3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz
phone ext. 7203
rev. October 10, 2023

Open Informatics Master's Course

-Optical Plane

A spatial plane with normal p containing the projection center C and a given image line n.

$$
\begin{array}{rlrl}
& \text { optical ray given by } m & \mathbf{d} & \simeq \mathbf{Q}^{-1} \underline{\mathbf{m}} \\
\text { optical ray given by } m^{\prime} & \mathbf{d}^{\prime} & \simeq \mathbf{Q}^{-1} \underline{\mathbf{m}}^{\prime}
\end{array}
$$

$$
\begin{array}{r}
\mathbf{p} \simeq \mathbf{d} \times \mathbf{d}^{\prime}=\left(\mathbf{Q}^{-1} \underline{\mathbf{m}}\right) \times\left(\mathbf{Q}^{-1} \underline{\mathbf{m}}^{\prime}\right) \stackrel{\circledast 1}{=1} \mathbf{Q}^{\top}\left(\underline{\mathbf{m}} \times \underline{\mathbf{m}}^{\prime}\right)=\mathbf{Q}^{\top} \underline{\mathbf{n}} \\
\text { • note the way } \mathbf{Q} \text { factors out! }
\end{array}
$$

hence, $0=\mathbf{p}^{\top}(\mathbf{X}-\mathbf{C})=\underline{\mathbf{n}}^{\top} \underbrace{\mathbf{Q}(\mathbf{X}-\mathbf{C})}_{\rightarrow 30}=\underline{\mathbf{n}}^{\top} \mathbf{P} \underline{\mathbf{X}}=\left(\mathbf{P}^{\top} \underline{\mathbf{n}}\right)^{\top} \underline{\mathbf{X}} \quad$ for every X in plane ρ
optical plane is given by $n: \quad \underline{\boldsymbol{\rho}} \simeq \mathbf{P}^{\top} \underline{\mathbf{n}}$
$\boldsymbol{\rho}$ are the plane's parameters: $\rho_{1} x+\rho_{2} y+\rho_{3} z+\rho_{4}=0$

Cross－Check：Optical Ray as Optical Plane Intersection

The optical ray through their intersection is then

$$
\mathbf{d}=\mathbf{p} \times \mathbf{p}^{\prime}=\left(\mathbf{Q}^{\top} \underline{\mathbf{n}}\right) \times\left(\mathbf{Q}^{\top} \underline{\mathbf{n}}^{\prime}\right)=\mathbf{Q}^{-1}\left(\underline{\mathbf{n}} \times \underline{\mathbf{n}}^{\prime}\right)=\mathbf{Q}^{-1} \underline{\mathbf{m}}
$$

Summary: Projection Center; Optical Ray, Axis, Plane

General (finite) camera

$$
\mathbf{P}=\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{q}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{q}_{1}^{\top} & q_{14} \\
\mathbf{q}_{2}^{\top} & q_{24} \\
\mathbf{q}_{3}^{\top} & q_{34}
\end{array}\right]=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\mathbf{K} \mathbf{R}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}
\end{array}\right]
$$

$$
\begin{aligned}
& \underline{\mathbf{C}} \simeq \operatorname{rnull}(\mathbf{P}), \quad \mathbf{C}=-\mathbf{Q}^{-1} \mathbf{q} \\
& \mathbf{d}=\mathbf{Q}^{-1} \underline{\mathbf{m}} \\
& \mathbf{o}=\operatorname{det}(\mathbf{Q}) \mathbf{q}_{3} \\
& \underline{\mathbf{m}}_{0} \simeq \mathbf{Q}_{\mathbf{q}_{3}} \\
& \underline{\boldsymbol{\rho}}=\mathbf{P}^{\top} \underline{\mathbf{n}} \\
& \mathbf{K}=\left[\begin{array}{ccc}
a f & -a f \cot \theta & u_{0} \\
0 & f / \sin \theta & v_{0} \\
0 & 0 & 1
\end{array}\right] \\
& \mathbf{R} \\
& \mathbf{t}
\end{aligned}
$$

projection center (world coords.) $\rightarrow 35$ optical ray direction (world coords.) $\rightarrow 36$ outward optical axis (world coords.) $\rightarrow 37$ principal point (in image plane) $\rightarrow 38$ optical plane (world coords.) $\rightarrow 39$
camera (calibration) matrix $\left(f, u_{0}, v_{0}\right.$ in pixels) $\rightarrow 31$

3D rotation matrix (cam coords.) $\rightarrow 30$ 3D translation vector (cam coords.) $\rightarrow 30$

What Can We Do with An 'Uncalibrated' Perspective Camera?

