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Module VII

Stereovision
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7.6Maximum Likelihood Matching
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Stereovision = Getting Relative Distances Per Pixel given the Epipolar Geometry

The success of a model-free stereo matching algorithm is unlikely:

WTA Matching:

For every left-image pixel find the most similar
right-image pixel along the corresponding epipolar line.

[Marroquin 83]

disparity map from WTA a good disparity map

• monocular vision already gives a rough 3D sketch because we understand the scene
• pixelwise independent matching without any problem understanding is difficult
• matching can benefit from a geometric simplification of the problem: epipolar rectification
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▶Linear Epipolar Rectification for Easier Correspondence Search

Obs:
• epipoles and epipolars are elements of P2, they may be mapped by homographies
• if we map epipoles to infinity, epipolars become parallel
• we then rotate them to become horizontal
• we then scale the images to make corresponding epipolars colinear
• this can be achieved by a pair of (non-unique) homographies applied to the images

Problem: Given fundamental matrix F or camera matrices P1, P2, compute a pair of homographies that maps
epipolars to horizontal lines with the same row coordinate.

Procedure:
1. find a pair of rectification homographies H1 and H2.

2. warp images using H1 and H2 and transform the fundamental matrix F 7→ H−⊤
2 FH−1

1 or the cameras

P1 7→ H1P1, P2 7→ H2P2.

rectification 1 rectification 2

original pair

rectification ∞
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▶Rectification Homographies

Assumption: Cameras (P1,P2) are rectified by a homography pair (H1,H2):

P∗
i ≃ HiPi =

[
Qi qi

]
= HiKiRi

[
I −Ci

]
, i = 1, 2

rectified entities: F∗, l∗1 , l
∗
2 , etc:

m∗
2 = (u∗

2, v
∗)v

u

m∗
1 = (u∗

1, v
∗)

e∗2 = e∗1l∗1 l∗2

• the rectified location difference d = u∗
1 − u∗

2 is called disparity

corresponding epipolar lines must be:

1. parallel to image rows ⇒ epipoles become e∗1 = e∗2 = (1, 0, 0)

2. equivalent l∗2 = l∗1 : l∗1 ≃ e∗1 ×m1 = [e∗1]× m1 ≃ l∗2 ≃ F∗m1 ⇒ F∗ = [e∗1]×

• therefore the canonical fundamental matrix is

F∗ ≃

0 0 0
0 0 −1
0 1 0


A two-step rectification procedure

1. find some pair of primitive rectification homographies Ĥ1, Ĥ2

2. upgrade to a pair of optimal rectification homographies while preserving F∗
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▶Primitive Rectification

Goal: Given fundamental matrix F, derive some easy-to-obtain rectification homographies H1, H2

1. Let the SVD of F be UDV⊤ = F, where D = diag(1, d2, 0), 1 ≥ d2 > 0

2. Write D as D = A⊤F∗ B for some regular A, B. For instance (F∗ is given →160)

A =

0 0 1
0 −d 0
1 0 0

, B =

0 0 1
1 0 0
0 d 0


3. Then

F = UDV⊤ = UA⊤︸ ︷︷ ︸
Ĥ

⊤
2

F∗ BV⊤︸ ︷︷ ︸
Ĥ1

= Ĥ
⊤
2 F∗ Ĥ1 Ĥ1, Ĥ2 orthogonal

and the primitive rectification homographies are

Ĥ2 = AU⊤, Ĥ1 = BV⊤

⊛ P1; 1pt: derive some other admissible A, B

• Hence: Rectification homographies do exist →160

• there are other primitive rectification homographies, these suggested are just easy to obtain
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▶The Set of All Rectification Homographies

Proposition 1 Homographies A1 and A2 are rectification-preserving if the images stay rectified, i.e. if
A2

−⊤ F∗ A1
−1 ≃ F∗, which gives

A1 =

l1 l2 l3
0 sv tv
0 q 1

 , A2 =

r1 r2 r3
0 sv tv
0 q 1

 ,

uv (36)

where sv ̸= 0, tv, l1 ̸= 0, l2, l3, r1 ̸= 0, r2, r3, q are 9 free parameters.

general transformation standard

l1, r1 horizontal scales l1 = r1

l2, r2 horizontal shears l2 = r2

l3, r3 horizontal shifts l3 = r3

q common special projective

sv common vertical scale

tv common vertical shift

9DoF 9− 3 = 6DoF

• q is due to a rotation about the baseline proof: find a rotation G that brings K to upper triangular form

via RQ decomposition: A1K
∗
1 = K̂1G and A2K

∗
2 = K̂2G• sv changes the focal length
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The Rectification Group

Corollary for Proposition 1 Let H̄1 and H̄2 be (primitive or other) rectification homographies. Then
H1 = A1H̄1, H2 = A2H̄2 are also rectification homographies, where A1, A2 are as in (36).

Proposition 2 Pairs of rectification-preserving homographies (A1, A2) form a group,
with group operation (composition) (A′

1, A
′
2) ◦ (A1, A2) = (A′

1 A1, A
′
2 A2).

Proof:

• closure by Proposition 1
• associativity by matrix multiplication
• identity belongs to the set

• inverse element belongs to the set by A⊤
2 F∗A1 ≃ F∗ ⇔ F∗ ≃ A−⊤

2 F∗A−1
1
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▶Primitive Rectification Suffices for Calibrated Cameras

Obs: calibrated cameras: d = 1 ⇒ Ĥ1, Ĥ2 (→161) are orthonormal

1. determine primitive rectification homographies (Ĥ1, Ĥ2) from the essential matrix

2. choose a suitable common calibration matrix K, e.g. from K1, K2:

K =

f 0 u0

0 f v0
0 0 1

, f =
1

2
(f1 + f2), u0 =

1

2
(u1

0 + u2
0), etc.

