## 3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz phone ext. 7203
rev. November 21, 2023


Open Informatics Master's Course

## Local Optimization for Fundamental Matrix Estimation

## Summary so far

- Given a set $X=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{k}$ of $k \gg 7$ inlier correspondences, compute a statistically efficient estimate for fundamental matrix $\mathbf{F}$.

1. Find the conditioned $(\rightarrow 93)$ 7-point $\mathbf{F}_{0}(\rightarrow 85)$ from a suitable 7-tuple
2. Improve the $\mathbf{F}_{0}^{*}$ using the LM optimization $(\rightarrow 110-111)$ and the Sampson error $(\rightarrow 112)$ on all inliers, reinforce rank-2, unit-norm $\mathbf{F}_{k}^{*}$ after each LM iteration using SVD

## Partial conceptualization

- inlier $=$ a correspondence (a true match)
- outlier = a non-correspondence
- binary inlier/outlier labels are hidden
- we can get their likely estimate only, with respect to a model

We are not yet done

- if there are no wrong correspondences (mismatches, outliers), this gives a local optimum given the 7-point initial estimate
- the algorithm breaks under contamination of (inlier) correspondences by outliers
- the full problem involves finding the inliers!
- in addition, we need a mechanism for jumping out of local minima (and exploring the space of all fundamental matrices)


## Example Matching Results for the 7-point Algorithm with Random-Sampling Optimization


input images

interest points (ca. 3600)

tentative corresp. (416)

matching (340)

- descriptors used to obtain tentative matches but no descriptors used in the final matching
- without local optimization the minimization is over a discrete set of epipolar geometries proposable from 7-tuples
- notice the mismatches (they have wrong depth, even negative) remember: hidden labels $\rightarrow 113$
- they are considered as random outliers to the epipolar model
- inlier matches will be treated as correspondences for the SfM problem


## A Preview: Optimization by Random Sampling of Geometric Primitives

Given an optimization problem, define:

- parameters $\boldsymbol{\theta} \in$ domain $(\boldsymbol{\theta})$
- primitive geometric element $x_{i} \in \mathcal{P}$
- generator $q$ of random minimal proposal $s$-tuples $S \in \mathcal{P}^{s}$ of primitive elements
- minimal-problem solver computing $\boldsymbol{\theta}$ from the $s$-tuples: solver : $\mathcal{P}^{s} \rightarrow \operatorname{domain}(\boldsymbol{\theta})$
- objective function $\pi(\mathcal{P} \mid \boldsymbol{\theta})$

| Examples: | $\boldsymbol{\theta}$ | primitive | $s$ | solver | $\pi(\cdot)$ terms |
| :--- | :--- | :--- | :--- | :---: | :--- |
| line fitting in 2D | $\underline{\mathbf{n}} \in \mathbb{R}^{3}$ | point | 2 | $\underline{\mathbf{n}} \simeq \underline{\mathbf{x}}_{1} \times \underline{\mathbf{x}}_{2}$ | point-to-line distances |
| plane fitting in 3D | $\mathbf{p} \in \mathbb{R}^{4}$ | point | 3 | $\underline{\mathbf{p}} \simeq \operatorname{null}\left(\left[\underline{\mathbf{x}}_{1}, \underline{\mathbf{x}}_{2}, \underline{\mathbf{x}}_{3}\right]^{\top}\right)$ | point-to-plane distances |
| fundamental matrix fitting | $\overline{\mathbf{F}}$ | match 2D-2D | 7 | 7-pt alg | Sampson errors |
| exterior orientation | $(\mathbf{R}, \mathbf{t})$ | match 3D-2D | 3 | P3P alg | projection errors |

## Algorithm sketch:

- propose a random $s$-tuple of primitives $S$ using $q(\cdot)$
- run the solver on $S$ to obtain parameters $\boldsymbol{\theta}$
- compute the value of $\pi(\mathcal{P} \mid \boldsymbol{\theta})$ on all primitives $\mathcal{P}$
- remember the sample which gave the best $\pi(\mathcal{P} \mid \boldsymbol{\theta})$



## A Preview: RANSAC with Local Optimization and Early Stopping

Given: minimal configuration $C$ definition, proposal distribution $q(\cdot)$, minimal-problem solver, objective $\pi(\cdot)$ :