How far is the engine from a given point on the tracks?
the distance between sleepers (ties) is 0.806 m but we cannot count them, the image resolution is too low
We will review some life-saving theory... \ldots and build a bit of geometric intuition. . .

In fact

- 'uncalibrated' $=$ the image contains a 'calibrating object' that suffices for the task at hand

- Vanishing Point

Vanishing point (V.P.): The limit m_{∞} of the projection of a point $\mathbf{X}(\lambda)$ that moves along a space line $\mathbf{X}(\lambda)=\mathbf{X}_{0}+\lambda \mathbf{d}$ infinitely in one direction.
the image of the point at infinity on the line

$$
\underline{\mathbf{m}}_{\infty} \simeq \lim _{\lambda \rightarrow \pm \infty} \mathbf{P}\left[\begin{array}{c}
\mathbf{X}_{0}+\lambda \mathbf{d} \\
1
\end{array}\right]=\cdots \simeq \mathbf{Q} \mathbf{d}
$$

* P1; 1pt: Prove (use Cartesian coordinates and L'Hôpital's rule)
- the V.P. of a spatial line with directional vector \mathbf{d} is $\underline{\mathbf{m}}_{\infty} \simeq \mathbf{Q} \mathbf{d}$
- V.P. is independent on line position \mathbf{X}_{0}, it depends on its directional vector only
- all parallel (world) lines share the same (image) V.P., including the optical ray defined by m_{∞}

Some Vanishing Point＂Applications＂

where is the sun？

what is the wind direction？ （must have video）

fly above the lane， at constant altitude！

- Vanishing Line

Vanishing line (V.L.): The set of vanishing points of all lines in a plane the image of the line at infinity in the plane and in all parallel planes (!)

- any box with parallel edges
- top (blue) and bottom (black) box planes are parallel, hence they share V.L. n
- V.L. n corresponds to spatial plane of normal vector $\mathbf{p}=\mathbf{Q}^{\top} \underline{\mathbf{n}}$
because this is the normal vector of a parallel optical plane (!) $\rightarrow 39$ - a spatial plane of normal vector \mathbf{p} has a V.L. represented by $\underline{\mathbf{n}}=\mathbf{Q}^{-\top} \mathbf{p}$.

- Cross Ratio

Four distinct collinear spatial points R, S, T, U define cross-ratio

$$
[R S T U]=\frac{|\overrightarrow{R T}|}{|\overrightarrow{S R}|} \frac{|\overrightarrow{U S}|}{|\overrightarrow{T U}|}
$$

a mnemonic (∞)

- $|\overrightarrow{R T}|$ - signed distance from R to T in the arrow direction
- each point X is once in numerator and once in denominator
- if X is 1 st in a numerator term, it is 2 nd in a denominator term
- there are six cross-ratios from four points:

$$
[S R U T]=[R S T U],[R S U T]=\frac{1}{[R S T U]},[R T S U]=1-[R S T U]
$$

$$
\begin{equation*}
\text { Obs: } \left.\quad[R S T U]=\frac{|\underline{\mathbf{r}} \underline{\mathbf{t}} \underline{\mathbf{v}}|}{|\underline{\mathbf{s}} \underline{\underline{\mathbf{r}}} \mathbf{v}|} \cdot \frac{|\underline{\mathbf{u}} \mathbf{s} \quad \underline{\mathbf{v}}|}{|\underline{\mathbf{t}} \quad \underline{\mathbf{u}} \quad \underline{\mathbf{v}}|} \right\rvert\, \tag{1}
\end{equation*}
$$

$$
|\underline{\underline{\mathbf{r}}} \underline{\mathbf{t}} \quad \underline{\mathbf{v}}|=\operatorname{det}\left[\begin{array}{lll}
\underline{\mathbf{r}} & \underline{\mathbf{t}} & \underline{\mathbf{v}}
\end{array}\right]=(\underline{\mathbf{r}} \times \underline{\mathbf{t}})^{\top} \underline{\mathbf{v}} \quad \text { mixed product }
$$

