}^{*}, v^{*})}{m_{1}^{*} = (u_{1}^{*}, v^{*})}} \xrightarrow{\frac{m_{2}^{*} = (u_{2}^{*}, v^{*})}{l_{2}^{*}}} \xrightarrow{\frac{m_{2}^{*} = (u_{2}^{*}, v^{*})}{e_{2}^{*}}} e_{2}^{*} = e^{2}$$

rectified entities: \mathbf{F}^{*} , l_{1}^{*} , l_{2}^{*} , etc:

• the rectified location difference $d=u_1^*-u_2^*$ is called disparity

corresponding epipolar lines must be:

- 1. parallel to image rows \Rightarrow epipoles become $e_1^* = e_2^* = (1,0,0)$
- $\textbf{2. equivalent } l_2^* = l_1^*: \quad \mathbf{l}_1^* \simeq \mathbf{\underline{e}}_1^* \times \mathbf{\underline{m}}_1 = \left[\mathbf{\underline{e}}_1^*\right]_{\times} \mathbf{\underline{m}}_1 \ \simeq \ \mathbf{l}_2^* \simeq \mathbf{F}^* \mathbf{\underline{m}}_1 \quad \Rightarrow \quad \mathbf{F}^* = \left[\mathbf{\underline{e}}_1^*\right]_{\times}$
- therefore the canonical fundamental matrix is

$$\mathbf{F}^* \simeq \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

A two-step rectification procedure

- 1. find some pair of primitive rectification homographies $\hat{\mathbf{H}}_1$, $\hat{\mathbf{H}}_2$
- 2. upgrade to a pair of optimal rectification homographies while preserving \mathbf{F}^*

► Primitive Rectification

Goal: Given fundamental matrix \mathbf{F} , derive some easy-to-obtain rectification homographies \mathbf{H}_1 , \mathbf{H}_2

- 1. Let the SVD of \mathbf{F} be $\mathbf{U}\mathbf{D}\mathbf{V}^{\top} = \mathbf{F}$, where $\mathbf{D} = \operatorname{diag}(1, d^2, 0), \quad 1 \ge d^2 > 0$
- 2. Write **D** as $\mathbf{D} = \mathbf{A}^{\top} \mathbf{F}^* \mathbf{B}$ for some regular **A**, **B**. For instance

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -d & 0 \\ 1 & 0 & 0 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & d & 0 \end{bmatrix}$$

3. Then

$$\mathbf{F} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top} = \underbrace{\mathbf{U}\mathbf{A}^{\top}}_{\hat{\mathbf{H}}_{2}^{\top}} \mathbf{F}^{*} \underbrace{\mathbf{B}\mathbf{V}^{\top}}_{\hat{\mathbf{H}}_{1}} = \hat{\mathbf{H}}_{2}^{\top} \mathbf{F}^{*} \hat{\mathbf{H}}_{1} \qquad \hat{\mathbf{H}}_{1}, \, \hat{\mathbf{H}}_{2} \text{ orthogonal}$$

and the primitive rectification homographies are

$$\hat{\mathbf{H}}_2 = \mathbf{A}\mathbf{U}^{\top}, \qquad \hat{\mathbf{H}}_1 = \mathbf{B}\mathbf{V}^{\top}$$

 \circledast P1; 1pt: derive some other admissible A, B

- Hence: Rectification homographies do exist $\rightarrow 160$
- there are other primitive rectification homographies, these suggested are just easy to obtain

(\mathbf{F}^* is given $\rightarrow 160$)

