3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/tdv/start http://cmp.felk.cvut.cz mailto:sara@cmp.felk.cvut.cz phone ext. 7203

rev. October 17, 2023

Open Informatics Master's Course

▶cont'd

_		configuration	equation	# constraints
	(3)	orthogonal vanishing points	$\mathbf{\underline{v}}_i^{T} \boldsymbol{\omega} \mathbf{\underline{v}}_j = 0$	1
	(4)	orthogonal vanishing lines	$\underline{\mathbf{n}}_{ij}^{\top} \boldsymbol{\omega}^{-1} \underline{\mathbf{n}}_{ik} = 0$	1
	(5)	vanishing points orthogonal to vanishing lines	$\underline{\mathbf{n}}_{ij} = oldsymbol{arkappa} \underline{\mathbf{v}}_k$	2
-	(6)	orthogonal image raster $\theta=\pi/2$	$\omega_{12} = \omega_{21} = 0$	1
ORVA	(7)	orthogonal image raster $\theta=\pi/2$ unit aspect $a=1$ when $\theta=\pi/2$	$\omega_{11} - \omega_{22} = 0$	1
	٠.	known principal point $u_0=v_0=0$	$\omega_{13} = \omega_{31} = \omega_{23} = \omega_{32} = 0$	0 2

- These are homogeneous linear equations for the 5 parameters in ω or ω^{-1} \varkappa can be eliminated from (5)
- When $\mathbf{w} = \mathrm{vec}(\boldsymbol{\omega}) \in \mathbb{R}^6$, it has the form of $\mathbf{D}\mathbf{w} = \mathbf{0}$, $\mathbf{D} \in \mathbb{R}^{k \times 6}$
- With k=5 constraints, we have $\mathrm{rank}(\mathbf{D})=5$, hence there is a unique solution for the homogeneous \mathbf{w} .
- We get \mathbf{K} from $\boldsymbol{\omega}^{-1} = \mathbf{K}\mathbf{K}^{\mathsf{T}}$ by Choleski decomposition

the decomposition returns a positive definite upper triangular matrix

one avoids solving an explicit set of quadratic equations for the parameters in \boldsymbol{K}

Examples

Assuming orthogonal raster, unit aspect (ORUA): $\theta = \pi/2$, a = 1

$$m{\omega} \simeq egin{bmatrix} 1 & 0 & -u_0 \\ 0 & 1 & -v_0 \\ -u_0 & -v_0 & f^2 + u_0^2 + v_0^2 \end{bmatrix}$$

Ex 1:

Assuming ORUA and known $m_0=(u_0,v_0)$, two finite orthogonal vanishing points give f

$$\underline{\mathbf{v}}_1^{\mathsf{T}} \boldsymbol{\omega} \, \underline{\mathbf{v}}_2 = 0 \quad \Rightarrow \quad \boldsymbol{f}^2 = \left| (\mathbf{v}_1 - \mathbf{m}_0)^{\mathsf{T}} (\mathbf{v}_2 - \mathbf{m}_0) \right|$$

in this formula, $\mathbf{v}_{1,2},\,\mathbf{m}_0$ are Cartesian (not homogeneous)!

Ex 2:

Non-orthogonal vanishing points \mathbf{v}_i , \mathbf{v}_j , known angle ϕ : $\cos \phi = \frac{\mathbf{v}_i^\top \boldsymbol{\omega} \mathbf{v}_j}{\sqrt{\mathbf{v}_i^\top \boldsymbol{\omega} \mathbf{v}_i} \sqrt{\mathbf{v}_i^\top \boldsymbol{\omega} \mathbf{v}_j}}$

- leads to polynomial equations
- e.g. ORUA and $u_0 = v_0 = 0$ gives

$$(f^2 + \mathbf{v}_i^{\top} \mathbf{v}_i)^2 = (f^2 + ||\mathbf{v}_i||^2) \cdot (f^2 + ||\mathbf{v}_i||^2) \cdot \cos^2 \phi$$

▶Camera Orientation from Two Finite Vanishing Points

Problem: Given K and two vanishing points corresponding to two known orthogonal directions d_1 , d_2 , compute camera orientation R with respect to the plane.