Corollaries:

- cross ratio is invariant under homographies $\underline{\mathbf{x}}^{\prime} \simeq \mathbf{H} \underline{\mathbf{x}} \quad$ proof: plug $\mathbf{H} \underline{\mathbf{x}}$ in $(1):\left(\mathbf{H}^{-\top}(\underline{\mathbf{r}} \times \underline{\mathbf{t}})\right)^{\top} \mathbf{H} \underline{\mathbf{v}}$
- cross ratio is invariant under perspective projection: $[R S T U]=[r$ stu]
- 4 collinear points: any perspective camera will "see" the same cross-ratio of their images
- we measure the same cross-ratio in image as on the world line
- one of the points R, S, T, U may be at infinity (we take the limit, in effect $\frac{\infty}{\infty}=1$)

-1D Projective Coordinates

The 1-D projective coordinate of a point P is defined by the following cross-ratio:

$$
[P]=\left[P_{0} P_{1} P P_{\infty}\right]=\left[p_{0} p_{1} p p_{\infty}\right]=\frac{\left|\overrightarrow{p_{0} p}\right|}{\left|\overrightarrow{p_{1} p_{0}}\right|} \frac{\left|\overrightarrow{p_{\infty} p_{1}}\right|}{\left|\overrightarrow{p p_{\infty}}\right|}=[p]
$$

Applications

- Given the image of a 3D line N, the origin, the unit point, and the vanishing point, then the Euclidean coordinate of any point $P \in N$ can be determined
- Finding V.P. of a line through a regular object

Application: Counting Steps

- Namesti Miru underground station in Prague

detail around the vanishing point ($\mathrm{w} /$ strong aliasing)

Result: $[P]=214$ steps (correct answer is 216 steps)

Application: Finding the Horizon from Repetitions

in 3D: $\left|P_{0} P\right|=2\left|P_{0} P_{1}\right|$ then

$$
\left[P_{0} P_{1} P P_{\infty}\right]=\frac{\left|P_{0} P\right|}{\left|P_{1} P_{0}\right|}=2 \quad \Rightarrow \quad x_{\infty}=\frac{x_{0}\left(2 x-x_{1}\right)-x x_{1}}{x+x_{0}-2 x_{1}}
$$

- $x-1 \mathrm{D}$ coordinate along the yellow line, positive in the arrow direction
- could be applied to counting steps $(\rightarrow 48)$ if there was no supporting line
\circledast P1; 1pt: How high is the camera above the floor?

Homework Problem

$\circledast \mathrm{H} 2$; 3pt: What is the ratio of heights of Building A to Building B?

- expected: conceptual solution; use notation from this figure
- deadline: LD+2 weeks

Hints

1. What are the interesting properties of line h connecting the top t_{B} of Buiding B with the point m at which the horizon intersects the line p joining the foots f_{A}, f_{B} of both buildings? [1 point]
2. How do we actually get the horizon n_{∞} ? (we do not see it directly, there are some hills there...) [1 point]
3. Give a formula for measuring the length ratio. Make sure you distinguish points in 3D from their images. [formula $=1$ point]

2D Projective Coordinates

Application: Measuring on the Floor (Wall, etc)

San Giovanni in Laterano, Rome

- measuring distances on the floor in terms of tile units
- what are the dimensions of the seal? Is it circular (assuming square tiles)?
- needs no explicit camera calibration
because we can see the calibrating object (vanishing points)

Module III

Computing with a Single Camera

(3.) Calibration: Internal Camera Parameters from Vanishing Points and Lines
3.2 Camera Resection: Projection Matrix from 6 Known Points
(3.3Exterior Orientation: Camera Rotation and Translation from 3 Known Points
(3.) Relative Orientation Problem: Rotation and Translation between Two Point Sets

covered by

[1] [H\&Z] Secs: 8.6, 7.1, 22.1
[2] Fischler, M.A. and Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24(6):381-395, 1981
[3] [Golub \& van Loan 2013, Sec. 2.5]

Obtaining Vanishing Points and Lines

- orthogonal direction pairs can be collected from multiple images by camera rotation

- vanishing line can be obtained from vanishing points and/or regularities ($\rightarrow 49$)