► The Set of All Rectification Homographies

 $\begin{array}{l} \mbox{Proposition 1} & \mbox{Homographies } {\bf A}_1 \mbox{ and } {\bf A}_2 \mbox{ are } \underline{\mbox{rectification-preserving}} \mbox{ if the images stay rectified, i.e. if } \\ {\bf A}_2^{-\top} \mbox{ } {\bf F}^* \mbox{ } {\bf A}_1^{-1} \simeq {\bf F}^*, \mbox{ which gives } \\ \end{array}$

$$\mathbf{A}_{1} = \begin{bmatrix} l_{1} & l_{2} & l_{3} \\ 0 & s_{v} & t_{v} \\ 0 & q & 1 \end{bmatrix}, \qquad \mathbf{A}_{2} = \begin{bmatrix} r_{1} & r_{2} & r_{3} \\ 0 & s_{v} & t_{v} \\ 0 & q & 1 \end{bmatrix}, \qquad v \checkmark$$
(36)

where $s_v \neq 0$, t_v , $l_1 \neq 0$, l_2 , l_3 , $r_1 \neq 0$, r_2 , r_3 , q are <u>9 free parameters</u>.

general	transformation		standard
l_1 , r_1	horizontal scales		$l_1 = r_1$
l_2 , r_2	horizontal shears		$l_2 = r_2$
l_3 , r_3	horizontal shifts		$l_{3} = r_{3}$
q	common special projective	\Box	
s_v	common vertical scale		
t_v	common vertical shift		
9 DoF			9-3=6DoF

- ullet q is due to a rotation about the baseline
- s_v changes the focal length

proof: find a rotation G that brings K to upper triangular form via RQ decomposition: $A_1K_1^* = \hat{K}_1G$ and $A_2K_2^* = \hat{K}_2G$

Corollary for Proposition 1 Let $\bar{\mathbf{H}}_1$ and $\bar{\mathbf{H}}_2$ be (primitive or other) rectification homographies. Then $\mathbf{H}_1 = \mathbf{A}_1 \bar{\mathbf{H}}_1$, $\mathbf{H}_2 = \mathbf{A}_2 \bar{\mathbf{H}}_2$ are also rectification homographies, where \mathbf{A}_1 , \mathbf{A}_2 are as in (36).

Proposition 2 Pairs of rectification-preserving homographies $(\mathbf{A}_1, \mathbf{A}_2)$ form a group, with group operation (composition) $(\mathbf{A}'_1, \mathbf{A}'_2) \circ (\mathbf{A}_1, \mathbf{A}_2) = (\mathbf{A}'_1 \mathbf{A}_1, \mathbf{A}'_2 \mathbf{A}_2).$

Proof:

- closure by Proposition 1
- associativity by matrix multiplication
- identity belongs to the set
- inverse element belongs to the set by $\mathbf{A}_2^\top \mathbf{F}^* \mathbf{A}_1 \simeq \mathbf{F}^* \Leftrightarrow \mathbf{F}^* \simeq \mathbf{A}_2^{-\top} \mathbf{F}^* \mathbf{A}_1^{-1}$

▶ Primitive Rectification Suffices for Calibrated Cameras

Obs: calibrated cameras: $d = 1 \Rightarrow \hat{\mathbf{H}}_1$, $\hat{\mathbf{H}}_2$ (\rightarrow 161) are orthonormal

- 1. determine primitive rectification homographies $(\hat{\mathbf{H}}_1, \hat{\mathbf{H}}_2)$ from the essential matrix
- 2. choose a suitable common calibration matrix \mathbf{K} , e.g. from \mathbf{K}_1 , \mathbf{K}_2 :

$$\mathbf{K} = \begin{bmatrix} f & 0 & u_0 \\ 0 & f & v_0 \\ 0 & 0 & 1 \end{bmatrix}, \quad f = \frac{1}{2}(f^1 + f^2), \quad u_0 = \frac{1}{2}(u_0^1 + u_0^2), \;\; \text{etc.}$$

3. the final rectification homographies applied as $\mathbf{P}_i\mapsto \mathbf{H}_i\,\mathbf{P}_i$ are

$$\mathbf{H}_1 = \mathbf{K} \mathbf{\hat{H}}_1 \mathbf{K}_1^{-1}, \quad \mathbf{H}_2 = \mathbf{K} \mathbf{\hat{H}}_2 \mathbf{K}_2^{-1}$$