3. the final rectification homographies applied as Pi 7→ Hi Pi are

H1 = KĤ1K
−1
1 , H2 = KĤ2K

−1
2

• we got a standard stereo pair (→165) and non-negative disparity:

let K−1
i Pi = Ri

[
I −Ci

]
, i = 1, 2 note we started from E, not F

H1P1 = KĤ1K
−1
1 P1 = KBV⊤R1︸ ︷︷ ︸

R∗

[
I −C1

]
= KR∗ [

I −C1
]

A, B from →161

H2P2 = KĤ2K
−1
2 P2 = KAU⊤R2︸ ︷︷ ︸

R∗

[
I −C2

]
= KR∗ [

I −C2
]

• one can prove that BV⊤R1 = AU⊤R2 with the help of essential matrix decomposition (15)
• Note that points at infinity project by KR∗ in both cameras ⇒ they have zero disparity (→168), hence. . .
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▶Geometric Interpretation of Linear Rectification

What pair of physical cameras is compatible with F∗?

• we know that F = (Q1Q
−1
2 )⊤[e1]× →80

• we choose Q∗
1 = K∗

1, Q∗
2 = K∗

2R
∗; then

F∗ ≃ (Q∗
1Q

∗
2
−1

)⊤[e∗1]×
!≃ (K∗

1R
∗⊤K∗

2
−1)⊤F∗

• we look for R∗, K∗
1, K

∗
2 compatible with equations

(K∗
1R

∗⊤K∗
2
−1)⊤F∗ = λF∗, R∗R∗⊤ = I, K∗

1,K
∗
2 upper triangular

• we also want b∗ from e∗1 ≃ P∗
1C

∗
2 = K∗

1b
∗ b∗ in camera-1 frame

• result after equations reduction:

R∗ = I, b∗ =

b0
0

, K∗
1 =

k11 k12 k13
0 f v0
0 0 1

, K∗
2 =

k21 k22 k23
0 f v0
0 0 1

 (37)

• rectified cameras are in canonical relative pose not rotated, canonical baseline

• rectified calibration matrices can differ in the first row only
• if K∗

1 = K∗
2, the rectified pair is called the standard stereo pair and we have the standard rectification homographies

• standard rectification homographies: points at infinity have zero disparity

P∗
iX∞ = K

[
I −Ci

]
X∞ = KX∞ i = 1, 2

• this does not mean that the images are not distorted after rectification
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▶Summary & Remarks: Linear Rectification

. . . It follows: Standard rectification homographies reproject
onto a common image plane parallel to the baseline

X

C1 C2

f

• rectification is done with a pair of homographies (one per image) →159
⇒ projection centers of rectified cameras are equal to the original ones
• binocular rectification: a 9-parameter family of rectification homographies
• trinocular rectification: has 9 or 6 free parameters (depending on additional constrains)
• in general, linear rectification is not possible for more than three cameras

• rectified cameras are in canonical orientation →165
⇒ rectified image projection planes are coplanar

• equal rectified calibration matrices give standard rectification →165
⇒ rectified image projection planes are equal

• primitive rectification is already standard in calibrated cameras →164

• known F used alone does not allow standardization of rectification homographies

• for that we need either of these:

1. projection matrices, or calibrated cameras, or
2. a few points at infinity calibrating k1i, k2i, i = 1, 2, 3 in (37), from K1X∞ ≃ K2X∞
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Optimal and Non-linear Rectification

Optimal choice for the free parameters in H1,2

• by minimization of residual image distortion, eg. [Gluckman & Nayar 2001]

A∗
i = argmin

Ai

∫∫
Ω

(
det J

(
(Ai ◦Hi)(x)

)
− 1

)2
dx , i = 1, 2

• by minimization of image information loss [Matoušek, ICIG 2004]

• non-linear rectification suitable for forward motion
non-parametric: [Pollefeys et al. 1999]

analytic: [Geyer & Daniilidis 2003]

forward egomotion

rectified images, Pollefeys’ method
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▶Trivializing Epipolar Geometry: Binocular Disparity in a Standard Stereo Pair

top view in xz plane

m2

X

b
2 x

z cotα1 z cotα2

m1

u2

z

C2C1 b

fz

u1

α2α1 x

f

y

C1,2

y

X

m1,2

v

z

side view in yz plane

• Assumptions: single image line, standard camera pair

b = z cotα1 − z cotα2 b =
b

2
+ x− z cotα2

u1 = f cotα1 u2 = f cotα2

• eliminate α1, α2 and obtain:

X = (x, y, z) from disparity d = u1 − u2:

z =
b f

d
, x =

b

d

u1 + u2

2
, y =

b v

d

f , d, u, v in pixels, b, x, y, z in meters

Observations

• constant disparity surface is a frontoparallel plane

• distant points have small disparity

• relative error in z is large for small disparity

1

z

dz

dd
= −

1

d

• increasing the baseline or the focal length increases disparity,
hence reduces the error
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How Difficult Is Stereo?

Centrum för teknikstudier at Malmö Högskola, Sweden The Vyšehrad Fortress, Prague

• top: easy interpretation from even a single image
• bottom left: we have no help from image interpretation
• bottom right: ambiguous interpretation due to a combination of missing texture and occlusion
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Thank You
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rectification 1 rectification 2

original pair

rectification ∞
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