3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz phone ext. 7203
rev. November 7, 2023

Open Informatics Master's Course

- The Least-Squares Triangulation by SVD

- if \mathbf{D} is full-rank we may minimize the algebraic least-squares error

$$
\varepsilon^{2}(\underline{\mathbf{X}})=\|\mathbf{D} \underline{\mathbf{X}}\|^{2} \quad \text { s.t. } \quad\|\underline{\mathbf{X}}\|=1, \quad \underline{\mathbf{X}} \in \mathbb{R}^{4}
$$

- let \mathbf{d}_{i} be the i-th row of \mathbf{D} reshaped as a column vector, then

$$
\|\mathbf{D} \underline{X}\|^{2}=\sum_{i=1}^{4}\left(\mathbf{d}_{i}^{\top} \underline{\mathbf{X}}\right)^{2}=\sum_{i=1}^{4} \underline{\mathbf{X}}^{\top} \mathbf{d}_{i} \mathbf{d}_{i}^{\top} \underline{\mathbf{X}}=\underline{\mathbf{X}}^{\top} \mathbf{Q} \underline{\mathbf{X}}, \text { where } \mathbf{Q}=\sum_{i=1}^{4} \mathbf{d}_{i} \mathbf{d}_{i}^{\top}=\mathbf{D}^{\top} \mathbf{D} \in \mathbb{R}^{4,4}
$$

- we write the SVD of \mathbf{Q} as $\mathbf{Q}=\sum_{j=1}^{4} \sigma_{j}^{2} \mathbf{u}_{j} \mathbf{u}_{j}^{\top}$, in which

$$
\sigma_{1}^{2} \geq \cdots \geq \sigma_{4}^{2} \geq 0 \quad \text { and } \quad \mathbf{u}_{l}^{\top} \mathbf{u}_{m}= \begin{cases}0 & \text { if } l \neq m \\ 1 & \text { otherwise }\end{cases}
$$

- then $\min _{\mathbf{q},\|\mathbf{q}\|=1} \mathbf{q}^{\top} \mathbf{Q} \mathbf{q}=\sigma_{4}^{2} \quad$ and $\quad \underline{\mathbf{X}}=\arg \min _{\mathbf{q},\|\mathbf{q}\|=1} \mathbf{q}^{\top} \mathbf{Q} \mathbf{q}=\mathbf{u}_{4} \quad \mathbf{u}_{4}$ - the last column of \mathbf{U} from $\operatorname{SVD}(\mathbf{Q})$

Proof (by contradiction).
Let $\overline{\mathbf{q}}=\sum_{i=1}^{4} a_{i} \mathbf{u}_{i}$ s.t. $\sum_{i=1}^{4} a_{i}^{2}=1$, then $\|\overline{\mathbf{q}}\|=1$, as desired, and

$$
\overline{\mathbf{q}}^{\top} \mathbf{Q} \overline{\mathbf{q}}=\sum_{j=1}^{4} \sigma_{j}^{2} \overline{\mathbf{q}}^{\top} \mathbf{u}_{j} \mathbf{u}_{j}^{\top} \overline{\mathbf{q}}=\sum_{j=1}^{4} \sigma_{j}^{2}\left(\mathbf{u}_{j}^{\top} \overline{\mathbf{q}}\right)^{2}=\cdots=\sum_{j=1}^{4} a_{j}^{2} \sigma_{j}^{2} \geq \sum_{j=1}^{4} a_{j}^{2} \sigma_{4}^{2}=\left(\sum_{j=1}^{4} a_{j}^{2}\right) \sigma_{4}^{2}=\sigma_{4}^{2}
$$

since $\sigma_{j} \geq \sigma_{4}$

$>$ cont'd

- if $\sigma_{4} \ll \sigma_{3}$, there is a unique solution $\underline{\mathbf{X}}=\mathbf{u}_{4}$ with residual error $(\mathbf{D} \underline{\mathbf{X}})^{2}=\sigma_{4}^{2}$
the quality (conditioning) of the solution may be expressed as $q=\sigma_{3} / \sigma_{4}$ (greater is better)

Matlab code for the least-squares solver:

```
[U,O,V] = svd(D);
X = V(:,end);
q = sqrt(0(end-1,end-1)/O(end,end));
```

$\circledast \mathrm{P} 1 ; 1 \mathrm{pt}$: Why did we decompose \mathbf{D} here, and not $\mathbf{Q}=\mathbf{D}^{\top} \mathbf{D}$?

- Numerical Conditioning

- The equation $\mathbf{D} \underline{\mathbf{X}}=\mathbf{0}$ in (16) may be ill-conditioned for numerical computation, which results in a poor estimate for $\underline{\mathbf{X}}$.

Why: on a row of \mathbf{D} there are big entries together with small entries, e.g. of orders projection centers in mm , image points in px
$\left[\begin{array}{cccc}10^{3} & 0 & 10^{3} & 10^{6} \\ 0 & 10^{3} & 10^{3} & 10^{6} \\ 10^{3} & 0 & 10^{3} & 10^{6} \\ 0 & 10^{3} & 10^{3} & 10^{6}\end{array}\right]$

Quick fix:

1. re-scale the problem by a regular diagonal conditioning matrix $\mathbf{S} \in \mathbb{R}^{4,4}$

$$
\mathbf{0}=\mathbf{D} \underline{\mathbf{X}}=\mathbf{D} \mathbf{S S}^{-1} \underline{\mathbf{X}}=\overline{\mathbf{D}} \underline{\overline{\mathbf{X}}}
$$

choose \mathbf{S} to make the entries in $\hat{\mathbf{D}}$ all smaller than unity in absolute value, e.g.:

$$
\mathbf{S}=\operatorname{diag}\left(10^{-3}, 10^{-3}, 10^{-3}, 10^{-6}\right) \quad \mathrm{S}=\operatorname{diag}(1 . / \max (\operatorname{abs}(\mathrm{D}),[], 1))
$$

