3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/tdv/start

http://cmp.felk.cvut.cz mailto:sara@cmp.felk.cvut.cz phone ext. 7203

rev. December 12, 2023

Open Informatics Master's Course

How Difficult Is Stereo?

Centrum för teknikstudier at Malmö Högskola, Sweden

The Vyšehrad Fortress, Prague

- top: easy interpretation from even a single image
- bottom left: we have no help from image interpretation
- bottom right: ambiguous interpretation due to a combination of missing texture and occlusion

A Summary of Our Observations and an Outlook

- 1. simple matching algorithms do not work
 - the success of a model-free stereo matching is unlikely ${\rightarrow}158$
 - without scene recognition or use high-level constraints the problem seems difficult
- 2. stereopsis requires image interpretation in sufficiently complex scenes or another-modality measurement

we have a tradeoff: model strength \leftrightarrow universality

Outlook:

- 1. represent the occlusion constraint:
 - disparity in rectified images
 - uniqueness as an occlusion constraint
- 2. represent piecewise continuity
 - ordering as a weak continuity model
- 3. use a consistent framework
 - finding the most probable solution (MAP)

correspondences are not independent due to occlusions

the weakest of interpretations; piecewise: object boundaries

Structural Ambiguity in Stereovision

- suppose we can recognize local matches independently but have no scene model
- lack of an occlusion model ٠
- lack of a continuity model

left image

right image

interpretation 2

- structural ambiguity in the presence of repetitions (or lack of texture)
 - Illustration of the problem
 - Keypoints: Window detections

- Repetitive keypoints \Rightarrow non-unique matching
- Cameras are not canonical; constant-depth • surface is not a plane

► Understanding Basic Occlusion Types

• surface point at the intersection of rays l and r_1 occludes a world point at the intersection (l, r_3) and implies the world point (l, r_2) is transparent, therefore

 (l,r_3) and (l,r_2) are <u>excluded</u> by (l,r_1)

- in half-occlusion, every 3D point such as X_1 or X_2 is excluded by a binocularly visible surface point such as Y_1 , Y_2 , Y_3 \Rightarrow decisions on correspondences are not independent
- in mutual occlusion this is no longer the case: any X in the yellow zone above is not excluded

3D Computer Vision: VII. Stereovision (p. 172/199) つへや

► Matching Table

Based on scene opacity and the observation on mutual exclusion we expect each pixel to match at most once.

matching table

- rows and columns represent optical rays
- nodes: possible correspondence pairs
- full nodes: matches
- numerical values associated with nodes: descriptor similarities

see next

► Constructing An Image Similarity Cost

• let $p_i = (l, r)$ and $\mathbf{L}(l)$, $\mathbf{R}(r)$ be (left, right) image descriptors (vectors) constructed from local image neighborhood windows

Census Transform (CT)

- CT: Per-pixel binarization, given reference value (e.g the window center)
- For a grayscale image:

Cn

input image

 $\varkappa:\mathsf{RGB}\ \mathsf{CT},\,3\times2=6\text{-bit}$ per pixel, 3×3 window = 48 bit/px

- preserves sharp boundaries
- may or may not use windowing (cost aggregation)

How A Scene Looks in The Filled-In Matching Table

• MNCC ρ used ($\alpha = 1.5, \beta = 1$) \rightarrow 182

• high-similarity structures correspond to scene objects

Things to notice:

constant disparity

- a diagonal in the matching table
- zero disparity is the main diagonal assuming standard stereopair

depth discontinuity

horizontal or vertical jump in matching table

large image window

- similarity values have better discriminability
- worse occlusion localization

repeated texture

horizontal and vertical block repetition

Image Point Descriptors And Their Similarity

Descriptors: Image points are tagged by their (viewpoint-invariant) physical properties:

- texture window
- Census Transform
- a descriptor like DAISY
- learned descriptors
- reflectance profile under a moving illuminant
- (pixelwise) photometric ratios
- dual photometric stereo
- (pixelwise) polarization signature
- . . .
- similar points are more likely to match
- image similarity values for all 'match candidates' give the 3D matching table

[Moravec 77] [Zabih & Woodfill 94] [Tola et al. 2010]

[Wolff & Angelopoulou 93-94] [Ikeuchi 87]

also called: 'disparity volume'

13 13

click for video

Marroquin's Winner Take All (WTA) Matching Algorithm

Alg: Per left-image pixel: The most SAD-similar pixel along the right epipolar line

- 1. select disparity range
- 2. represent the matching table diagonals in a compact form

- 3. use the 'image sliding & cost aggregation algorithm'
- 4. take the maximum over disparities d
- 5. threshold results by the maximal allowed SAD dissimilarity (or minimal MNCC similarity)

Dovin

 \rightarrow 174

this is a critical weak point

A Matlab Code for WTA

```
function dmap = marroquin(iml, imr, disparityRange)
        iml. imr - rectified grav-scale images
% disparityRange - non-negative disparity range
% (c) Radim Sara (sara@cmp.felk.cvut.cz) FEE CTU Prague, 10 Dec 12
 thr = 20:
                                                   % bad match rejection threshold
r = 2:
 winsize = 2*r+[1 \ 1];
                                                  % 5x5 window (neighborhood) for r=2
 N = boxing(ones(size(iml)), winsize);
                                                  % the size of each local patch is
                                                   % N = (2r+1)^2 except for boundary pixels
 % --- compute dissimilarity per pixel and disparity --->
 for d = 0:disparityRange % cycle over all disparities

slice = abs(imr(:,1:end-d) - iml(:,d+1:end)); % pixelwise dissimilarity (unscaled SAD)
 for d = 0:disparityRange
 V(:,d+1:end,d+1) = boxing(slice, winsize)./N; % window aggregation
 end
 % --- collect winners, threshold, output disparity map --->
 [cmap,dmap] = min(V,[],3); <--- WTA
                                                  % collect winners and their dissimilarities
 dmap(cmap > thr) = NaN;
                                                   % mask-out high dissimilarity pixels
end % of marroquin
function c = boxing(im, wsz)
 % if the mex is not found. run this slow version:
 c = conv2(ones(1,wsz(1)), ones(wsz(2),1), im, 'same');
end % of boxing
```