• 3D coordinate system choice, e.g.:

$$\mathbf{d}_1 = (1, 0, 0), \quad \mathbf{d}_2 = (0, 1, 0)$$

we know that

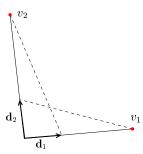
$$\mathbf{d}_{i} \simeq \mathbf{Q}^{-1} \mathbf{v}_{i} = (\mathbf{K} \mathbf{R})^{-1} \mathbf{v}_{i} = \mathbf{R}^{-1} \underbrace{\mathbf{K}^{-1} \mathbf{v}_{i}}_{\underline{\mathbf{w}}_{i}}$$

$$\hat{\mathbf{k}} \in \{1, 1\}$$

- knowing $\mathbf{d}_{1,2}$ we conclude that $\underline{\mathbf{w}}_i/\|\underline{\mathbf{w}}_i\|$ is the i-th column \mathbf{r}_i of \mathbf{R}
- the third column is orthogonal: ${\bf r_3} \simeq {\bf r_1} \times {\bf r_2}$

$$\mathbf{R} = \begin{bmatrix} \frac{\mathbf{w}_1}{\|\mathbf{w}_1\|} & \frac{\mathbf{w}_2}{\|\mathbf{w}_2\|} & \frac{\mathbf{w}_1 \times \mathbf{w}_2}{\|\mathbf{w}_1 \times \mathbf{w}_2\|} \end{bmatrix}$$

• we have to care about the signs $\pm \mathbf{w}_i$ (such that $\det \mathbf{R} = 1$)



some suitable scenes

Application: Planar Rectification

Principle: Rotate camera (image plane) parallel to the plane of interest.

$$\begin{array}{c} \text{pl}(\text{kg})^{1} \\ \underline{\mathbf{m}} \simeq \mathbf{K}\mathbf{R} \begin{bmatrix} \mathbf{I} & -\mathbf{C} \end{bmatrix} \underline{\mathbf{X}} \end{array}$$

$$\underline{\mathbf{m}}' \simeq \mathbf{K} \begin{bmatrix} \mathbf{I} & -\mathbf{C} \end{bmatrix} \underline{\mathbf{X}}$$

$$\underline{\mathbf{m}}' \simeq \mathbf{K}(\mathbf{K}\mathbf{R})^{-1}\,\underline{\mathbf{m}} = \mathbf{K}\mathbf{R}^{\top}\mathbf{K}^{-1}\,\underline{\mathbf{m}} = \mathbf{H}\,\underline{\mathbf{m}}$$

- ullet H is the rectifying homography
- ullet both K and R can be calibrated from two finite vanishing points

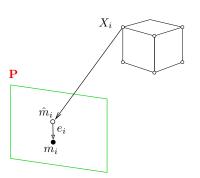
assuming ORUA \rightarrow 57

• not possible when one of them is (or both are) infinite

igotimesvithout ORUA we would need 4 additional views to calibrate ${f K}$ as on ightarrow54

▶Camera Resection

Camera <u>calibration</u> and <u>orientation</u> from a known set of $k \ge 6$ reference points and their images $\{(X_i, m_i)\}_{i=1}^6$.

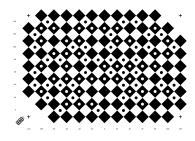


- X_i are considered exact
- ullet m_i is a measurement subject to detection error

$$\mathbf{m}_i = \hat{\mathbf{m}}_i + \mathbf{e}_i$$
 Cartesian

• where $\lambda_i \, \hat{\mathbf{m}}_i = \mathbf{P} \underline{\mathbf{X}}_i$

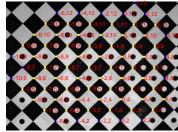
Resection Targets



calibration chart



resection target with translation stage



automatic calibration point detection based on a distributed bitcode ($2 \times 4 = 8$ bits)

- target translated at least once
- by a calibrated (known) translation
- X_i point locations looked up in a table based on their bitcode