1. initialize the best parameters $\boldsymbol{\theta}_{\text {best }}:=\emptyset, \pi_{\text {best }}:=-\infty$, and proposal index $k:=0$
2. estimate the total number of needed proposals as $N:=\binom{n}{s}$
3. while $k \leq N$ :
a) propose a random $s$-tuple $S$ from $q(\cdot)$
b) solve the minimal problem on $S$ to obtain $\boldsymbol{\theta}$
c) if $\pi(\mathcal{P} \mid \boldsymbol{\theta})>\pi_{\text {best }}$ then accept
$n-$ No. of primitives, $s-$ minimal config size
i) update the best $\boldsymbol{\theta}_{\text {best }}:=\boldsymbol{\theta}$

$\pi(S)$ marginalized as in (29); $\pi(S)$ includes a prior $\Rightarrow$ MAP
ii) threshold-out outliers using $e_{T}$ from (30)

iii) locally optimize $\boldsymbol{\theta}$ from the inliers of $\boldsymbol{\theta}_{\text {best }}$

iv) update $\boldsymbol{\theta}_{\text {best }}$, update inliers using (30), re-estimate the stopping criterion $N$ from inlier counts
$\rightarrow 117$ for derivation

$$
N=\frac{\log (1-P)}{\log \left(1-\varepsilon^{s}\right)}, \quad \varepsilon=\frac{\left|\operatorname{inliers}\left(\boldsymbol{\theta}_{\mathrm{best}}\right)\right|}{n}
$$

d) $k:=k+1$
4. output $C_{\text {best }}$

- see the © MPV course for RANSAC details
see also [Fischler \& Bolles 1981], [25 years of RANSAC]


## Data-Driven Stopping Criterion

- The number of proposals $N$ needed to hit the "true parameters" $=$ an all-inlier configuration:
this will tell us nothing about the accuracy of the result
$P \ldots$ probability that the last proposal is an all-inlier for the first time $\quad 1-P \ldots$ all previous $N$ proposals contained outlier(s)
$\varepsilon \ldots$ the fraction of inliers among primitives, $\varepsilon \leq 1$
$s \ldots$ No. of primitives in a minimal configuration
2 in line fitting, 7 in 7-point algorithm, 4 in homography fitting,...

$$
N \geq \frac{\log (1-P)}{\log \left(1-\varepsilon^{s}\right)}
$$

- $\varepsilon^{s} \ldots$ proposal is all-inlier
- $1-\varepsilon^{s} \ldots$ proposal contains at least one outlier
- $\left(1-\varepsilon^{s}\right)^{N} \ldots N$ previous proposals contained an outlier $=1-P$

| $N$ for $s=7$ |  |  |
| ---: | :--- | :--- |
|  | $P$ |  |
| $\varepsilon$ | 0.8 | 0.99 |
| 0.5 | 205 | 590 |
| 0.2 | $1.3 \cdot 10^{5}$ | $3.5 \cdot 10^{5}$ |
| 0.1 | $1.6 \cdot 10^{7}$ | $4.6 \cdot 10^{7}$ |



- $N$ can be re-estimated using the current estimate for $\varepsilon$ (if there is LO, then after LO)
the quasi-posterior estimate for $\varepsilon$ is the average over all samples generated so far
- this shows we have a good reason to limit all possible matches to tentative matches only
- for $\varepsilon \rightarrow 0$ we gain nothing over the standard MH-sampler stopping rule
not covered in this course


## Towards $\pi(\cdot)$ : The Full Problem of Matching and Fundamental Matrix Estimation

Problem: Given image keypoint sets $X=\left\{x_{i}\right\}_{i=1}^{m}$ and $Y=\left\{y_{j}\right\}_{j=1}^{n}$ and their descriptors $D$, find the most probable

1. inlier keypoints $S_{X} \subseteq X, S_{Y} \subseteq Y$
2. one-to-one perfect matching $M: S_{X} \rightarrow S_{Y} \quad$ perfect matching: 1-factor of the bipartite graph
3. fundamental matrix $\mathbf{F}$ such that $\operatorname{rank} \mathbf{F}=2$
4. such that for each $x_{i} \in S_{X}$ and $y_{j}=M\left(x_{i}\right)$ it is probable that
a) the image descriptor $D\left(x_{i}\right)$ is similar to $D\left(y_{j}\right)$, and
b) the total reprojection error $E=\sum_{i j} e_{i j}^{2}(\mathbf{F})$ is small note a slight change in notation: $e_{i j}$
5. inlier-outlier and outlier-outlier matches are improbable