2. solve for $\underline{\bar{X}}$ as before
3. get the final solution as $\underline{\mathbf{X}}=\mathbf{S} \underline{\overline{\mathbf{X}}}$

- when SVD is used in camera resection from six points $\rightarrow 62$, conditioning is essential for success

We Have Added to The ZOO (cont'd from $\rightarrow 69$)

problem	given	unknown	slide
camera resection	6 world-img correspondences $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{6}$	\mathbf{P}	62
exterior orientation	$\mathbf{K}, 3$ world-img correspondences $\left\{\left(X_{i}, m_{i}\right)\right\}_{i=1}^{3}$	\mathbf{R}, t	66
relative pointcloud orientation	3 world-world correspondences $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{3}$	\mathbf{R}, t	70
fundamental matrix	7 img-img correspondences $\left\{\left(m_{i}, m_{i}^{\prime}\right)\right\}_{i=1}^{7}$	\mathbf{F}	85
relative camera orientation	$\mathbf{K}, 5$ img-img correspondences $\left\{\left(m_{i}, m_{i}^{\prime}\right)\right\}_{i=1}^{5}$	\mathbf{R}, t	89
triangulation	$\mathbf{P}_{1}, \mathbf{P}_{2}, 1$ img-img correspondence $\left(m, m^{\prime}\right)$	$\underline{\mathbf{X}}$	90

A bigger ZOO at http://aag.ciirc.cvut.cz/minimal/

calibrated problems

- have fewer degenerate configurations
- can do with fewer points (good for geometry proposal generators $\rightarrow 123$)
- algebraic error optimization (SVD) makes sense in camera resection and triangulation only
- but it is not the best method; we will now focus on 'optimizing optimally'

Module V

Optimization for 3D Vision

5．1）The Concept of Error for Epipolar Geometry
5．2 The Golden Standard for Triangulation
5．3 Levenberg－Marquardt＇s Iterative Optimization
5．4）Optimizing Fundamental Matrix
5．5）The Correspondence Problem
（5．）Optimization by Random Sampling
covered by
［1］［H\＆Z］Secs：11．4，11．6， 4.7
［2］Fischler，M．A．and Bolles，R．C ．Random Sample Consensus：A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography．Communications of the ACM 24（6）：381－395， 1981
additional references

P．D．Sampson．Fitting conic sections to＇very scattered＇data：An iterative refinement of the Bookstein algorithm．Computer Vision， Graphics，and Image Processing，18：97－108， 1982.

O．Chum，J．Matas，and J．Kittler．Locally optimized RANSAC．In Proc DAGM，LNCS 2781：236－243．Springer－Verlag， 2003.
O．Chum，T．Werner，and J．Matas．Epipolar geometry estimation via RANSAC benefits from the oriented epipolar constraint．In Proc ICPR，vol 1：112－115， 2004.

Algebraic Error vs Reprojection Error

－algebraic error c－camera index，$\left(u^{c}, v^{c}\right)$－image coordinates $\rightarrow 91$

$$
\varepsilon^{2}(\underline{\mathbf{X}})=\|\mathbf{D} \underline{\mathbf{X}}\|^{2}=\sum_{c=1}^{2}[(u^{c}(\underbrace{\mathbf{p}_{3}^{c}})^{\top} \underline{\mathbf{X}}-\left(\mathbf{p}_{1}^{c}\right)^{\top} \underline{\mathbf{X}})^{2}+\left(v^{c}\left(\mathbf{p}_{3}^{c}\right)^{\top} \underline{\mathbf{X}}-\left(\mathbf{p}_{2}^{c}\right)^{\top} \underline{\mathbf{X}}\right)^{2}]
$$

－reprojection error

$$
e^{2}(\underline{\mathbf{X}})=\sum_{c=1}^{2}\left[\left(u^{c}\left(-\frac{\left(\mathbf{p}_{1}^{c}\right)^{\top} \underline{\underline{\mathbf{X}}}}{\left(\mathbf{p}_{3}^{c}\right)^{\top} \underline{\underline{X}}}\right)^{2}+\left(v^{c}-\frac{\left(\mathbf{p}_{2}^{c}\right)^{\top} \underline{\underline{\mathbf{X}}}}{\left(\mathbf{p}_{3}^{c}\right)^{\top} \underline{\mathbf{X}}}\right)^{2}\right]\right.
$$

－algebraic error zero \Leftrightarrow reprojection error zero

$$
\sigma_{4}=0 \Rightarrow \text { non-trivial null space }
$$

－epipolar constraint satisfied \Rightarrow equivalent results
－in general：minimizing algebraic error is cheap but it gives inferior results
－minimizing reprojection error is expensive but it gives good results
－the midpoint of the common perpendicular to both optical rays gives about 50% greater error in 3D
－the golden standard method－deferred to $\rightarrow 108$

Algebraic Error vs Reprojection Error：Example

－forward camera motion

－this demonstrates a difficult configuration（forward camera motion）and a random correspondence
－noise－free ground－truth triangulation from m_{T} is X_{T}
－reprojection error minimizer X_{r} has an error due to simulated noise in image detections（black m ）
－algebraic error minimizer X_{a} essentially failed

－The Concept of Error for Epipolar Geometry

Background problems：（1）Given at least 8 matched points $x_{i} \leftrightarrow y_{j}$ in a general position，estimate the most＇likely＇ fundamental matrix \mathbf{F} ；（2）given \mathbf{F} triangulate 3D point from $x_{i} \leftrightarrow y_{j}$ ．

$$
\mathbf{x}_{i}=\left(u_{i}^{1}, v_{i}^{1}\right), \quad \mathbf{y}_{i}=\left(u_{i}^{2}, v_{i}^{2}\right), \quad i=1,2, \ldots, k, \quad k \geq 8 \text { for (1) or } k=1 \text { for (2) }
$$