－Camera Calibration from Vanishing Points and Lines

Problem：Given finite vanishing points and／or vanishing lines，compute K

$$
\begin{align*}
\mathbf{d}_{i} & =\lambda_{i} \mathbf{Q}^{-1} \underline{\mathbf{v}}_{i}, & i=1,2,3 & \rightarrow 43 \\
\mathbf{p}_{i j} & =\mu_{i j} \mathbf{Q}^{\top} \underline{\mathbf{n}}_{i j}, & i, j=1,2,3, i \neq j & \rightarrow 39 \tag{2}
\end{align*}
$$

－method：eliminate $\lambda_{i}, \mu_{i j}, \mathbf{R}$ from（2）and solve for \mathbf{K} ．

Configurations allowing elimination of \mathbf{R}

1．orthogonal rays $\mathbf{d}_{1} \perp \mathbf{d}_{2}$ in space then

$$
0=\mathbf{d}_{1}^{\top} \mathbf{d}_{2}=\underline{\mathbf{v}}_{1}^{\top} \mathbf{Q}^{-\top} \mathbf{Q}^{-1} \underline{\mathbf{v}}_{2}=\underline{\mathbf{v}}_{1}^{\top} \underbrace{\left(\mathbf{K} \mathbf{K}^{\top}\right)^{-1}}_{\boldsymbol{\omega}(\mathrm{IAC})} \underline{\mathbf{v}}_{2}
$$

2．orthogonal planes $\mathbf{p}_{i j} \perp \mathbf{p}_{i k}$ in space

$$
0=\mathbf{p}_{i j}^{\top} \mathbf{p}_{i k}=\underline{\mathbf{n}}_{i j}^{\top} \mathbf{Q Q}^{\top} \underline{\mathbf{n}}_{i k}=\underline{\mathbf{n}}_{i j}^{\top} \boldsymbol{\omega}^{-1} \underline{\mathbf{n}}_{i k}
$$

3．orthogonal ray and plane $\mathbf{d}_{k} \| \mathbf{p}_{i j}, k \neq i, j$
normal parallel to optical ray

$$
\mathbf{p}_{i j} \simeq \mathbf{d}_{k} \quad \Rightarrow \quad \mathbf{Q}^{\top} \underline{\mathbf{n}}_{i j}=\frac{\lambda_{i}}{\mu_{i j}} \mathbf{Q}^{-1} \underline{\mathbf{v}}_{k} \quad \Rightarrow \quad \underline{\mathbf{n}}_{i j}=\varkappa \mathbf{Q}^{-\top} \mathbf{Q}^{-1} \underline{\mathbf{v}}_{k}=\varkappa \boldsymbol{\omega} \underline{\mathbf{v}}_{k}, \quad \varkappa \neq 0
$$

－$n_{i j}$ may be constructed from non－orthogonal v_{i} and v_{j} ，e．g．using the cross－ratio
－ω is a homogeneous，symmetric，definite 3×3 matrix（5 DoF）IAC $=$ Image of Absolute Conic
－equations are quadratic in \mathbf{K} but linear in $\boldsymbol{\omega}$

cont'd

(3) orthogonal vanishing points
(4) orthogonal vanishing lines
(5) vanishing points orthogonal to vanishing lines
(6) orthogonal image raster $\theta=\pi / 2$
(7) unit aspect $a=1$ when $\theta=\pi / 2$
(8) known principal point $u_{0}=v_{0}=0$ $\omega_{13}=\omega_{31}=\omega_{23}=\omega_{32}=0 \quad 2$

- These are homogeneous linear equations for the 5 parameters in ω or $\omega^{-1} \quad \varkappa$ can be eliminated from (5)
- When $\mathbf{w}=\operatorname{vec}(\omega) \in \mathbb{R}^{6}$, it has the form of $\mathbf{D w}=\mathbf{0}, \mathbf{D} \in \mathbb{R}^{k \times 5}$
- With $k=5$ constraints, we have $\operatorname{rank}(\mathbf{D})=5$, hence there is a unique solution for the homogeneous \mathbf{w}.
- We get \mathbf{K} from $\boldsymbol{\omega}^{-1}=\mathbf{K K}^{\top}$ by Choleski decomposition
the decomposition returns a positive definite upper triangular matrix one avoids solving an explicit set of quadratic equations for the parameters in \mathbf{K}

Thank You