$$
\begin{equation*}
\left(M^{*}, \mathbf{F}^{*}\right)=\arg \max _{M, \mathbf{F}} \pi(E, D, \mathbf{F}, M) \tag{24}
\end{equation*}
$$

$$
(E, D) \sim \mathcal{P},(\mathbf{F}, M) \sim \theta
$$

- probabilistic model: an efficient language for problem formulation
it also unifies 4.a and 4.b
- the (24) is a Bayesian probabilistic model there is a constant number of random variables!
- binary matching table $M_{i j} \in\{0,1\}$ of fixed size $m \times n$
- each row/column contains at most one unity
- zero rows/columns correspond to unmatched point $x_{i} / y_{j}$


## Deriving A Robust Matching Model by Approximate Marginalization

For algorithmic efficiency, instead of $\left(M^{*}, \mathbf{F}^{*}\right)=\arg \max _{M, \mathbf{F}} p(E, D, \mathbf{F}, M)$ solve

$$
\begin{equation*}
\mathbf{F}^{*}=\arg \max _{\mathbf{F}} p(E, D, \mathbf{F}) \tag{25}
\end{equation*}
$$

by marginalization of $p(E, D, \mathbf{F}, M)$ over the set of all matchings $\mathcal{M}$ s.t. $M \in \mathcal{M}$
this changes the problem! drop the assumption that $M$ is a $1: 1$ matching, assume correspondence-wise independence:

$$
p(E, D, \mathbf{F}, M)=p(E, D, \mathbf{F} \mid M) P(M)=\prod_{i=1}^{m} \prod_{j=1}^{n} p_{e}\left(e_{i j}, d_{i j}, \mathbf{F} \mid m_{i j}\right) P\left(m_{i j}\right)
$$

- $e_{i j}$ represents (reprojection) error for match $x_{i} \leftrightarrow y_{i}$ : e.g. $e_{i j}\left(x_{i}, y_{i}, \mathbf{F}\right)$
- $d_{i j}$ represents descriptor similarity for match $x_{i} \leftrightarrow y_{i}$ : e.g. $d_{i j}=\left\|\mathbf{d}\left(x_{i}\right)-\mathbf{d}\left(y_{j}\right)\right\|$

Approximate marginalization: take all the $2^{m n}$ terms in place of $M$

$$
\begin{align*}
p(E, D, \mathbf{F}) \approx \sum_{m_{11} \in\{0,1\}} \sum_{m_{12}} \cdots \sum_{m_{m n}} p(E, D, \mathbf{F} \mid M) P(M)= \\
=\sum_{m_{11}} \cdots \sum_{m_{m n}} \prod_{i=1}^{m} \prod_{j=1}^{n} p_{e}\left(e_{i j}, d_{i j}, \mathbf{F} \mid m_{i j}\right) P\left(m_{i j}\right)=\cdots \cdots \\
=\prod_{i=1}^{m} \prod_{j=1}^{n} \underbrace{\sum_{m_{i j} \in\{0,1\}} p_{e}\left(e_{i j}, d_{i j}, \mathbf{F} \mid m_{i j}\right) P\left(m_{i j}\right)}_{\text {we will continue with this term }} \tag{26}
\end{align*}
$$

## Robust Matching Model（cont＇d）

$$
\begin{align*}
& \sum_{m_{i j} \in\{0,1\}} p_{e}\left(e_{i j}, d_{i j}, \mathbf{F} \mid m_{i j}\right) P\left(m_{i j}\right)= \\
& =\underbrace{p_{e}\left(e_{i j}, d_{i j}, \mathbf{F} \mid m_{i j}=1\right)}_{p_{1}\left(e_{i j}, d_{i j}, \mathbf{F}\right)} \underbrace{P\left(m_{i j}=1\right)}_{1-P_{0}}+\underbrace{p_{e}\left(e_{i j}, d_{i j}, \mathbf{F} \mid m_{i j}=0\right)}_{p_{0}\left(e_{i j}, d_{i j}, \mathbf{F}\right)} \underbrace{P\left(m_{i j}=0\right)}_{P_{0}}= \\
& =\left(1-P_{0}\right) p_{1}\left(e_{i j}, d_{i j}, \mathbf{F}\right)+P_{0} p_{0}\left(e_{i j}, d_{i j}, \mathbf{F}\right) \tag{27}
\end{align*}
$$