－detected points（measurements）x_{i}, y_{i}
－we introduce matches $\mathbf{Z}_{i}=\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right)=\left(u_{i}^{1}, v_{i}^{1}, u_{i}^{2}, v_{i}^{2}\right) \in \mathbb{R}^{4} ; \quad$ and the set $Z=\left\{\mathbf{Z}_{i}\right\}_{i=1}^{k}$
－corrected points $\hat{x}_{i}, \hat{y}_{i} ; \quad \hat{\mathbf{Z}}_{i}=\left(\hat{\mathbf{x}}_{i}, \hat{\mathbf{x}}_{i}\right)=\left(\hat{u}_{i}^{1}, \hat{v}_{i}^{1}, \hat{u}_{i}^{2}, \hat{v}_{i}^{2}\right) ; \hat{Z}=\left\{\hat{\mathbf{Z}}_{i}\right\}_{i=1}^{k}$ are correspondences
－correspondences satisfy the epipolar geometry exactly $\hat{\mathbf{y}}_{i}^{\top} \mathbf{F} \underline{\hat{x}}_{i}=0, i=1, \ldots, k$
－small correction is more probable
－let $\mathbf{e}_{i}(\cdot)$ be the＇reprojection error＇（vector）per match i ，

$$
\begin{align*}
& \mathbf{e}_{i}\left(x_{i}, y_{i} \mid \hat{x}_{i}, \hat{y}_{i}, \mathbf{F}\right)=\left[\begin{array}{l}
\mathbf{x}_{i}-\hat{\mathbf{x}}_{i} \\
\mathbf{y}_{i}-\hat{\mathbf{y}}_{i}
\end{array}\right]=\mathbf{e}_{i}\left(\mathbf{Z}_{i} \mid \hat{\mathbf{Z}}_{i}, \mathbf{F}\right)=\mathbf{Z}_{i}-\hat{\mathbf{Z}}_{i}(\mathbf{F}) \tag{17}\\
&\left\|\mathbf{e}_{i}(\cdot)\right\|^{2} \stackrel{\text { def }}{=} \mathbf{e}_{i}^{2}(\cdot)=\left\|\mathbf{x}_{i}-\hat{\mathbf{x}}_{i}\right\|^{2}+\left\|\mathbf{y}_{i}-\hat{\mathbf{y}}_{i}\right\|^{2}=\left\|\mathbf{Z}_{i}-\hat{\mathbf{Z}}_{i}(\mathbf{F})\right\|^{2} \quad \in \mathbb{R}^{4}
\end{align*}
$$

cont＇d

Consider the estimation of \mathbf{F}

－the total reprojection error（of all data）is

$$
L(Z \mid \hat{Z}, \mathbf{F})=\sum_{i=1}^{k} \mathbf{e}_{i}^{2}\left(x_{i}, y_{i} \mid \hat{x}_{i}, \hat{y}_{i}, \mathbf{F}\right)=\sum_{i=1}^{k} \mathbf{e}_{i}^{2}\left(\mathbf{Z}_{i} \mid \hat{\mathbf{Z}}_{i}, \mathbf{F}\right)
$$

－and the optimization problem is

Possible approaches

$$
x_{i} \cong P_{1} X_{i} \quad i \quad j_{i} \simeq P_{2} X_{i}
$$

－they differ in how the correspondences \hat{x}_{i}, \hat{y}_{i} are obtained：
1．direct optimization of reprojection error over all variables $\hat{Z}, \mathbf{F} \quad$ needs a good parameterization for $\mathbf{F} \rightarrow 100$
2．Sampson optimal correction $=$ partial correction of \mathbf{Z}_{i} towards $\hat{\mathbf{Z}}_{i}$ used in an iterative minimization over $\mathbf{F} \rightarrow 102$ （i）

Method 1：Reprojection Error Optimization：Idea

－we need to encode the constraints $\underline{\hat{\mathbf{y}}}_{i} \mathbf{F} \hat{\underline{\mathbf{x}}}_{i}=0, \operatorname{rank} \mathbf{F}=2$
－idea：reconstruct 3D point via equivalent projection matrices and use reprojection error
－the equivalent projection matrices are
see［H\＆Z，Sec．9．5］for a complete characterization

$$
\begin{aligned}
& Q e_{1} \neq 0
\end{aligned}
$$

$$
\text { due } C D+3 w
$$

\circledast H3；2pt：Given rank－2 matrix \mathbf{F} ，let $\underline{\mathbf{e}}_{1}, \underline{\mathbf{e}}_{2}$ be the right and left nullspace basis vectors of \mathbf{F} ，respectively．Verify that such \mathbf{F} is a fundamental matrix of $\mathbf{P}_{1}, \mathbf{P}_{2}$ from（19）．
Hints：
（1）consider $\hat{\underline{\mathbf{x}}}_{i}=\mathbf{P}_{1} \underline{\mathbf{X}}_{i}$ and $\underline{\hat{\mathbf{y}}}_{i}=\mathbf{P}_{2} \underline{\mathbf{X}}_{i}$
（2） \mathbf{A} is skew symmetric ff $\mathbf{x}^{\bar{\top}^{i}} \mathbf{A} \mathbf{x}=0$ for all vectors \mathbf{x} ．

(cont'd) Reprojection Error Optimization: Algorithm

1. compute $\mathbf{F}^{(0)}$ by the 7-point algorithm $\rightarrow 85$; construct camera $\mathbf{P}_{2}^{(0)}$ from $\mathbf{F}^{(0)}$ using (19)
2. triangulate 3 D points $\hat{\mathbf{X}}_{i}^{(0)}$ from matches $\left(x_{i}, y_{i}\right)$ for all $i=1, \ldots, k$ by the SVD alg. $\rightarrow 90$
3. starting from $\mathbf{P}_{2}^{(0)}, \hat{\mathbf{X}}_{1: k}^{(0)}$ minimize the reprojection error (17)

$$
\left(\hat{\mathbf{X}}_{1: k}^{*}, \mathbf{F}^{*}\right)=\arg \min _{\mathbf{F}, \hat{\mathbf{X}}_{1: k}} \sum_{i=1}^{k} \mathbf{e}_{i}^{2}\left(\mathbf{Z}_{i} \mid \hat{\mathbf{Z}}_{i}\left(\hat{\mathbf{X}}_{i}, \mathbf{P}_{2}(\mathbf{F})\right)\right)
$$

where

$$
\hat{\mathbf{Z}}_{i}=\left(\hat{\mathbf{x}}_{i}, \hat{\mathbf{y}}_{i}\right) \quad(\text { Cartesian }), \quad \hat{\hat{\mathbf{x}}}_{i} \simeq \mathbf{P}_{1} \underline{\hat{\mathbf{X}}}_{i}, \quad \hat{\hat{\mathbf{y}}}_{i} \simeq \mathbf{P}_{2}(\mathbf{F}) \underline{\hat{\mathbf{X}}}_{i} \text { (homogeneous) }
$$