- we got a standard stereo pair (\rightarrow 165) and non-negative disparity: let $\mathbf{K}_{i}^{-1}\mathbf{P}_{i} = \mathbf{R}_{i} \begin{bmatrix} \mathbf{I} & -\mathbf{C}_{i} \end{bmatrix}, \quad i = 1, 2$ note we started from E, not F $\mathbf{H}_{1}\mathbf{P}_{1} = \mathbf{K}\hat{\mathbf{H}}_{1}\mathbf{K}_{1}^{-1}\mathbf{P}_{1} = \mathbf{K}\underbrace{\mathbf{B}\mathbf{V}^{\top}\mathbf{R}_{1}}_{\mathbf{R}^{*}}\begin{bmatrix} \mathbf{I} & -\mathbf{C}_{1} \end{bmatrix} = \mathbf{K}\mathbf{R}^{*} \begin{bmatrix} \mathbf{I} & -\mathbf{C}_{1} \end{bmatrix}$ A, B from \rightarrow 161 $\mathbf{H}_{2}\mathbf{P}_{2} = \mathbf{K}\hat{\mathbf{H}}_{2}\mathbf{K}_{2}^{-1}\mathbf{P}_{2} = \mathbf{K}\underbrace{\mathbf{A}\mathbf{U}^{\top}\mathbf{R}_{2}}_{\mathbf{R}^{*}}\begin{bmatrix} \mathbf{I} & -\mathbf{C}_{2} \end{bmatrix} = \mathbf{K}\mathbf{R}^{*} \begin{bmatrix} \mathbf{I} & -\mathbf{C}_{2} \end{bmatrix}$
- one can prove that $\mathbf{BV}^{\top}\mathbf{R}_1 = \mathbf{AU}^{\top}\mathbf{R}_2$ with the help of essential matrix decomposition (15)
- Note that points at infinity project by \mathbf{KR}^* in both cameras \Rightarrow they have zero disparity (\rightarrow 168), hence...

▶ Geometric Interpretation of Linear Rectification

What pair of physical cameras is compatible with F*?

- we know that $\mathbf{F}=(\mathbf{Q}_1\mathbf{Q}_2^{-1})^{\top}[\mathbf{\underline{e}}_1]_{\times}$
- we choose $\mathbf{Q}_1^* = \mathbf{K}_1^*, \ \mathbf{Q}_2^* = \mathbf{K}_2^* \mathbf{R}^*$; then

$$\mathbf{F}^* \simeq (\mathbf{Q}_1^* \mathbf{Q}_2^{*-1})^\top [\mathbf{\underline{e}}_1^*]_\times \stackrel{!}{\simeq} (\mathbf{K}_1^* \mathbf{R}^{*\top} \mathbf{K}_2^{*-1})^\top \mathbf{F}^*$$

• we look for \mathbf{R}^* , \mathbf{K}_1^* , \mathbf{K}_2^* compatible with equations

 $(\mathbf{K}_1^* \mathbf{R}^{*\top} \mathbf{K}_2^{*-1})^\top \mathbf{F}^* = \lambda \mathbf{F}^*, \qquad \mathbf{R}^* \mathbf{R}^{*\top} = \mathbf{I}, \qquad \mathbf{K}_1^*, \mathbf{K}_2^* \text{ upper triangular}$

- we also want \mathbf{b}^* from $\mathbf{\underline{e}}_1^* \simeq \mathbf{P}_1^* \mathbf{\underline{C}}_2^* = \mathbf{K}_1^* \mathbf{b}^*$
- result after equations reduction:

$$\mathbf{R}^* = \mathbf{I}, \quad \mathbf{b}^* = \begin{bmatrix} b \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{K}_1^* = \begin{bmatrix} k_{11} & k_{12} & k_{13} \\ 0 & f & v_0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{K}_2^* = \begin{bmatrix} k_{21} & k_{22} & k_{23} \\ 0 & f & v_0 \\ 0 & 0 & 1 \end{bmatrix}$$
(37)

