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»Optical Plane

A spatial plane with normal p containing the projection center C' and a given image line n.
optical ray given by m d~Q 'm
Q

optical ray given by m’

® 1

p~dxd=(Q 'mx(Q'm) = Q (mxm)=Q'n

e note the way Q factors out!

—C)=n'QX-C)=n"PX= (P 'n)'X forevery X in plane p

hence, 0 = p" X
———
—30
p= P'n p are the plane’s parameters: p1z + p2y+p3z+ps =0

optical plane is given by n: n
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Cross-Check: Optical Ray as Optical Plane Intersection

n
/
optical plane normal given by n is p= QTQ
optical plane normal given by n’ is pP=Q'n

The optical ray through their intersection is then

d=pxp' =(Q'n)x(Q'n)=Q '(axn)=Q 'm
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»Summary: Projection Center; Optical Ray, Axis, Plane

General (finite) camera

q;  qu4
P=[Q q/=|q] ¢u|=K[R t|=KR [l —C]
q; q34
C~rmull(P), C= -Q7'q projection center (world coords.) —35
d=Q 'm optical ray direction (world coords.) —36
o =det(Q) g, outward optical axis (world coords.) —37
moy ~ Qq;y principal point (in image plane) —38
p= P'n optical plane (world coords.) —39
af —afcoth wo
K=1|0 f/sinf v camera (calibration) matrix (f, ug, vo in pixels) —31
0 0 1
R 3D rotation matrix (cam coords.) —30
t 3D translation vector (cam coords.) —30
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What Can We Do with An ‘Uncalibrated’ Perspective Camera?

How far is the engine from a given point on the tracks?

the distance between sleepers (ties) is 0.806m but we cannot count them, the image resolution is too low

We will review some life-saving theory. ..
...and build a bit of geometric intuition. ..

In fact

® ‘uncalibrated’ = the image contains a ‘calibrating object’ that suffices for the task at hand
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»Vanishing Point

Vanishing point (V.P.): The limit mo of the projection of a point X()) that moves along a space line
X (A) = Xo + Ad infinitely in one direction. the image of the point at infinity on the line

Xo + Ad

® P1; 1pt: Prove (use Cartesian

me, ~ lim
A—+too

p [XO Jlr Ad]

coordinates and L'Hbépital’s rule)
® the V.P. of a spatial line with directional vector d is m >~ Qd

® V.P. is independent on line position X, it depends on its directional vector only

® all parallel (world) lines share the same (image) V.P., including the optical ray defined by Mmoo
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Some Vanishing Point “Applications”

where is the sun? what is the wind direction? fly above the lane,
(must have video) at constant altitude!
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»Vanishing Line

Vanishing line (V.L.): The set of vanishing points of all lines in a plane the image of the line at infinity in the plane
and in all parallel planes (1)

n — plane normal

U1 (%]

® any box with parallel edges

® top (blue) and bottom (black) box planes are parallel,
hence they share V.L. n

m — line orientation vector

e V.L. n corresponds to spatial plane of normal vector p = Q' n
because this is the normal vector of a parallel optical plane (!) —39

® a spatial plane of normal vector p has a V.L. represented by n=Q 'p.
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»Cross Ratio

Four distinct collinear spatial points R, S,T,U define cross-ratio

_ENTS N
5B [TU| NN

a mnemonic (00)

[RSTU]

® |RT| - signed distance from R to T in the arrow direction
® ecach point X is once in numerator and once in denominator
® if X is 1st in a numerator term, it is 2nd in a denominator term

® there are six cross-ratios from four points:
[SRUT] = [RSTU], [RSUT] =

, [RTSU] =1 — [RSTU], - - -
[RSTU]

v t v s v

Obs: [RSTU] = v t v[=det[r t v] =(rx t) v mixed product (1)

st vl |tuy]
Corollaries:
® cross ratio is invariant under homographies x’ ~ Hx proof: plug Hx in (1): (H™ "(rx t)) Hv
® cross ratio is invariant under perspective projection: [RSTU] = [rstu]

® 4 collinear points: any perspective camera will “see” the same cross-ratio of their images
® we measure the same cross-ratio in image as on the world line
® one of the points R, S, T, U may be at infinity (we take the limit, in effect % =1)
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»1D Projective Coordinates

The 1-D projective coordinate of a point P is defined by the following cross-ratio:

—
[P) = [Po Py P Poc] = [po pr ppc] = 121 P2BAL
Ip1po| |[PP<]

(p]

naming convention:

Py — the origin [P] =0
Py — the unit point [A]=1
Ps — the supporting point [Pso] = 00

[P] = [p]

[P] is equal to Euclidean coordinate along N
[p] is its measurement in the image plane

if the sign is not of interest, any cross-ratio containing |po p| does the job

Applications
® Given the image of a 3D line N, the origin, the unit point, and the vanishing point, then the Euclidean
coordinate of any point P € N can be determined —48
® Finding V.P. of a line through a regular object —49
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Application: Counting Steps

e Namesti Miru underground station in Prague

detail around the vanishing point (w/ strong aliasing)