- non-linear, non-convex problem
- solves \mathbf{F} estimation and triangulation of all k points jointly
- the solver would be quite slow
- $3 k+7$ parameters to be found: latent: $\hat{\mathbf{X}}_{i}$, for all i (correspondences!), non-latent: \mathbf{F}
- we need minimal representations for $\hat{\mathbf{X}}_{i}$ and \mathbf{F}
$\rightarrow 153$ or introduce constraints
- there are other pitfalls; this is essentially bundle adjustment; we will return to this later

Method 2: First-Order Error Approximation

An elegant method for solving problems like (18):

- we will get rid of the latent parameters \hat{X} needed for obtaining the correction
[H\&Z, p. 287], [Sampson 1982]
- we will recycle the algebraic error $\varepsilon=\underline{\mathbf{y}}^{\top} \mathbf{F} \underline{\mathbf{x}}$ from $\rightarrow 85$
- consider matches \mathbf{Z}_{i}, correspondences $\hat{\mathbf{Z}}_{i}$, and reprojection error $\mathbf{e}_{i}=\left\|\mathbf{Z}_{i}-\hat{\mathbf{Z}}_{i}\right\|^{2}$
- correspondences satisfy $\underline{\hat{\mathbf{y}}}_{i}^{\top} \mathbf{F} \underline{\hat{\mathbf{x}}}_{i}=0, \quad \quad \underline{\hat{\mathbf{x}}}_{i}=\left(\hat{u}^{1}, \hat{v}^{1}, 1\right), \underline{\hat{\mathbf{y}}}_{i}=\left(\hat{u}^{2}, \hat{v}^{2}, 1\right)$
- this is a manifold $\mathcal{V}_{F} \in \mathbb{R}^{4}$: a set of points $\hat{\mathbf{Z}}=\left(\hat{u}^{1}, \hat{v}^{1}, \hat{u}^{2}, \hat{v}^{2}\right) \in \mathbb{R}^{4}$ consistent with \mathbf{F}
- algebraic error vanishes for $\hat{\mathbf{Z}}_{i}$:

$$
\mathbf{0}=\boldsymbol{\varepsilon}_{i}\left(\hat{\mathbf{Z}}_{i}\right)=\underline{\hat{\mathbf{y}}}_{i}^{\top} \mathbf{F} \underline{\hat{\mathbf{x}}}_{i}
$$

$$
\varepsilon(\mathbf{Z}) \text { is a function of } \mathbf{Z}
$$

Sampson's idea: Linearize the algebraic error $\varepsilon(\mathbf{Z})$ at \mathbf{Z}_{i} (where it is non-zero) and evaluate the resulting linear function at $\hat{\mathbf{Z}}_{i}$ (where it is zero). The zero-crossing replaces \mathcal{V}_{F} by a linear manifold \mathcal{L}. The point on \mathcal{V}_{F} closest to \mathbf{Z}_{i} is replaced by the closest point on \mathcal{L}.

$$
\begin{aligned}
& \mathcal{L}:\left(0=\varepsilon_{i}\left(\hat{\mathbf{Z}}_{i}\right) \approx \varepsilon_{i}\left(\mathbf{Z}_{i}\right)+\frac{\partial \varepsilon_{i}\left(\mathbf{Z}_{i}\right)}{\partial \mathbf{Z}_{i}}\left(\hat{\mathbf{Z}}_{i}-\mathbf{Z}_{i}\right) \quad \text { linear in } \hat{\mathbf{Z}}_{i}\right. \\
& \quad \varepsilon_{i}\left(\hat{Z}_{i} \mid F\right) \quad
\end{aligned}
$$

-Sampson's Approximation of Reprojection Error

- linearize $\boldsymbol{\varepsilon}(\mathbf{Z})$ at match \mathbf{Z}_{i}, evaluate it at correspondence $\hat{\mathbf{Z}}_{i}$

$$
\text { translates } \varepsilon \rightarrow e
$$

$$
\boldsymbol{\varepsilon}_{i}\left(\mathbf{Z}_{i}\right)+\underbrace{\frac{\partial \boldsymbol{\varepsilon}_{i}\left(\mathbf{Z}_{i}\right)}{\partial \mathbf{Z}_{i}}}_{\mathbf{J}_{i}\left(\mathbf{Z}_{i}\right)} \underbrace{\left(\hat{\mathbf{Z}}_{i}-\mathbf{Z}_{i}\right)}_{\mathbf{e}_{i}\left(\hat{\mathbf{Z}}_{i}, \mathbf{Z}_{i}\right)} \stackrel{\text { def }}{=} \underbrace{\boldsymbol{\varepsilon}_{i}\left(\mathbf{Z}_{i}\right)}_{\text {given }}+\mathbf{J}_{i}\left(\mathbf{Z}_{i}\right) \underbrace{\mathbf{e}_{i}\left(\hat{\mathbf{Z}}_{i}, \mathbf{Z}_{i}\right)}_{\text {wanted }}=\boldsymbol{\varepsilon}_{i}\left(\hat{\mathbf{Z}}_{i}\right) \stackrel{!}{=} 0
$$