• rectified cameras are in canonical relative pose

not rotated, canonical baseline

b* in camera-1 frame

- rectified calibration matrices can differ in the first row only
- if $\mathbf{K}_1^* = \mathbf{K}_2^*$, the rectified pair is called the standard stereo pair and we have the standard rectification homographies
- standard rectification homographies: points at infinity have zero disparity

$$\mathbf{P}_{i}^{*} \underline{\mathbf{X}}_{\infty} = \mathbf{K} \begin{bmatrix} \mathbf{I} & -\mathbf{C}_{i} \end{bmatrix} \underline{\mathbf{X}}_{\infty} = \mathbf{K} \mathbf{X}_{\infty} \qquad i = 1, 2$$

• this does not mean that the images are not distorted after rectification

3D Computer Vision: VII. Stereovision (p. 165/199) つへや

→80

Summary & Remarks: Linear Rectification

... It follows: Standard rectification homographies reproject onto a common image plane parallel to the baseline

- rectification is done with a pair of homographies (one per image)
 - \Rightarrow projection centers of rectified cameras are equal to the original ones
 - binocular rectification: a 9-parameter family of rectification homographies
 - trinocular rectification: has 9 or 6 free parameters (depending on additional constrains)
 - in general, linear rectification is not possible for more than three cameras

rectified cameras are in canonical orientation

 \Rightarrow rectified image projection planes are coplanar

• equal rectified calibration matrices give standard rectification

- $\Rightarrow\,$ rectified image projection planes are equal
- primitive rectification is already standard in calibrated cameras
- $\bullet\,$ known ${\bf F}$ used alone does not allow standardization of rectification homographies
- for that we need either of these:
 - 1. projection matrices, or calibrated cameras, or
 - 2. a few points at infinity calibrating k_{1i} , k_{2i} , i = 1, 2, 3 in (37), from $\mathbf{K}_1 \underline{\mathbf{X}}_{\infty} \simeq \mathbf{K}_2 \underline{\mathbf{X}}_{\infty}$

 $\rightarrow 165$

 $\rightarrow 165$

 $\rightarrow 164$

Optimal choice for the free parameters in $\mathbf{H}_{1,2}$

• by minimization of residual image distortion, eg. [Gluckman & Nayar 2001]

$$\mathbf{A}_{i}^{*} = \arg\min_{\mathbf{A}_{i}} \iint_{\Omega} \left(\det J\left((\mathbf{A}_{i} \circ H_{i})(\mathbf{x}) \right) - 1 \right)^{2} d\mathbf{x}, \quad i = 1, 2$$

- by minimization of image information loss [Matoušek, ICIG 2004]
- non-linear rectification non-parametric: [Pollefeys et al. 1999] analytic: [Geyer & Daniilidis 2003]

forward egomotion

rectified images, Pollefeys' method

suitable for forward motion

► Trivializing Epipolar Geometry: Binocular Disparity in a Standard Stereo Pair

• Assumptions: single image line, standard camera pair

$$b = z \cot \alpha_1 - z \cot \alpha_2 \qquad b = \frac{b}{2} + x - z \cot \alpha_2$$
$$u_1 = f \cot \alpha_1 \qquad u_2 = f \cot \alpha_2$$

• eliminate
$$\alpha_1$$
, α_2 and obtain:
 $X = (x, y, z)$ from disparity $d = u_1 - u_2$:

$$z = \frac{b f}{d}$$
, $x = \frac{b}{d} \frac{u_1 + u_2}{2}$, $y = \frac{b x}{d}$

f, d, u, v in pixels, b, x, y, z in meters

Observations

- constant disparity surface is a frontoparallel plane
- distant points have small disparity
- relative error in z is large for small disparity

$$\frac{1}{z}\frac{\mathrm{d}z}{\mathrm{d}d} = -\frac{1}{d}$$

 increasing the baseline or the focal length increases disparity, hence reduces the error

How Difficult Is Stereo?

Centrum för teknikstudier at Malmö Högskola, Sweden

The Vyšehrad Fortress, Prague

- top: easy interpretation from even a single image
- bottom left: we have no help from image interpretation
- bottom right: ambiguous interpretation due to a combination of missing texture and occlusion

Thank You