▶ The Minimal Problem for Camera Resection

Problem: Given k = 6 corresponding pairs $\{(X_i, m_i)\}_{i=1}^k$, find **P**

$$\lambda_{i}\underline{\mathbf{m}}_{i} = \mathbf{P}\underline{\mathbf{X}}_{i}, \qquad \mathbf{P} = \begin{bmatrix} \mathbf{q}_{1}^{\top} & q_{14} \\ \mathbf{q}_{2}^{\top} & q_{24} \\ \mathbf{q}_{3}^{\top} & q_{34} \end{bmatrix} \qquad \qquad \underline{\mathbf{X}}_{i} = (x_{i}, y_{i}, z_{i}, 1), \quad i = 1, 2, \dots, k$$

$$\underline{\mathbf{m}}_{i} = (u_{i}, v_{i}, 1), \quad \lambda_{i} \in \mathbb{R}, \ \lambda_{i} \neq 0, \ |\lambda_{i}| < \infty$$
easily modifiable for infinite points X_{i} but he aware of the property X_{i} but X_{i} b

$$\underline{\mathbf{A}}_{i} = (x_{i}, y_{i}, z_{i}, 1), \quad i = 1, 2, \dots, k, k = 0$$

$$\underline{\mathbf{m}}_{i} = (u_{i}, v_{i}, 1), \quad \lambda_{i} \in \mathbb{R}, \ \lambda_{i} \neq 0, \ |\lambda_{i}| < \infty$$

easily modifiable for infinite points X_i but be aware of \rightarrow 64

expanded:
$$\lambda_i u_i = \mathbf{q}_1^\top \mathbf{X}_i + q_{14}, \quad \lambda_i v_i = \mathbf{q}_2^\top \mathbf{X}_i + q_{24}, \quad \lambda_i = \mathbf{q}_3^\top \mathbf{X}_i + q_{34}$$
 after elimination of λ_i :
$$(\mathbf{q}_3^\top \mathbf{X}_i + q_{34}) u_i = \mathbf{q}_1^\top \mathbf{X}_i + q_{14}, \quad (\mathbf{q}_3^\top \mathbf{X}_i + q_{34}) v_i = \mathbf{q}_2^\top \mathbf{X}_i + q_{24}$$

Then

$$\mathbf{A} \mathbf{q} = \begin{bmatrix} \mathbf{X}_{1}^{\top} & 1 & \mathbf{0}^{\top} & 0 & -u_{1} \mathbf{X}_{1}^{\top} & -u_{1} \\ \mathbf{0}^{\top} & 0 & \mathbf{X}_{1}^{\top} & 1 & -v_{1} \mathbf{X}_{1}^{\top} & -v_{1} \\ \vdots & & & \vdots \\ \mathbf{X}_{k}^{\top} & 1 & \mathbf{0}^{\top} & 0 & -u_{k} \mathbf{X}_{k}^{\top} & -u_{k} \\ \mathbf{0}^{\top} & 0 & \mathbf{X}_{k}^{\top} & 1 & -v_{k} \mathbf{X}_{k}^{\top} & -v_{k} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{q}_{1} \\ \mathbf{q}_{14} \\ \mathbf{q}_{2} \\ \mathbf{q}_{24} \\ \mathbf{q}_{3} \\ \mathbf{q}_{34} \end{bmatrix} = \mathbf{0}$$

$$(9)$$
t parameters for **P**

- we need 11 indepedent parameters for P
- $\mathbf{A} \in \mathbb{R}^{2k,12}$, $\mathbf{q} \in \mathbb{R}^{12}$
- 6 points in a general position give rank A = 12 and there is no (non-trivial) null space
- drop one row to get rank-11 matrix, then the basis vector of the null space of A gives q

▶ The Jack-Knife Solution for k=6

- given the 6 correspondences, we have 12 equations for the 11 parameters
- can we use all the information present in the 6 points?