－the $p_{0}\left(e_{i j}, d_{i j}, \mathbf{F}\right)$ is a penalty for＇missing a correspondence＇but it should be a p．d．f．（cannot be a constant）
$\rightarrow 121$ for a simplification

$$
\text { choose } \quad P_{0} \rightarrow 1, \quad p_{0}(\cdot) \rightarrow 0 \quad \text { so that } \quad \frac{P_{0}}{1-P_{0}} p_{0}(\cdot) \approx \mathrm{const}
$$

－the $p_{1}\left(e_{i j}, d_{i j}, \mathbf{F}\right)$ is typically an easy－to－design term：assuming independence of reprojection error and descriptor similarity：

$$
p_{1}\left(e_{i j}, d_{i j}, \mathbf{F}\right)=p_{1}\left(e_{i j} \mid \mathbf{F}\right) p_{F}(\mathbf{F}) p_{1}\left(d_{i j}\right)
$$

－we choose，e．g．

$$
\begin{equation*}
p_{1}\left(e_{i j} \mid \mathbf{F}\right)=\frac{1}{T_{e}\left(\sigma_{1}\right)} e^{-\frac{e_{i j}^{2}(\mathbf{F})}{2 \sigma_{1}^{2}}}, \quad p_{1}\left(d_{i j}\right)=\frac{1}{T_{d}\left(\sigma_{d}, \operatorname{dim} \mathbf{d}\right)} e^{-\frac{\left\|\mathbf{d}\left(x_{i}\right)-\mathbf{d}\left(y_{j}\right)\right\|^{2}}{2 \sigma_{d}^{2}}} \tag{28}
\end{equation*}
$$

－ $\mathbf{F}$ is a random variable and $\sigma_{1}, \sigma_{d}, P_{0}$ are parameters
－the form of $T_{e}\left(\sigma_{1}\right)$ depends on the error definition，it may depend on $x_{i}, y_{j}$ but not on $\mathbf{F}$
－we will continue with the result from（27）

## Simplified Robust Energy (Error) Function

- assuming the choice of $p_{1}$ as in (28), we are simplifying (26) to

$$
p(E, D, \mathbf{F})=p(E, D \mid \mathbf{F}) p_{F}(\mathbf{F})=p_{F}(\mathbf{F}) \prod_{i=1}^{m} \prod_{j=1}^{n}\left[\left(1-P_{0}\right) p_{1}\left(e_{i j}, d_{i j} \mid \mathbf{F}\right)+P_{0} p_{0}\left(e_{i j}, d_{i j} \mid \mathbf{F}\right)\right]
$$

- we choose $\sigma_{0} \gg \sigma_{1}$ and omit $d_{i j}$ for simplicity; then the square-bracket term is

$$
\frac{1-P_{0}}{T_{e}\left(\sigma_{1}\right)} e^{-\frac{e_{i j}^{2}(\mathrm{~F})}{2 \sigma_{1}^{2}}}+\frac{P_{0}}{T_{e}\left(\sigma_{0}\right)} e^{-\frac{e_{i j}^{2}(\mathbf{F})}{2 \sigma_{0}^{2}}}=\frac{1-P_{0}}{T_{e}\left(\sigma_{1}\right)}\left(e^{-\frac{e_{i j}^{2}(\mathrm{~F})}{2 \sigma_{1}^{2}}}+\frac{T_{e}\left(\sigma_{1}\right)}{1-P_{0}} \frac{P_{0}}{T_{e}\left(\sigma_{0}\right)} e^{-\frac{e_{i j}^{2}(\mathrm{~F})}{2 \sigma_{0}^{2}}}\right)
$$

- we define the 'error function' as: $V(x)=-\log p(x)$
smaller $V$ is better
$V(E, D \mid \mathbf{F})=\sum_{i=1}^{m} \sum_{j=1}^{n}[\underbrace{-\log \frac{1-P_{0}}{T_{e}\left(\sigma_{1}\right)}}_{\Delta=\text { const }}-\log (e^{-\frac{e_{i j}^{2}(\mathbf{F})}{2 \sigma_{1}^{2}}}+\underbrace{\left.\frac{P_{0}}{1-P_{0}} \frac{T_{e}\left(\sigma_{1}\right)}{T_{e}\left(\sigma_{0}\right)} e^{-\frac{e_{i j}^{2}(\mathbf{F})}{2 \sigma_{0}^{2}}}\right)}_{t \approx \text { const }}]=$

$$
\begin{equation*}
=m n \Delta+\sum_{i=1}^{m} \sum_{j=1}^{n} \underbrace{-\log \left(e^{-\frac{e_{i j}^{2}(\mathrm{~F})}{2 \sigma_{1}^{2}}}+t\right)}_{\hat{V}\left(e_{i j}\right)} \tag{29}
\end{equation*}
$$