- goal: compute function $\mathbf{e}_{i}(\cdot)$ from $\varepsilon_{i}(\cdot)$, where $\mathbf{e}_{i}(\cdot)$ is the distance of $\hat{\mathbf{Z}}_{i}$ from \mathbf{Z}_{i}
- we have a linear underconstrained equation for $\mathbf{e}_{i}(\cdot)$
- we look for a minimal $\mathbf{e}_{i}(\cdot)$ per match i

$$
\mathbf{e}_{i}(\cdot)^{*}=\arg \min _{\mathbf{e}_{i}(\cdot)}\left\|\mathbf{e}_{i}(\cdot)\right\|^{2} \quad \text { subject to } \quad \boldsymbol{\varepsilon}_{i}(\cdot)+\mathbf{J}_{i}(\cdot) \mathbf{e}_{i}(\cdot)=0
$$

- which has a closed-form solution note that $\mathbf{J}_{i}(\cdot)$ is not invertible!

$$
\begin{align*}
\mathbf{e}_{i}^{*}(\cdot) & =-\mathbf{J}_{i}^{\top}\left(\mathbf{J}_{i} \mathbf{J}_{i}^{\top}\right)^{-1} \boldsymbol{\varepsilon}_{i}(\cdot) \quad \text { pseudo-inverse } \\
\left\|\mathbf{e}_{i}^{*}(\cdot)\right\|^{2} & =\boldsymbol{\varepsilon}_{i}^{\top}(\cdot)\left(\mathbf{J}_{i} \mathbf{J}_{i}^{\top}\right)^{-1} \varepsilon_{i}(\cdot) \tag{20}
\end{align*}
$$

- this maps $\varepsilon_{i}(\cdot)$ to an estimate of $\mathbf{e}_{i}(\cdot)$ per correspondence
- we need $\left\|\mathbf{e}_{i}\right\|^{2}$ for the \mathbf{F} estimation, we will need \mathbf{e}_{i} for triangulation in the golden-standard alg. $\rightarrow 108$
- the unknown parameters \mathbf{F} are inside: $\mathbf{e}_{i}=\mathbf{e}_{i}(\mathbf{F}), \varepsilon_{i}=\boldsymbol{\varepsilon}_{i}(\mathbf{F}), \mathbf{J}_{i}=\mathbf{J}_{i}(\mathbf{F})$

Example：Fitting A Circle To Scattered Points

Problem：Fit an origin－centered circle $\mathcal{C}:\|\mathbf{x}\|^{2}-r^{2}=0$ to a set of 2D points $Z=\left\{x_{i}\right\}_{i=1}^{k}$
1．consider radial error as the＇algebraic error＇$\varepsilon(\mathbf{x})=\|\mathbf{x}\|^{2}-r^{2}$
＇arbitrary＇choice
2．linearize it at $\hat{\mathrm{x}}$
we are dropping i in $\varepsilon_{i}, \mathbf{e}_{i}$ etc for clarity

$$
\underbrace{\varepsilon(\hat{\mathbf{x}}) \approx \varepsilon(\mathbf{x})+\underbrace{\frac{\partial \varepsilon(\mathbf{x})=2 \mathbf{x}^{\top}}{\partial \mathbf{x}}} \underbrace{(\hat{\mathrm{x}}-\mathbf{x})}_{\mathrm{e}(\hat{x}, \mathbf{x})}}=\cdots=2 \mathbf{x}^{\top} \hat{\mathbf{x}}-\left(r^{2}+\|\mathbf{x}\|^{2}\right) \stackrel{\text { wef }}{=} \varepsilon_{L}(\hat{\mathrm{x}})
$$

$\boldsymbol{\varepsilon}_{L}(\hat{\mathbf{x}})=0$ is a line with normal $\frac{\mathbf{x}}{\|\mathbf{x}\|}$ and intercept $\frac{r^{2}+\|\mathbf{x}\|^{2}}{2\|\mathbf{x}\|}$
not tangent to \mathcal{C} ，outside！
3．using（20），express error approximation \mathbf{e}^{*} as

$$
\begin{aligned}
\left\|\mathbf{e}^{*}\right\|^{2} & =\varepsilon^{\top}\left(\mathbf{J} \mathbf{J}^{\top}\right)^{-1} \boldsymbol{\varepsilon}=\frac{\left(\|\mathbf{x}\|^{2}-r^{2}\right)^{2}}{4\|\mathbf{x}\|^{2}} \\
r^{*} & =\arg \min _{r} \sum_{i=1}^{k} \frac{\left(\left\|\mathbf{x}_{i}\right\|^{2}-r^{2}\right)^{2}}{4\left\|\mathbf{x}_{i}\right\|^{2}}=\cdots=\left(\frac{1}{k} \sum_{i=1}^{k} \frac{1}{\left\|\mathbf{x}_{i}\right\|^{2}}\right)^{-\frac{1}{2}}
\end{aligned}
$$

－this example results in a convex quadratic optimization problem
－note that the＇algebraic error＇minimizer is different：

$$
\arg \min _{r} \sum_{i=1}^{k}\left(\left\|\mathbf{x}_{i}\right\|^{2}-r^{2}\right)^{2}=\left(\frac{1}{k} \sum_{i=1}^{k}\left\|\mathbf{x}_{i}\right\|^{2}\right)^{\frac{1}{2}}
$$

Circle Fitting: Some Results

opt: 1.8, Smp: 1.9, dir: 2.3
big radial noise

$1.6,1.8,2.6$
medium isotropic noise

1.8, 2.0, 2.2
big isotropic noise

1.6, 2.0, 2.4
mean ranks over 10000 random trials with $k=32$ samples; smaller is better

```
solid green - ground truth
    solid red - Sampson error e minimizer
    solid blue - direct algebraic radial error }\varepsilon\mathrm{ minimizer
dashed black - optimal estimator for isotropic error
```

optimal estimator for isotropic error (black, dashed):

$$
r \approx \frac{3}{4 k} \sum_{i=1}^{k}\left\|\mathbf{x}_{i}\right\|+\sqrt{\left(\frac{3}{4 k} \sum_{i=1}^{k}\left\|\mathbf{x}_{i}\right\|\right)^{2}-\frac{1}{2 k} \sum_{i=1}^{k}\left\|\mathbf{x}_{i}\right\|^{2}}
$$

which method is better?