Jack-knife estimation

- 1. n := 0
- 2. for $i = 1, 2, \dots, 2k$ do
 - a) delete i-th row from A, this gives A_i b) if dim null $A_i > 1$ continue with the next i
 - c) n := n + 1
 - d) compute the right null-space \mathbf{q}_i of \mathbf{A}_i
 - e) $\hat{\mathbf{q}}_i := \mathbf{q}_i$ normalized to $q_{34} = 1$ and dimension-reduced
- 3. from all n vectors $\hat{\mathbf{q}}_i$ collected in Step 2.e compute

- have a solution + an error estimate, per individual elements of P (except P₃₄)
- at least 5 points must be in a general position (\rightarrow 64)
- large error indicates near degeneracy
- computation not efficient with k > 6 points, needs $\binom{2k}{11}$ draws, e.g. $k = 7 \Rightarrow 364$ draws
- better error estimation method: decompose P_i to K_i , R_i , t_i (\rightarrow 33), represent R_i with 3 parameters (e.g. Euler angles, or in exponential map representation \rightarrow 144) and compute the errors for the parameters
- even better: use the SE(3) Lie group for $(\mathbf{R}_i, \mathbf{t}_i)$ and average its group-theoretic representations (the procedure is iterative)

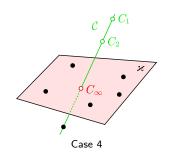
e.g. by 'economy-size' SVD assuming finite cam. with $P_{3,4} = 1$

▶ Degenerate (Critical) Configurations for Camera Resection

Let $\mathcal{X}=\{X_i;\,i=1,\ldots\}$ be a set of points and $\mathbf{P}_1\not\simeq\mathbf{P}_j$ be two regular (rank-3) cameras. Then two configurations $(\mathbf{P}_1,\mathcal{X})$ and $(\mathbf{P}_j,\mathcal{X})$ are image-equivalent if

$$\mathbf{P}_1 \underline{\mathbf{X}}_i \simeq \mathbf{P}_j \underline{\mathbf{X}}_i$$
 for all $X_i \in \mathcal{X}$

i.e. there is a non-trivial set of other cameras that see the same image



Results

- importantly: If all calibration points $X_i \in \mathcal{X}$ lie on a plane \varkappa then camera resection is non-unique and all image-equivalent camera centers lie on a spatial line \mathcal{C} with the $C_\infty = \varkappa \cap \mathcal{C}$ excluded this also means we cannot resect if all X_i are infinite
- ullet and more: by adding points $X_i \in \mathcal{X}$ to \mathcal{C} we gain nothing
- there are additional image-equivalent configurations, see next

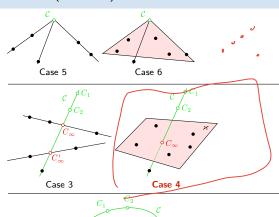
Proof sketch: If \mathbf{Q} , \mathbf{T} are suitable homographies then $\mathbf{P}_1 \simeq \mathbf{Q} \mathbf{P}_0 \mathbf{T}$, where \mathbf{P}_0 is canonical and the analysis can be made with $\hat{\mathbf{P}}_i \simeq \mathbf{Q}^{-1} \mathbf{P}_i$

$$\mathbf{P}_0\underbrace{\mathbf{T}\underline{\mathbf{X}}_i}_{\mathbf{Y}_i}\simeq \hat{\mathbf{P}}_j\underbrace{\mathbf{T}\underline{\mathbf{X}}_i}_{\mathbf{Y}_i}\quad\text{for all}\quad Y_i\in\mathcal{Y}$$

see [H&Z, Sec. 22.1.2] for a full prof

cont'd (all cases)

Case 2



Case 1 C_2

- points lie on three optical rays or one optical ray and one optical plane
- cameras C_1 , C_2 co-located at point $\mathcal C$
- Case 5: camera sees 3 isolated point images
 Case 6: cam. sees a line of points and an isolated point
- points lie on a line $\mathcal C$ and
 - 1. on two lines meeting \mathcal{C} at C_{∞} , C_{∞}' 2. or on a plane meeting \mathcal{C} at C_{∞}
- cameras lie on a line $\mathcal{C} \setminus \{C_{\infty}, C_{\infty}'\}$
- Case 3: camera sees 2 lines of points
- Case 4: dangerous!
- points lie on a planar conic ${\mathcal C}$ and an additional line meeting ${\mathcal C}$ at C_∞
- ullet cameras lie on $\mathcal{C}\setminus\{C_\infty\}$

not necessarily an ellipse

- Case 2: camera sees 2 lines of points
- ullet points and cameras all lie on a twisted cubic ${\cal C}$
- Case 1: camera sees points on a conic dangerous but unlikely to occur