- the terms in (29) are: (constant) + (total robust error for all pairs in $M$ )
expensive but explicit matching is avoided
- note we are summing over all $m n$ matches ( $m, n$ are constant!)
- when $t=0$ we have quadratic inlier error function $\hat{V}\left(e_{i j}\right)=e_{i j}^{2}(\mathbf{F}) /\left(2 \sigma_{1}^{2}\right)$


## The Action of the Robust Matching Model on Data

## Ex: Error function $\hat{V}\left(e_{i j}\right)$ (29):



$$
\begin{aligned}
\text { red }- \text { the (non-robust) quadratic error } & \hat{V}\left(e_{i j}\right) \text { when } t=0 \\
\text { blue - the rejected match penalty } t & \\
\text { green - robust } \hat{V}\left(e_{i j}\right) \text { from }(29) &
\end{aligned}
$$

- if the error of a correspondence exceeds a limit, it is ignored
- then $\hat{V}\left(e_{i j}\right)=$ const and we just count outliers in (29)
- $t$ controls the 'turn-off' point
- the inlier/outlier threshold is $e_{T}$ - the error for which
$\left(1-P_{0}\right) p_{1}\left(e_{T}\right)=P_{0} p_{0}\left(e_{T}\right): \quad$ note that $t \approx 0$

$$
\begin{equation*}
e_{T}=\sigma_{1} \sqrt{-\log t^{2}}, t=e^{-\frac{1}{2}\left(\frac{e_{T}}{\sigma_{1}}\right)^{2}} \text { e.g. } e_{T}=4 \sigma_{1} \rightarrow t \approx 3.4 \cdot 10^{-4} \tag{30}
\end{equation*}
$$

The full optimization problem (25) uses (29):

$$
\mathbf{F}^{*}=\arg \max _{\mathbf{F}} \frac{\overbrace{p(E, D \mid \mathbf{F})}^{\text {data model }} \cdot \overbrace{p(\mathbf{F})}^{\text {prior }}}{\underbrace{p(E, D)}_{\text {evidence }}} \approx \arg \min _{\mathbf{F}}\left[V(\mathbf{F})+\sum_{i=1}^{m} \sum_{j=1}^{n} \log \left(e^{-\frac{e_{i j}^{2}(\mathbf{F})}{2 \sigma_{1}^{2}}}+t\right)\right]
$$

- typically we take $V(\mathbf{F})=-\log p(\mathbf{F})=0$ unless we need to stabilize a computation, e.g. when video camera moves smoothly (on a high-mass vehicle) and we have a prediction for $\mathbf{F}$
- the evidence is not needed unless we want to compare different models (e.g. homography vs. epipolar geometry)


## How To Find the Global Maxima (Modes) of a PDF?




- number of proposals before $\left|x-x_{\text {true }}\right| \leq$ step
- averaged over $10^{4}$ trials
- given a toy probability distribution $p(x)$ at left $\quad \theta=x$, p.d.f. on $[0,1]$, mode at 0.1 consider several methods:

1. exhaustive search
```
step = 1/(iterations-1);
for x = 0:step:1
    if p(x) > bestp
        bestx = x; bestp = p(x);
        end
end
```

2. randomized search with uniform sampling
```
while t < iterations
    x = rand(1);
        bestx = x; bestp = p(x);
        end
        t = t+1; % time
end
```

    if \(\mathrm{p}(\mathrm{x})>\) bestp \(\quad\) fast to implement
    3. random sampling from $p(x)$ (Gibbs sampler)

- faster algorithm • fast to implement but often infeasible (e.g. when $p(x)$ is data dependent (our case in correspondence prob.))