- error should model noise, radial noise and isotropic noise behave differently
- ground truth: Normally distributed isotropic error, Gamma-distributed radial error
(!) the devil is hiding there
- Sampson: better for the radial distribution model; Direct: better for the isotropic model
- no matter how corrected, the algebraic error minimizer is not an unbiased parameter estimator

Cramér-Rao bound tells us how close one can get with unbiased estimator and given k

Discussion：On The Art of Probabilistic Model Design．．．

－a few probabilistic models for fitting zero－centered circle C of radius r to points in \mathbb{R}^{2}
marginalized over C

－$N\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$

$p(\mathbf{x} \mid r)$

$$
\approx \frac{1}{\sigma \sqrt{(2 \pi)^{3} r\|\mathbf{x}\|}} e^{-\frac{(\|\mathbf{x}\|-r)^{2}}{2 \sigma^{2}}}
$$

－mode inside the circle
－models the inside well
－tends to normal distribution
orthogonal deviation from C

$\frac{1}{2 \pi \Gamma\left(\frac{r^{2}}{\sigma}\right)} \frac{1}{\|\mathbf{x}\|^{2}}\left(\frac{r\|\mathbf{x}\|}{\sigma}\right)^{\frac{r^{2}}{\sigma}} e^{-\frac{r\|\mathbf{x}\|}{\sigma}}$
－peak at the center
－unusable for small radii
－tends to Dirac distribution

Sampson approximation

$$
\frac{1}{r \sigma \sqrt{(2 \pi)^{3}}} e^{-\frac{e^{2}(\mathbf{x} ; r)}{2 \sigma^{2}}}
$$

－mode at the circle
－hole at the center
－tends to normal distribution

- Sampson Error for Fundamental Matrix Manifold

The（signed）epipolar algebraic error is
assuming finite points

$$
\varepsilon_{i}(\mathbf{F})=\underline{\mathbf{y}}_{i}^{\top} \mathbf{F} \underline{\mathbf{x}}_{i}, \quad \underline{\mathbf{x}}_{i}=\left(u_{i}^{1}, v_{i}^{1}, 1\right), \quad \underline{\mathbf{y}}_{i}=\left(u_{i}^{2}, v_{i}^{2}, 1\right), \quad \varepsilon_{i} \in \mathbb{R}
$$

Let $\mathbf{F}=\left[\begin{array}{lll}\mathbf{F}_{1} & \mathbf{F}_{2} & \mathbf{F}_{3}\end{array}\right]$（per columns）$=\left[\begin{array}{c}\left(\mathbf{F}^{1}\right)^{\top} \\ \left(\mathbf{F}^{2}\right)^{\top} \\ \left(\mathbf{F}^{3}\right)^{\top}\end{array}\right]$（per rows）， $\mathbf{S}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ ，then

Sampson

$$
\begin{aligned}
& \mathbf{J}_{i}(\mathbf{F})=\left[\frac{\partial \varepsilon_{i}(\mathbf{F})}{\partial u_{i}^{1}}, \frac{\partial \varepsilon_{i}(\mathbf{F})}{\partial v_{i}^{1}}, \frac{\partial \varepsilon_{i}(\mathbf{F})}{\partial u_{i}^{2}}, \frac{\partial \varepsilon_{i}(\mathbf{F})}{\partial v_{i}^{2}}\right] \\
& =\left[\left(\mathbf{F}_{1}\right)^{\top} \underline{\mathbf{y}_{i}},\left(\mathbf{F}_{2}\right)^{\top} \underline{\mathbf{y}_{i}},\left(\mathbf{F}^{1}\right)^{\top} \underline{\mathbf{x}}_{i},\left(\mathbf{F}^{2}\right)^{\top} \underline{\mathbf{x}}_{i}\right]=\left[\begin{array}{c}
\mathbf{S F}^{\top} \mathbf{y}_{i} \\
\mathbf{S F} \underline{\mathbf{x}}_{i}
\end{array}\right]^{\top} \\
& \mathbf{e}_{i}(\mathbf{F})=-\frac{\mathbf{J}_{i}^{\top}(\mathbf{F}) \varepsilon_{i}(\mathbf{F})}{\left\|\mathbf{J}_{i}(\mathbf{F})\right\|^{2}} \\
& \mathbf{J}_{i} \in \mathbb{R}^{1,4} \\
& \text { derivatives over } \\
& \text { point coordinates } \\
& e_{i}(\mathbf{F}) \stackrel{\text { def }}{=}\left\|\mathbf{e}_{i}(\mathbf{F})\right\|=\frac{\varepsilon_{i}(\mathbf{F})}{\left\|\mathbf{J}_{i}(\mathbf{F})\right\|}=\frac{\left|\underline{\mathbf{y}}_{i}^{\top} \mathbf{F} \underline{\mathbf{x}}_{i}\right|}{\sqrt{\left\|\mathbf{S F} \underline{\mathbf{x}}_{i}\right\|^{2}+\left\|\mathbf{S F}^{\top} \underline{\mathbf{y}}_{i}\right\|^{2}}} \\
& \mathbf{e}_{i}(\mathbf{F}) \in \mathbb{R}^{4} \\
& \text { Sampson error vector } \\
& \text { - generalization for infinite points is easy } \\
& \text { - Sampson error 'normalizes' the algebraic error } \\
& \text { - automatically copes with multiplicative factors } \mathbf{F} \mapsto \lambda \mathbf{F} \\
& \text { - the actual optimization not yet covered } \rightarrow 112 \\
& F \rightarrow \lambda F \quad \lambda \neq 0 \\
& \text { scalar Sampson error } \\
& L=\sum_{i=1}^{c} e_{i}^{2}(F)
\end{aligned}
$$