▶Three-Point Exterior Orientation Problem (P3P)

<u>Calibrated</u> camera rotation and translation from <u>Perspective images of 3 reference <u>Points.</u></u>

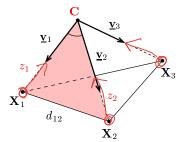
Problem: Given K and three corresponding pairs $\{(m_i, X_i)\}_{i=1}^3$, find R, C by solving

$$\lambda_i \underline{\mathbf{m}}_i = \mathbf{KR} (\mathbf{X}_i - \mathbf{C}), \qquad i = 1, 2, 3$$
 \mathbf{X}_i Cartesian

1. Transform $\underline{\mathbf{v}}_i \stackrel{\text{def}}{=} \mathbf{K}^{-1}\underline{\mathbf{m}}_i$. Then

$$\lambda_i \underline{\mathbf{v}}_i = \mathbf{R} \left(\mathbf{X}_i - \mathbf{C} \right). \tag{10}$$

2. If there was no rotation in (10), the situation would look like this



- 3. and we could shoot 3 lines from the given points X_i in given directions v_i to get C
- 4. given C we could solve (10) for λ_i

If there is rotation R

1. Eliminate ${f R}$ by taking

rotation preserves length:
$$\|\mathbf{R}\mathbf{x}\| = \|\mathbf{x}\|$$

$$|\lambda_i| \cdot ||\underline{\mathbf{v}}_i|| = ||\mathbf{X}_i - \mathbf{C}|| \stackrel{\text{def}}{=} \mathbf{z}_i$$
 (11)

2. Consider only angles among $\underline{\mathbf{v}}_i$ and apply the Cosine Law per triangle $(\mathbf{C}, \mathbf{X}_i, \mathbf{X}_j)$ $i, j = 1, 2, 3, \ i \neq j$

$$d_{ij}^2 = z_i^2 + z_j^2 - 2 z_i z_j c_{ij},$$

$$\mathbf{z}_i = \|\mathbf{X}_i - \mathbf{C}\|, \ d_{ij} = \|\mathbf{X}_j - \mathbf{X}_i\|, \ c_{ij} = \cos(\angle \mathbf{v}_i \mathbf{v}_j)$$

4. Solve the system of 3 quadratic eqs in 3 unknowns z_i

[Fischler & Bolles, 1981]

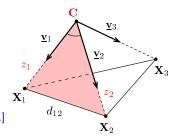
there may be no real root

there are up to 4 solutions that cannot be ignored (verify on additional points)

- 5. Compute ${\bf C}$ by trilateration (3-sphere intersection) from ${\bf X}_i$ and z_i ; then λ_i from (11)
- 6. Compute R from (10)

we will solve this problem next \rightarrow 70

Similar problems (P4P with unknown f) at http://aag.ciirc.cvut.cz/minimal/ (papers, code)

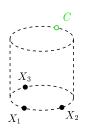


Degenerate (Critical) Configurations for Exterior Orientation

no solution

1. C cocyclic with (X_1, X_2, X_3)

camera sees points on a line



unstable solution

 \bullet center of projection C located on the orthogonal circular cylinder with base circumscribing the three points X_i

<u>unstable</u>: a small change of X_i results in a large change of C can be detected by error propagation

degenerate

- camera C is coplanar with points (X_1,X_2,X_3) but is not on the circumscribed circle of (X_1,X_2,X_3) camera sees points on a line
- additional critical configurations depend on the quadratic equations solver

[Haralick et al. IJCV 1994]

▶ Populating A Little ZOO of Minimal Geometric Problems in CV

problem	given	unknown	slide
camera resection	6 world–image correspondences $ig\{(X_i,m_i)ig\}_{i=1}^6$	P	→62
exterior orientation P3P	$oxed{\mathbf{K}}$, 3 world–image correspondences $ig\{(X_i,m_i)ig\}_{i=1}^3$	R, C	→66
next: relative orientation	3 world-world correspondences $\left\{(X_i,Y_i) ight\}_{i=1}^3$	R, t	→70