4. Metropolis-Hastings sampling

- almost as fast (with care) - not so fast to implement
- rarely infeasible - RANSAC belongs here
- simpler (unimodal) distributions result in faster convergence


## How To Generate Random Samples from a Complex Distribution?



- red: probability density function $\pi(x)$ of the toy distribution on the unit interval
target distribution

$$
\begin{gathered}
\pi(x)=\sum_{i=1}^{4} \gamma_{i} \operatorname{Be}\left(x ; \alpha_{i}, \beta_{i}\right), \quad \sum_{i=1}^{4} \gamma_{i}=1, \gamma_{i} \geq 0 \\
\operatorname{Be}(x ; \alpha, \beta)=\frac{1}{\mathrm{~B}(\alpha, \beta)} \cdot x^{\alpha-1}(1-x)^{\beta-1}, \quad \alpha, \beta \geq 0
\end{gathered}
$$

- alg. for generating samples from $\operatorname{Be}(x ; \alpha, \beta)$ is known
- $\Rightarrow$ we can generate samples from $\pi(x)$
how?
- suppose we cannot sample from $\pi(x)$ but we can sample from some 'simple' proposal distribution $q\left(x \mid x_{0}\right)$, given the previous sample $x_{0}$ (blue)

$$
q\left(x \mid x_{0}\right)= \begin{cases}\mathrm{U}_{0,1}(x) & \text { (independent) uniform sampling }=\operatorname{Be}(x, 1,1) \\ \operatorname{Be}\left(x ; \frac{x_{0}}{T}+1, \frac{1-x_{0}}{T}+1\right) & \text { 'beta' diffusion (crawler) } T-\text { temperature } \\ \pi(x) & \text { (independent) Gibbs sampler }\end{cases}
$$

- note we have unified all the random sampling methods from the previous slide
- how to redistribute proposal samples $q\left(x \mid x_{0}\right)$ to target distribution $\pi(x)$ samples?


## Metropolis-Hastings (MH) Sampling

$C, S$ - configurations: carry information about $\boldsymbol{\theta} \quad$ e.g. $C=\theta=x$ in $\rightarrow 124, C$ - $s$-tuple on $\rightarrow 115$
Goal: Generate a sequence of random samples $\left\{C_{t}\right\}$ from target distribution $\pi(C)$
Idea: Setup a Markov chain with a suitable transition probability to generate the sequence

## Sampling procedure

1. given current configuration $C_{t}$, propose (draw a random) configuration sample $S$ from $q\left(S \mid C_{t}\right)$
$q$ may use some information from $C_{t}$ (Hastings)
2. compute acceptance probability the redistribution filter; note the evidence term drops out

$$
a=\min \left\{1, \frac{\pi(S)}{\pi\left(C_{t}\right)} \cdot \frac{q\left(C_{t} \mid S\right)}{q\left(S \mid C_{t}\right)}\right\}
$$


3. accept $S$ with probability $a$
a) draw a random number $u$ from unit-interval uniform distribution $\mathrm{U}_{0,1}$
b) if $u \leq a$ then $C_{t+1}:=S$ else $C_{t+1}:=C_{t}$

## 'Programming' an MH sampler

1. design a proposal distribution (mixture) $q$ and a sampler from $q$
2. express functions $q\left(C_{t} \mid S\right)$ and $q\left(S \mid C_{t}\right)$ as proper distributions not always simple Finding the mode

- remember the best sample
- use simulated annealing
- use the sampler as an explorer and do local optimization from the accepted sample a trade-off between speed and accuracy an optimal algorithm does not use just the best sample: a Stochastic EM Algorithm (e.g. SAEM)


## MH Sampling Demo


sampling process (100k samples; video, 7:33)

- blue point: current sample
- green circle: best sample so far

$$
\text { quality }=\pi(x)
$$

- histogram: current distribution of visited states
- the vicinity of modes are the most often visited states