-Sampson Error for Triangulation: The Golden Standard Triangulation Method

Given $\mathbf{P}_{1}, \mathbf{P}_{2}$ and a correspondence $x \leftrightarrow y$, look for 3D point \mathbf{X} projecting to x and y

Idea:

1. if not given, compute \mathbf{F} from $\mathbf{P}_{1}, \widehat{\mathbf{P}_{2}}$, e.g. $\mathbf{F}=\left(\mathbf{Q}_{1} \mathbf{Q}_{2}^{-1}\right)^{\top}\left[\mathbf{q}_{1}-\left(\mathbf{Q}_{1} \mathbf{Q}_{2}^{-1}\right) \mathbf{q}_{2}\right]_{\times}$
2. correct the measurement by the linear estimate of the correction vector $\mathbf{e}_{i}(\mathbf{F})$

$$
\left[\begin{array}{c}
\hat{u}^{1} \tag{ب91}\\
\hat{v}^{1} \\
\hat{u}^{2} \\
\hat{v}^{2}
\end{array}\right] \approx\left[\begin{array}{l}
u^{1} \\
v^{1} \\
u^{2} \\
v^{2}
\end{array}\right] \underbrace{-\frac{\varepsilon}{\|\mathbf{J}\|^{2}} \mathbf{J}^{\top}}_{\mathbf{e}_{i}(\mathbf{F})}=\left[\begin{array}{c}
u^{1} \\
v^{1} \\
u^{2} \\
v^{2}
\end{array}\right]-\frac{\mathbf{y}^{\top} \mathbf{F} \underline{\mathbf{x}}}{\|\mathbf{S F} \underline{x}\|^{2}+\left\|\mathbf{S F}^{\top} \underline{\mathbf{y}}\right\|^{2}}\left[\begin{array}{l}
\left(\mathbf{F}_{1}\right)^{\top} \underline{\mathbf{y}} \\
\left(\mathbf{F}_{2}\right)^{\top} \underline{\mathbf{y}} \\
\left(\mathbf{F}^{1}\right)^{\top} \underline{\mathbf{x}} \\
\left(\mathbf{F}^{2}\right)^{\top} \underline{\mathbf{x}}
\end{array}\right]
$$

3. use the SVD triangulation algorithm with numerical conditioning

Ex (cont'd from $\rightarrow 97$):

X_{T} - noiseless ground truth position

- - reprojection error minimizer
X_{s} - Sampson-corrected algebraic error minimizer
X_{a} - algebraic error minimizer
m - measurement (m_{T} with noise in v^{2})

$$
\begin{array}{|cc|}
\hline C_{2} & m_{s}{ }^{m}{ }^{m} m_{a_{--}} \\
\bullet e_{2} & m_{T} \\
\hline
\end{array}
$$

Back to Fundamental Matrix Estimation

Goal: Given a set $X=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{k}$ of $k \gg 7$ inlier correspondences, compute a statistically efficient estimate for fundamental matrix \mathbf{F} (or essential matrix \mathbf{E}).

What we have so far

- 7-point algorithm for \mathbf{F} (5-point algorithm for \mathbf{E}) $\rightarrow 85$
- definition of Sampson error per correspondence $e_{i}\left(\mathbf{F} \mid x_{i}, y_{i}\right) \rightarrow 107$
- triangulation requiring an optimal \mathbf{F}

What we need

- correspondence recognition
- an optimization algorithm for many $(k \gg 7)$ correspondences
see later $\rightarrow 116$ comes next

$$
\mathbf{F}^{*}=\arg \min _{\mathbf{F}} \sum_{i=1}^{k} e_{i}^{2}(\mathbf{F} \mid X)
$$

- the 7-point estimate is a good starting point \mathbf{F}_{0}

Levenberg-Marquardt (LM) Iterative Optimization in a Nutshell

Consider error function $\mathbf{e}_{i}(\boldsymbol{\theta})=f\left(\mathbf{x}_{i}, \mathbf{y}_{i}, \boldsymbol{\theta}\right) \in \mathbb{R}^{m}$, with $\mathbf{x}_{i}, \mathbf{y}_{i}$ given, $\boldsymbol{\theta} \in \mathbb{R}^{q}$ unknown
Our goal: $\quad \boldsymbol{\theta}^{*}=\arg \min _{\boldsymbol{\theta}} \sum_{i_{=1}^{2}}^{k}\left\|\mathbf{e}_{i}(\boldsymbol{\theta})\right\|^{2}$
Idea 1 (Gauss-Newton approximation): proceed iteratively for $s=0,1,2, \ldots$

Then the solution to Problem (21) is a set of 'normal eqs'

$$
\begin{equation*}
-\underbrace{\sum_{i=1}^{k} \mathbf{L}_{i}^{\top} \mathbf{e}_{i}\left(\boldsymbol{\theta}^{s}\right)}_{\mathbf{e} \in \mathbb{R}^{q, 1}}=\underbrace{\left(\sum_{i=1}^{k} \mathbf{L}_{i}^{\top} \mathbf{L}_{i}\right)}_{\mathbf{L} \in \mathbb{R}^{q, q}} \mathbf{d}_{s}, \tag{22}
\end{equation*}
$$

- \mathbf{d}_{s} can be solved for by Gaussian elimination using Choleski decomposition of \mathbf{L}

L (large) symmetric PSD \Rightarrow use Choleski, almost $2 \times$ faster than Gauss-Seidel, see bundle adjustment

- beware of rank defficiency in \mathbf{L} when k is small
- such updates do not lead to stable convergence \longrightarrow ideas of Levenberg and Marquardt

LM (cont'd)