- camera resection and exterior orientation are similar problems in a sense:
 - we do resectioning when our camera is uncalibrated
 - we do orientation when our camera is calibrated
- relative orientation involves no camera (see next)

it is a recurring problem in 3D vision

more problems to come

▶The Relative Orientation Problem

Problem: Given point triples (X_1, X_2, X_3) and (Y_1, Y_2, Y_3) in a general position in \mathbf{R}^3 such that the correspondence $X_i \leftrightarrow Y_i$ is known, determine the relative orientation (\mathbf{R}, \mathbf{t}) that maps \mathbf{X}_i to \mathbf{Y}_i , i.e.

$$\mathbf{Y}_i = \mathbf{R}\mathbf{X}_i + \mathbf{t}, \quad i = 1, 2, 3.$$

Jimi - RK; -C) - RX; + E

Applies to:

- 3D scanners
- · merging partial reconstructions from different viewpoints
- generalization of the last step of P3P

Obs: Let the centroid be $\bar{\mathbf{X}} = \frac{1}{3} \sum_{i} \mathbf{X}_{i}$ and analogically for $\bar{\mathbf{Y}}$. Then

$$\bar{\mathbf{Y}} = \mathbf{R}\bar{\mathbf{X}} + \mathbf{t}.$$

Therefore

$$\mathbf{Z}_i \stackrel{\text{def}}{=} (\mathbf{Y}_i - \bar{\mathbf{Y}}) = \mathbf{R}(\mathbf{X}_i - \bar{\mathbf{X}}) \stackrel{\text{def}}{=} \mathbf{R} \mathbf{W}_i$$

If all dot products are equal, $\mathbf{Z}_i^{\top}\mathbf{Z}_j = \mathbf{W}_i^{\top}\mathbf{W}_j$ for i, j = 1, 2, 3, we have

$$\mathbf{R}^* = \begin{bmatrix} \mathbf{W}_1 & \mathbf{W}_2 & \mathbf{W}_3 \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{Z}_1 & \mathbf{Z}_2 & \mathbf{Z}_3 \end{bmatrix}$$

Poor man's solver:

- ullet normalize $\mathbf{W}_i,\,\mathbf{Z}_i$ to unit length, use the above formula, and then find the closest rotation matrix
- but this is equivalent to a non-optimal objective

it ignores errors in vector lengths

An Optimal Algorithm for Relative Orientation

We setup a minimization problem

$$\mathbf{R}^* = \arg\min_{\mathbf{R}} \sum_{i=1}^{3} \|\mathbf{Z}_i - \mathbf{R}\mathbf{W}_i\|^2 \quad \text{s.t.} \left(\mathbf{R}^{\top} \mathbf{R} = \mathbf{I}, \quad \det \mathbf{R} = 1\right)$$

$$\arg\min_{\mathbf{R}} \sum_{i} \|\mathbf{Z}_{i} - \mathbf{R}\mathbf{W}_{i}\|^{2} = \arg\min_{\mathbf{R}} \sum_{i} \left(\|\mathbf{Z}_{i}\|^{2} - 2\mathbf{Z}_{i}^{\top}\mathbf{R}\mathbf{W}_{i} + \|\mathbf{W}_{i}\|^{2} \right) = \dots = \arg\max_{\mathbf{R}} \sum_{i} \mathbf{Z}_{i}^{\top}\mathbf{R}\mathbf{W}_{i}$$

Obs 1: Let $A: B = \sum_{i,j} a_{ij}b_{ij}$ be the dot-product (Frobenius inner product) over real matrices. Then

$$\mathbf{A} : \mathbf{B} = \mathbf{B} : \mathbf{A} = \operatorname{tr}(\mathbf{A}^{\top}\mathbf{B}) = \operatorname{vec}(\mathbf{A})^{\top} \operatorname{vec}(\mathbf{B}) = \mathbf{a} \cdot \mathbf{b}$$