Result: [P] = 214 steps (correct answer is 216 steps) 4Mpx camera
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Application: Finding the Horizon from Repetitions

\

P
Py
P

in 3D: [Py P| = 2| PoP;| then [H&Z, p. 218]
| Po P| zo 2z —z1) — 221
PyP,PP.] = =2 = me=
[Po Py ] |P1Po| v T+ 20— 211

® 1 — 1D coordinate along the yellow line, positive in the arrow direction
® could be applied to counting steps (—48) if there was no supporting line
® P1; 1pt: How high is the camera above the floor?
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Homework Problem

® H2; 3pt: What is the ratio of heights of Building A to Building B?

® expected: conceptual solution; use notation from this figure
® deadline: LD+2 weeks

. What are the interesting properties of line h connecting the top tp of Buiding B with the point m at which the horizon intersects the
line p joining the foots fa, fp of both buildings? [1 point]

2. How do we actually get the horizon n..? (we do not see it directly, there are some hills there...) [1 point]
Give a formula for measuring the length ratio. Make sure you distinguish points in 3D from their images. [formula = 1 point]
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2D Projective Coordinates

DPyoo

\
unit pt

\
\
~

\
Py1

pt we want to
\
N

locate on the plane
N p /
[ )

y-coordinate axis in 3D

origin in 3D /pO

V.P.
/ Pz1 Dz Pzoo
z-coordinate axis in 3D \ unit pt
[Pz]:[Popwlpmeo} [Py]:[PopylpyPyOO]
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Application: Measuring on the Floor (Wall, etc)

San Giovanni in Laterano, Rome

® measuring distances on the floor in terms of tile units
® what are the dimensions of the seal? Is it circular (assuming square tiles)?

® needs no explicit camera calibration
because we can see the calibrating object (vanishing points)
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Module IlI

Computing with a Single Camera

@ Calibration: Internal Camera Parameters from Vanishing Points and Lines

@ Camera Resection: Projection Matrix from 6 Known Points

@Exterior Orientation: Camera Rotation and Translation from 3 Known Points
@Relative Orientation Problem: Rotation and Translation between Two Point Sets

covered by
[1] [H&Z] Secs: 8.6, 7.1, 22.1

[2] Fischler, M.A. and Bolles, R.C . Random Sample Consensus: A Paradigm for Model Fitting with Applications
to Image Analysis and Automated Cartography. Communications of the ACM 24(6):381-395, 1981

[3] [Golub & van Loan 2013, Sec. 2.5]
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Obtaining Vanishing Points and Lines
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® vanishing line can be obtained from vanishing points and/or regularities (—49)
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»Camera Calibration from Vanishing Points and Lines

Problem: Given finite vanishing points and/or vanishing lines, compute K

d; = \Q vy, i=1,2,3 —43
Py =1 Q iy, 0,5 =1,23,i#j -39

e method: eliminate A;, 1;;, R from (2) and solve for K.

U3 Ti23 U2

(2)

Configurations allowing elimination of R
1. orthogonal rays di L d2 in space then
0=d/d=viQ 'Q 'va=v]{ (KK') 'v
——

2. orthogonal planes p,; L p;; in space @ (180

T T T T, -1
0=p;Py =0;; QQ mip = nj;w Dk

U1

3. orthogonal ray and plane dy, || Pij. k#14,] normal parallel to optical ray

T A -1 —T -1
py~dr = Quny=7-Q v = n;=xQ Q wvi=xwvk x7#0
® n;; may be constructed from non-orthogonal v; and v;, e.g. using the cross-ratio

® w is a homogeneous, symmetric, definite 3 X 3 matrix (5 DoF) IAC = Image of Absolute Conic
® equations are quadratic in K but linear in w
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»cont’d

configuration equation #£ constraints
(3) orthogonal vanishing points viwy; =0 1
(4) orthogonal vanishing lines nw 'ni =0 1
(5) vanishing points orthogonal to vanishing lines n;; = %WV 2
(6) orthogonal image raster § = /2 wiz = w21 =0 1
(7) unit aspect a = 1 when 6 = 7/2 w11 — w22 =0 1
(8) known principal point up =v9 =0 W13 = w31 = w23 = w32 =0 2

® These are homogeneous linear equations for the 5 parameters in w or w™? » can be eliminated from (5)

® When w = vec(w) € R, it has the form of Dw = 0, D € R**®
® With k = 5 constraints, we have rank(D) = 5, hence there is a unique solution for the homogeneous w.

® We get K from w™! = KK by Choleski decomposition
the decomposition returns a positive definite upper triangular matrix
one avoids solving an explicit set of quadratic equations for the parameters in K
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https://en.wikipedia.org/wiki/Cholesky_decomposition

Thank You
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