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Module IV
Computing with a Camera Pair

@® Camera Motions Inducing Epipolar Geometry, Fundamental and Essential Matrices
@®Estimating Fundamental Matrix from 7 Correspondences

®Estimating Essential Matrix from 5 Correspondences

@ Triangulation: 3D Point Position from a Pair of Corresponding Points

covered by
[1] [H&Z] Secs: 9.1, 9.2, 9.6, 11.1, 11.2, 11.9, 12.2, 12.3, 12.5.1
[2] H. Li and R. Hartley. Five-point motion estimation made easy. In Proc ICPR 2006, pp. 630-633

additional references

@ H. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections. Nature, 293(5828):133-135, 1981.
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»Geometric Model of a Camera Stereo Pair

P.=[Q q]=Ki[Ri t|=KR;[I -C;] i=12 —31
Epipolar geometry:
® brings constraints necessary for inter-image matching

® its parametric form encapsulates information about the relative pose of two cameras

Description

® baseline b joins projection centers Cy, Co
b=Cy; -C;
® epipole e; € m; is the image of C;:
e1 ~P1Cy, e ~P2C

® [; € m; is the image of optical ray d;, j # i and also the
epipolar plane

e=(C2,X,Ch)

® [; is the epipolar line (‘epipolar’) in image 7; induced by m; in

two-camera setup Image 7;

Epipolar constraint relates m; and mo: corresponding da2, b, di are coplanar a necessary condition —88
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Epipolar Geometry Example: Forward Motion

image 1 image 2
click on the image to see their IDs

® red: correspondences
® green: epipolar line pairs per correspondence

Epipole is the image of the other camera’s center.

How high was the camera above the floor?

movement Il

same ID in both images
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»Cross Products and Maps by Skew-Symmetric 3 x 3 Matrices

e There is an equivalence b x m = [b], m, where [b], is a 3 x 3 skew-symmetric matrix

0 —bs b2 b1
[b], = | b3 0 —bi|, assuming b = [bs
—b2 b1 0 b3
Some properties
T .
1. [b], = —[b], the general antisymmetry property
2. A is skew-symmetric iff x' Ax = 0 for all x skew-sym mtx generalizes cross products
3
3. [b]5 = —b]|* - [b],
4. (bl I, = V2| Frobenius norm (J|A[|r = \/tr(ATA) = /5, ;lai; )
5. rank [b],, =2 iff ||b|| >0 check minors of [b],
6. [b],b=0
7. eigenvalues of [b], are (0, A, —))
8. for any 3 x 3 regular B: BT [Bz] B =detB[z], follows from the factoring on —39
9. in particular: if RR" =1 then [Rz], =R[z] R’

® note that if Ry is rotation about b then R;b = b

® note [b], is not a homography; it is not a rotation matrix it is the logarithm of a rotation mtx
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»Expressing the Epipolar Constraint Algebraically: Fundamental Matrix

P,=[Q, q]=K:[Ri t;],i=1,2

0=ds p. ~ (Q;'m)" Q'L =my Q; 'Q{(e1 xm) =my ((QQ;") ' [e1],) mu
~ Y =~ —

normal of optical ray  optical plane image of € in w2 fundamental matrix F
Epipolar constraint mj Fm; =0 is a point-line incidence constraint
left epipole right epipole

1 \—T T —76
F = ( Q2Q1 ) [gl]x :He [Ql]x =~ [Hegl]XHe
N——
epipolar homography H,

point ms is incident on epipolar line 1> ~ Fmy
point my is incident on epipolar line 1; ~ FTm2
all epipolars meet at the epipole

epipolar lines map by epipolar homography H; "
epipoles map by epipolar homography H.
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»cont’d

left epipole right epipole ex
1 \—T T —76
F=(Q,Q; ) [e],=H. [e], =~ [Hee1 ], H.
—_——

epipolar homography H¢

® epipole e; falls in the nullspace of F: Fe; = H;T[gl]xgl =0,alsoeg F=0

® F maps points to lines and it is not a homography

e H_ " maps epipolars to epipolars: I, ~ H, "1,

® there is another useful map that does the job for epipolars: I ~ Fle1], s = F(e1 x L)

proof by point/line ‘transmutation’ (left):
® point e; does not lie on line e; (dashed): 91'—(;1 #0
® ¢; x 1y isapointon ]y
® F maps that point to l»

® the composition F[e1], is not a homography
® usefulness: no need to decompose F to obtain H,
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» The Essential Matrix

Ro2; - relative camera rotation, R2; = RoR[
to1 — relative camera translation, to; = ta — Rojt; = —Rsb —74
P = [Ql qi] =K [RZ ti} s i=1,2 b - baseline vector (world coordinate system)
remember: C = —Qflq =-RTt —33 and 35
® the epipole is the image of the (projection center) of the other camera

e1~Q,C+q, =Q,C—Q,C =K Rib=-K;RiRJ t2; = ~K Ry, t2;
_ _ ® 1 _ _
F=Q, TQI [gl]x =Q; TQI [—KlR;—ltgl}X = ~K, T [—tzl]me K; ! fundamental

E
E=[—txu] Roi = [Rob],Rai =" Roi[Rib], =Roi[—Raitor], essential
baseline in Cam 2

baseline in Cam 1
® E captures relative camera pose only

[Longuet-Higgins 1981]
(the change of the world coordinate system by (R, t) does not change E)

R, t/]=[Ri ti]- [(% ﬂ = [R;R Rit+t;],

then
.

Ry = RIR, == Ray thy =t~ Ryt = o = b
® the translation length ||t21]| is lost, since E is homogeneous
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»Summary: Relations and Mappings Involving Fundamental Matrix

0=m; Fmy

er ~ null(F), e ~null(F")
er~H;'e e~ Heer

L ~F m I ~ Fmy

L ~H L L~H. "l
L =F'[e], L L~ Flei], L

°* H. = QQQ;1 is the epipolar homography—79
HgT maps epipolar lines to epipolar lines, where

He = Q,Q; ' = KoRa K '
you have seen this —59

® Flei], maps epipolar lines to epipolar lines but it is not a
homography

® The essential matrix is the ‘calibrated fundamental matrix’

H; or F e«
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»Representation Theorem for Fundamental Matrices

Def: F is fundamental when F ~ H’T[gl}x, where H is regular and e; ~ null F # 0.

Theorem: A 3 X 3 matrix A is fundamental iff it is of rank 2.

Proof.
Direct: By the geometry, H is full-rank, e; # 0, hence H’T[gl]>< is a 3 X 3 matrix of rank 2.
Converse:

1. let A =UDV" be the SVD of A of rank 2; then D = diag(A1, A2,0), A1 > A2 >0

2.
3.

we write D = BC, where B = diag(\1, A2, A3), C = diag(1,1,0), A3 >0

then A = UBCV' = UBCWW ' VT with W rotation matrix
I

. we look for a rotation mtx W that maps C to a skew-symmetric S, i.e. S = CW (if it exists)

0 a 0 1 0 O 0 a 0
.then W= |-a 0 O0f,|]of=1,andS=CW =0 1 Of |-a O O|=---=][s],, wheres=(0,0,1)
0 0 1 0 0 O 0 0 1
we write v3 — 3rd column of V, us — 3rd column of U
® 1
A=UB[s| WV =0 —UB(VW)T [vs], = [Hvs], H, (12)
~—~ N— ——
CcwW ~H-T  3rdcol V ~[ug]
H regular, Av3 =0, u3A =0 for vg #0, ug #0 ]

we also got a (non-unique: «, A3) decomposition formula for fundamental matrices
it follows there is no constraint on F except for the rank
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