initial sample

final distribution of visited states


## Demo Source Code (Matlab)

```
function x = proposal_gen(x0)
% proposal generator q(x | x0)
T = 0.01; % temperature
x = betarnd(x0/T+1,(1-x0)/T+1);
end
function p = proposal_q(x, x0)
% proposal distribution q(x | x0)
T = 0.01;
p = betapdf(x, x0/T+1, (1-x0)/T+1);
end
function p = target_p(x)
% target distribution p(x)
% shape parameters:
a = [2 40 100 6];
b = [10 [40
% mixing coefficients:
w = [11 0.4 0.253 0.50]; w = w/sum(w);
p = 0;
for i = 1:length(a)
    p = p + w(i)*betapdf(x,a(i),b(i));
end
end
```

```
%% DEMO script
k = 10000; % number of samples
X = NaN(1,k); % list of samples
x0 = proposal_gen(0.5);
for i = 1:k
    x1 = proposal_gen(x0);
    a = target_p(x1)/target_p(x0) * ...
        proposal_q(x0,x1)/proposal_q(x1,x0);
    if rand(1) < a
    X(i) = x1; x0 = x1;
    else
    X(i) = x0;
    end
end
figure(1)
x = 0:0.001:1;
plot(x, target_p(x), 'r', 'linewidth',2);
hold on
binw = 0.025; % histogram bin width
n = histc(X, 0:binw:1);
h = bar(0:binw:1, n/sum(n)/binw, 'histc');
set(h, 'facecolor', 'r', 'facealpha', 0.3)
xlim([0 1]); ylim([0 2.5])
xlabel 'x'
ylabel 'p(x)'
title 'MH demo'
hold off
```


## -Stripping MH Down To Get RANSAC [Fischler \& Bolles 1981]

- when we are interested in the best config only... and we need fast data exploration...
- ...then Steps 2-4 below make no difference when waiting for the best sample configuration:


## From sampling to RANSACing

1. given $C_{t}$, draw a random sample $S$ from $q\left(S \mid G_{t}\right) q(S)$
independent sampling no use of information from $C_{t}$
2. compute acceptance probability

$$
a=\min \left\{1, \frac{\pi(S)}{\pi\left(C_{t}\right)} \cdot \frac{q\left(C_{t} \mid S\right)}{q\left(S \mid C_{t}\right)}\right\}
$$

3. draw a random number $u$ from unit-interval uniform distribution $U_{0, T}$
4. if $u \leq a$ then $C_{t+1}:=S$ else $G_{t+1}:=C_{t}$
5. if $\pi(S)>\pi\left(C_{\text {best }}\right)$ then remember $C_{\text {best }}:=S$

- this is (almost) the 'stupid' Method 2 from $\rightarrow 123$ but(!) the data-driven sampling via higher-order primitives
- it has a good overall exploration but slow convergence in the vicinity of a mode where $C_{t}$ could serve as an attractor
- getting a good accuracy configuration might take very long this way
- (possibly robust) 'local optimization' necessary for reasonable performance
- unlike the full sampler, it cannot use the past generated configurations to estimate any parameters


## The Elements of a Data-Driven MH Sampler

data-driven $=$ proposals $q\left(S \mid C_{t}\right)$ are derived from data $\Rightarrow$ parameter distribution follows the empirical distribution of the $s$-tuples of primitives. The parameter proposal is done via the minimal problem solver.


- pairs of points define line distribution $p(\mathbf{n} \mid X)$ (left)
- random correspondence 7-tuples define epipolar geometry distribution $p(\mathbf{F} \mid M)$


## Then

1. primitives $=$ elementary measurements

- points in line fitting
- matches in epipolar geometry or homography estimation

2. configuration $=s$-tuple of primitives minimal subsets necessary for parameter estimate

the minimization will then be over a discrete set:

- of point pairs in line fitting (left)
- of match 7-tuples in epipolar geometry estimation

3. a map from configuration $C$ to parameters $\boldsymbol{\theta}=\boldsymbol{\theta}(C)$ by solving the minimal problem

- line parameters $\mathbf{n}$ from two points
- fundamental matrix $\mathbf{F}$ from seven matches
- homography $\mathbf{H}$ from four matches, etc

$$
\begin{aligned}
\left(\mathbf{x}^{1}, \mathbf{x}^{2}\right) & \mapsto \mathbf{n} \\
\left\{\left(\mathbf{x}_{i}^{1}, \mathbf{x}_{i}^{2}\right)\right\}_{i=1: 7} & \mapsto \mathbf{F} \\
\left\{\left(\mathbf{x}_{i}^{1}, \mathbf{x}_{i}^{2}\right)\right\}_{i=1: 4} & \mapsto \mathbf{H}
\end{aligned}
$$

## cont＇d

4．target likelihood $p(E, D \mid \boldsymbol{\theta}(C))$ is represented by $\pi(C)$
－can use log－likelihood：then it is the sum of robust errors $\hat{V}\left(e_{i j}\right)$ given $\mathbf{F}$（29）
－robustified point distance from the line $\boldsymbol{\theta}=\mathbf{n}$
－robustified Sampson error for $\boldsymbol{\theta}=\mathbf{F}$ ，etc
－posterior likelihood $p(E, D \mid \boldsymbol{\theta}(C)) p(\boldsymbol{\theta}(C))$ can be used
MAPSAC（ $\pi(S)$ includes the prior）