WTA: Some Results

- results are fairly bad
- false matches in textureless image regions and on repetitive structures (book shelf)
- a more restrictive threshold (thr = 10) does not work as expected
- we searched the true disparity range, results get worse if the range is set wider
- chief failure reasons:
 - unnormalized image dissimilarity does not work well
 - no occlusion model (it just ignores the occlusion structure we have discussed ightarrow172)

► A Principled Approach to Similarity

Empirical Distribution of MNCC ρ for Matches (green) and Non-Matches (red)

- histograms of ρ computed from 5×5 correlation window
- KITTI dataset
 - $4.2 \cdot 10^6$ ground-truth (LiDAR) matches for $p_1(\rho)$ (green),
 - $4.2\cdot 10^6$ random non-matches for $p_0(
 ho)$ (red)

Obs:

- non-matches (red) may have arbitrarily large ho
- matches (green) may have arbitrarily low ho
- $\rho = 1$ is improbable for matches

Match Likelihood

- ρ is just a normalized measurement
- we need a probability distribution on [0, 1] e.g. the histogram or the Beta distribution:

$$p_1(\rho) = \frac{1}{B(\alpha, \beta)} |\rho|^{\alpha - 1} (1 - |\rho|)^{\beta - 1}$$

- note that uniform distribution is obtained for $\alpha = \beta = 1$
- when $\alpha = 2$ and $\beta = 1$ then $p_1(\cdot) = 2|\rho|$

• the mode is at
$$\sqrt{\frac{\alpha-1}{\alpha+\beta-2}}\approx 0.9733$$
 for $\alpha=10,\ \beta=1.5$

- if we chose $\beta=1$ then the mode was at $\rho=1$
- perfect similarity is 'suspicious' (depends on expected camera noise level)
- from now on we will work with negative log-likelihood cost

$$V_1ig(
ho(l,r)ig) = -\log p_1ig(
ho(l,r)ig)$$
 smaller is better

• we should also define similarity (and negative log-likelihood $V_0(
ho(l,r))$) for non-matches

(39)

►A Principled Approach to Matching: Formulating 'What We Want'

- given matching M in table T, what is the likelihood of observed data D?
- data all cost pairs (V_0, V_1) in the matching table T
- matches pairs $p_i = (l_i, r_i) \in M \subset T$, $i = 1, \dots, n^2$
- matching: partitioning matching table T to matched M and excluded E pairs

$$T = M \cup E, \quad M \cap E = \emptyset$$
 pathibisu

matching cost (negative log-likelihood, smaller is better)

$$V(D \mid M, T) = \sum_{p \in M} V_1(D \mid p) + \sum_{p \in T \setminus M} V_0(D \mid p)$$

constant number of variables in T

comparable across H's

 $V_1(D \mid p)$ – negative log-probability of data D at <u>matched</u> pixel p (39) $V_0(D \mid p)$ – ditto at <u>unmatched</u> pixel p

matching problem

$$M^* = \arg\min_{M \in \mathcal{M}(T)} V(D \mid M, T)$$
 (h)

 $\mathcal{M}(T)$ – the set of all matchings in table T

• symmetric: formulated over pairs, invariant to left \leftrightarrow right image swap

unlike in WTA

 \rightarrow 181 and \rightarrow 182

►(cont'd) Log-Likelihood Ratio

- we need to reduce the matching to a standard polynomial-complexity problem
- 1. convert the matching cost to an 'easier' sum

$$V(D \mid M, T) = \sum_{p \in M} V_1(D \mid p) + \sum_{p \in T \setminus M} V_0(D \mid p) + \sum_{p \in M} V_0(D \mid p) \sum_{p \in M} V_0(D \mid p)$$
$$= \sum_{p \in M} \underbrace{\left(V_1(D \mid p) - V_0(D \mid p)\right)}_{-L(D \mid p)} + \underbrace{\sum_{p \in T \setminus M} V_0(D \mid p) + \sum_{p \in M} V_0(D \mid p)}_{\sum_{p \in T} V_0(D \mid p) = \text{const}}$$

2. hence

$$\arg\min_{M\in\mathcal{M}(T)} V(D\mid M) = \arg\max_{M\in\mathcal{M}(T)} \sum_{p\in M} L(D\mid p)$$
(40)

 $L(D \mid p)$ – logarithm of matched-to-unmatched likelihood ratio (bigger is better)

why this way: we want to use maximum-likelihood on the entire ${\boldsymbol{T}}$

3. (40) is max-cost matching (maximum assignment) for the maximum-likelihood (ML) matching problem

• use the Hungarian (Munkres) algorithm and threshold the result with au: $L(D \mid p) > au \geq 0$

or approximate the problem by sacrificing symmetry and accuracy to speed and use dynamic programming

Some Results for the Maximum-Likelihood (ML) Matching

- unlike the WTA we can efficiently control the density/accuracy tradeoff with au
- middle row: threshold τ for $L(D \mid p)$ set to achieve error rate of 3% (and 61% density results)
- bottom row: threshold τ set to achieve density of 76% (and 4.3% error rate results)

black = no match

Thank You