Idea 2 (Levenberg): replace $\sum_{i} \mathbf{L}_{i}^{\top} \mathbf{L}_{i}$ with $\sum_{i} \mathbf{L}_{i}^{\top} \mathbf{L}_{i}+\lambda \mathbf{I}$ for some damping factor $\lambda \geq 0$ Idea 3 (Marquardt): replace $\lambda \mathbf{I}$ with $\lambda \sum_{i} \operatorname{diag}\left(\mathbf{L}_{i}^{\top} \mathbf{L}_{i}\right)$ to adapt to local curvature:

$$
-\sum_{i=1}^{k} \mathbf{L}_{i}^{\top} \mathbf{e}_{i}\left(\boldsymbol{\theta}^{s}\right)=\left(\sum_{i=1}^{k}\left(\mathbf{L}_{i}^{\top} \mathbf{L}_{i}+\lambda \operatorname{diag}\left(\mathbf{L}_{i}^{\top} \mathbf{L}_{i}\right)\right)\right) \mathbf{d}_{s}
$$

Idea 4 (Marquardt): adaptive λ

$$
\text { small } \lambda \rightarrow \text { Gauss-Newton, large } \lambda \rightarrow \text { gradient descend }
$$

1. choose $\lambda \approx 10^{-3}$ and compute \mathbf{d}_{s}
2. if $\sum_{i}\left\|\mathbf{e}_{i}\left(\boldsymbol{\theta}^{s}+\mathbf{d}_{s}\right)\right\|^{2}<\sum_{i}\left\|\mathbf{e}_{i}\left(\boldsymbol{\theta}^{s}\right)\right\|^{2}$ then accept \mathbf{d}_{s} and set $\lambda:=\lambda / 10, s:=s+1 \quad$ better: Armijo's rule
3. otherwise set $\lambda:=10 \lambda$ and recompute \mathbf{d}_{s}

- sometimes different constants are needed for the 10 and 10^{-3}
- note that $\mathbf{L}_{i} \in \mathbb{R}^{m, q}$ (long matrix) but each contribution $\mathbf{L}_{i}^{\top} \mathbf{L}_{i}$ is a square singular $q \times q$ matrix (always singular for $k<q$)
- λ helps avoid the consequences of gauge freedom $\rightarrow 146$
- the error function can be made robust to outliers $\rightarrow 117$
- we have approximated the least squares Hessian by ignoring second derivatives of the error function (Gauss-Newton approximation)

See [Triggs et al. 1999, Sec. 4.3]

- a good book on convex optimization: [Boyd and Vandenberghe(2009)]

LM with Sampson Error for Fundamental Matrix Estimation

Sampson（derived by linearization over point coordinates $u^{1}, v^{1}, u^{2}, v^{2}$ ）

$$
e_{i}(\mathbf{F})=\frac{\varepsilon_{i}}{\left\|\mathbf{J}_{i}\right\|}=\frac{\underline{\mathbf{y}}_{i}^{\top} \mathbf{F} \underline{\mathbf{x}}_{i}}{\sqrt{\left\|\mathbf{S F} \underline{\mathbf{x}}_{i}\right\|^{2}+\left\|\mathbf{S F}^{\top} \underline{\mathbf{y}}_{i}\right\|^{2}}} \quad \text { where } \quad \mathbf{S}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

LM（by linearization over parameters \mathbf{F} ）

$$
\begin{equation*}
\mathbf{L}_{i}=\frac{\partial e_{i}(\mathbf{F})}{\partial \mathbf{F}}=\cdots=\frac{1}{2\left\|\mathbf{J}_{i}\right\|}\left[\left(\underline{\mathbf{y}}_{i}-\frac{2 e_{i}(\mathbf{F})}{\left\|\mathbf{J}_{i}\right\|} \mathbf{S F} \underline{\mathbf{x}}_{i}\right) \underline{\mathbf{x}}_{i}^{\top}+\underline{\mathbf{y}}_{i}\left(\underline{\mathbf{x}}_{i}-\frac{2 e_{i}(\mathbf{F})}{\left\|\mathbf{J}_{i}\right\|} \mathbf{S F}^{\top} \underline{\mathbf{y}}_{i}\right)^{\top}\right] \tag{23}
\end{equation*}
$$

－ \mathbf{L}_{i} in（23）is a 3×3 matrix，must be reshaped to dimension－ 9 vector $\operatorname{vec}\left(\mathbf{L}_{i}\right)$ to be used in LM
－$\underline{\mathbf{x}}_{i}$ and $\underline{\mathbf{y}}_{i}$ in Sampson error are normalized to unit homogeneous coordinate
（23）relies on this
－reinforce $\operatorname{rank} \mathbf{F}=2$ after each LM update to stay on the fundamental matrix manifold and $\|\mathbf{F}\|=1$ to avoid gauge freedom
by SVD $\rightarrow 113$
－LM linearization could be done by numerical differentiation（we can afford it，we have a small dimension here）

Local Optimization for Fundamental Matrix Estimation

Summary so far

- Given a set $X=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{k}$ of $k \gg 7$ inlier correspondences, compute a statistically efficient estimate for fundamental matrix \mathbf{F}.

1. Find the conditioned $(\rightarrow 93)$ 7-point $\mathbf{F}_{0}(\rightarrow 85)$ from a suitable 7-tuple
2. Improve the \mathbf{F}_{0}^{*} using the LM optimization $(\rightarrow 110-111)$ and the Sampson error $(\rightarrow 112)$ on all inliers, reinforce rank-2, unit-norm \mathbf{F}_{k}^{*} after each LM iteration using SVD

Partial conceptualization

- inlier = a correspondence (a true match)
- Outlier = a non-correspondence
- binary inlier/outlier labels are hidden
- we can get their likely estimate only, with respect to a model

We are not yet done

- if there are no wrong correspondences (mismatches, outliers), this gives a local optimum given the 7-point initial estimate
- the algorithm breaks under contamination of (inlier) correspondences by outliers
- the full problem involves finding the inliers!
- in addition, we need a mechanism for jumping out of local minima (and exploring the space of all fundamental matrices)

Thank You

c_{1}

O

c_{1}