Obs 2: (cyclic property for matrix trace)

$$\operatorname{tr}(\mathbf{ABC}) = \operatorname{tr}(\mathbf{CAB})$$

Obs 3: $(\mathbf{Z}_i, \mathbf{W}_i \text{ are vectors})$

$$\mathbf{Z}_{i}^{\top}\mathbf{R}\mathbf{W}_{i} = \operatorname{tr}(\mathbf{Z}_{i}^{\top}\mathbf{R}\mathbf{W}_{i}) \stackrel{O2}{=} \operatorname{tr}(\mathbf{W}_{i}\mathbf{Z}_{i}^{\top}\mathbf{R}) \stackrel{O1}{=} (\mathbf{Z}_{i}\mathbf{W}_{i}^{\top}) : \mathbf{R} = \mathbf{R} : (\mathbf{Z}_{i}\mathbf{W}_{i}^{\top})$$

Then we can factor the R out of the sum

$$\sum_i \mathbf{Z}_i^{ op} \mathbf{R} \mathbf{W}_i = \mathbf{R} : \left(\sum_i \mathbf{Z}_i \mathbf{W}_i^{ op} \right) \overset{ ext{def}}{=} \mathbf{R} : \mathbf{M}$$

Consider the SVD of $M: M = UDV^{\top}$. Then

$$\mathbf{R}: \mathbf{M} = \mathbf{R}: (\mathbf{U}\mathbf{D}\mathbf{V}^\top) \overset{01}{=} \operatorname{tr}(\mathbf{R}^\top\mathbf{U}\mathbf{D}\mathbf{V}^\top) \overset{02}{=} \operatorname{tr}(\mathbf{V}^\top\mathbf{R}^\top\mathbf{U}\mathbf{D}) \overset{01}{=} (\mathbf{U}^\top\mathbf{R}\mathbf{V}): \mathbf{D} \overset{\boldsymbol{\wedge}}{\longrightarrow} \text{ wax}$$

JUVTV = I

cont'd: The Algorithm

We are solving

$$\mathbf{R}^* = \arg\max_{\mathbf{R}} \sum_{i} \mathbf{Z}_{i}^{\top} \mathbf{R} \mathbf{W}_{i} = \arg\max_{\mathbf{R}} \left(\mathbf{U}^{\top} \mathbf{R} \mathbf{V} \right) : \mathbf{D}$$

A particular solution is found as follows:

- ullet $\mathbf{U}^{\mathsf{T}}\mathbf{R}\mathbf{V}$ must be (1) orthogonal, and closest to: (2) diagonal and (3) positive definite \mathbf{D}
- Since U, V are orthogonal matrices then the solution to the problem is among $\mathbf{R}^* = \mathbf{U}\mathbf{S}\mathbf{V}^\top$, where \mathbf{S} is diagonal and orthogonal, i.e. one of
- $\pm \operatorname{diag}(1,1,1), \quad \pm \operatorname{diag}(1,-1,-1), \quad \pm \operatorname{diag}(-1,1,-1), \quad \pm \operatorname{diag}(-1,-1,1)$
- $\mathbf{U}^{\mathsf{T}}\mathbf{V}$ is not necessarily positive definite
- ullet We choose ${f S}$ so that $({f R}^*)^{ op}{f R}^*={f I}$

Alg:

- 1. Compute matrix $\mathbf{M} = \sum_i \mathbf{Z}_i \mathbf{W}_i^{\top}$.
- 2. Compute SVD $\mathbf{M} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$.
- 3. Compute all $\mathbf{R}_k = \mathbf{U}\mathbf{S}_k\mathbf{V}^{\top}$ that give $\mathbf{R}_k^{\top}\mathbf{R}_k = \mathbf{I}$.
- 4. Compute $\mathbf{t}_k = \bar{\mathbf{Y}} \mathbf{R}_k \bar{\mathbf{X}}$.
- The algorithm can be used for more than 3 points
- Triple pairs can be pre-filtered based on motion invariants (lengths, angles)
- \bullet Can be used for the last step of the exterior orientation (P3P) problem ${\to}66$