5．proposal distribution $q(\cdot)$ is just a constant（！）distribution of the $s$－tuples：
a）$q$ uniform，independent $q\left(S \mid C_{t}\right)=q(S)=\binom{m n}{s}^{-1}$ ，then $a=\min \left\{1, \frac{p(S)}{p\left(C_{t}\right)}\right\}$
b）$q$ dependent on descriptor similarity
PROSAC（similar pairs are proposed more often）
c）$q$ dependent on the current configuration $C_{t}$
e．g．＇not far from $C_{t}$＇

6．（optional）hard inlier／outlier discrimination by the threshold（30）

$$
\hat{V}\left(e_{i j}\right)<e_{T}, \quad e_{T}=\sigma_{1} \sqrt{-\log t^{2}}
$$

7．local optimization from promising proposals
－can use the hard inliers or just the robust error（29）
more expensive but more stable
－cannot be used to replace $C_{t}$ it would violate＇detailed balance＇required for the MH scheme

8．stopping based on the probability of proposing an all－inlier configuration

## Harnessing The Full Power of MH Sampler

By marginalization in (25) we have lost constraints on $M$ (e.g. uniqueness). One can choose a better model when not marginalizing:

$$
\pi(M, \mathbf{F}, E, D)=\underbrace{p(E \mid M, \mathbf{F})}_{\text {reprojection error }} \cdot \underbrace{p(D \mid M)}_{\text {similarity }} \cdot \underbrace{p(\mathbf{F})}_{\text {prior }} \cdot \underbrace{P(M)}_{\text {constraints }}
$$

this is a global model: decisions on $m_{i j}$ are no longer independent!
In the MH scheme

- one can work with full $p(M, \mathbf{F} \mid E, D)$, then configuration $C=M$

F computable from $M$

- explicit labeling $m_{i j}$ can be done by, e.g. sampling from

$$
q\left(m_{i j} \mid \mathbf{F}\right) \sim\left(\left(1-P_{0}\right) p_{1}\left(e_{i j} \mid \mathbf{F}\right), P_{0} p_{0}\left(e_{i j} \mid \mathbf{F}\right)\right)
$$

when $P(M)$ uniform then always accepted, $a=1$
$*$ derive

- we can compute the posterior probability of each match $p\left(m_{i j}\right)$ by histogramming $m_{i j}$ from the sequence $\left\{C_{i}\right\}$
- local optimization can then use explicit inliers and $p\left(m_{i j}\right)$
- error can be estimated for the elements of $\mathbf{F}$ from the sequence $\left\{C_{i}\right\}$
does not work in RANSAC
- large error indicates problem degeneracy this is not directly available in RANSAC
- good conditioning is not a requirement we work with the entire distribution $p(\mathbf{F})$
- one can find the most probable number of models (epipolar geometries, homographies, ...) by reversible jump MCMC
if there are multiple models explaning data, RANSAC will return one of them randomly


## Example: MH Sampling for a More Complex Problem

Task: Find two vanishing points from line segments detected in input image. Principal point is known, square pixel.

click for video

## simplifications

- vanishing points restricted to the set of all pairwise segment intersections
- mother lines fixed by segment centroid, then $\theta_{L}$ uniquely given by $\lambda_{i}$, and the configuration is

$$
C=\left\{v_{1}, v_{2}, \Lambda\right\}
$$

- primitives $=$ line segments
- latent variables

1. each line has a vanishing point label $\lambda_{i} \in\{\emptyset, 1,2\}, \emptyset=$ outlier
2. 'mother line' parameters $\theta_{L}$ (they pass through their vanishing points)

- explicit variables

1. two unknown vanishing points $v_{1}, v_{2}$

- marginal proposals ( $v_{i}$ fixed, $v_{j}$ proposed)
- minimal configuration $s=2$
- Gibbs sampling for $\lambda_{i}$

$$
\arg \min _{v_{1}, v_{2}, \Lambda, \theta_{L}} V\left(v_{1}, v_{2}, \Lambda, \theta_{L}\right)
$$



- blue lines point away from the vanishing points
- proposal acceptance: $20 \%$
- ca. 150 iterations to a good solution

Thank You





