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Module II

Perspective Camera

2.1Basic Entities: Points, Lines

2.2Homography: Mapping Acting on Points and Lines

2.3Canonical Perspective Camera

2.4Changing the Outer and Inner Reference Frames

2.5Projection Matrix Decomposition

2.6Anatomy of Linear Perspective Camera

2.7Vanishing Points and Lines

covered by

[H&Z] Secs: 2.1, 2.2, 3.1, 6.1, 6.2, 8.6, 2.5, Example: 2.19
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▶Basic Geometric Entities, their Representation, and Notation

• entities have names and representations

• names and their components:

entity in 2-space in 3-space

point m = (u, v) X = (x, y, z)

line n O

plane π, φ

• associated vector representations

m =

[
u
v

]
= [u, v]⊤, X =

xy
z

 , n

will also be written in an ‘in-line’ form as m = (u, v), X = (x, y, z), etc.

• vectors are always meant to be columns x ∈ Rn×1

• associated homogeneous representations

m= [m1,m2,m3]
⊤, X= [x1, x2, x3, x4]

⊤, n

‘in-line’ forms: m= (m1,m2,m3), X= (x1, x2, x3, x4), etc.

• matrices are Q ∈ Rm×n, linear map of a Rn×1 vector is y = Qx

• j-th element of vector mi is (mi)j ; element i, j of matrix P is Pij
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▶Image Line (in 2D)

a finite line in the 2D (u, v) plane (u, v) ∈ R2 s.t. a u+ b v + c = 0

has a parameter (homogeneous) vector n ≃ (a, b, c) , ∥n∥ ̸= 0

and there is an equivalence class for λ ∈ R, λ ̸= 0 (λa, λb, λc) ≃ (a, b, c)

‘Finite’ lines

• standard representative for finite n= (n1, n2, n3) is λn, where λ = 111√
n2
1+n2

2

assuming n2
1 + n2

2 ̸= 0; 111 is the unit, usually 111 = 1

‘Infinite’ line

• we augment the set of lines for a special entity called the line at infinity (ideal line)

n∞ ≃ (0, 0,111) (standard representative)

• the set of equivalence classes of vectors in R3 \ (0, 0, 0) forms the projective space P2 a set of rays →21

• line at infinity is a proper member of P2

• I may sometimes wrongly use = instead of ≃, if you are in doubt, ask me
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▶Image Point

Finite point m = (u, v) is incident on a finite line n= (a, b, c) iff iff = works either way!

a u+ b v + c = 0

can be rewritten as (with scalar product): (u, v,111) · (a, b, c) = m⊤n= 0

’Finite’ points

• a finite point is also represented by a homogeneous vector m≃ (u, v,111) , ∥m∥ ≠ 0

• the equivalence class for λ ∈ R, λ ̸= 0 is (m1, m2, m3) = λm≃ m

• the standard representative for finite point m is λm, where λ = 111
m3

assuming m3 ̸= 0

• when 111 = 1 then units are pixels and λm= (u, v, 1)

• when 111 = f then all elements have a similar magnitude, f ∼ image diagonal
use 111 = 1 unless you know what you are doing;

all entities participating in a formula must be expressed in the same units

’Infinite’ points

• we augment for points at infinity (ideal points) m∞ ≃ (m1,m2, 0) proper members of P2

• all such points lie on the line at infinity (ideal line) n∞ ≃ (0, 0, 1), i.e. m⊤
∞ n∞ = 0

3D Computer Vision: II. Perspective Camera (p. 19/197) R. Šára, CMP; rev. 26–Sep–2023



▶Line Intersection and Point Join

The point of intersection m of image lines n and n′, n ̸≃ n′ is

m≃ n× n′

n′

n

m

proof: If m= n× n′ is the intersection point, it
must be incident on both lines. Indeed, using
known equivalences from vector algebra

n⊤ (n× n′)︸ ︷︷ ︸
m

≡ n′⊤ (n× n′)︸ ︷︷ ︸
m

≡ 0

The join n of two image points m and m′, m ̸≃ m′ is

n≃ m×m′ m

n

m′

Paralel lines intersect (somewhere) on the line at infinity n∞ ≃ (0, 0, 1):

a u+ b v + c = 0,

a u+ b v + d = 0, d ̸= c

(a, b, c)× (a, b, d) ≃ (b,−a, 0)

• all such intersections lie on n∞

• line at infinity therefore represents the set of (unoriented) directions in the plane

• Matlab: m = cross(n, n prime);
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▶Homography in P2

λx2

x1

x2
(0, 0, 0)

x3

the representatives

elements of P2

a plane selecting

R3

Projective plane P2: Vector space of dimension 3 excluding the
zero vector, R3 \ (0, 0, 0), factorized to linear equivalence classes
(‘rays’), x≃ λx, λ ̸= 0 including ‘points at infinity’

we call x ∈ P2 ‘points’

Homography in P2: Non-singular linear mapping in P2 an analogic definition for P3

x′ ≃ Hx, H ∈ R3,3 non-singular

Defining properties

• collinear points are mapped to collinear points lines of points are mapped to lines of points

• concurrent lines are mapped to concurrent lines concurrent = intersecting at a point
• and point-line incidence is preserved e.g. line intersection points mapped to line intersection points

• H is a 3× 3 non-singular matrix, λH ≃ H equivalence class, 8 degrees of freedom
• homogeneous matrix representative: detH = 1 H ∈ SL(3)

• what we call homography here is often called ‘projective collineation’ in mathematics
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▶Mapping 2D Points and Lines by Homography

H−⊤

H

m′ ≃ Hm (image) point

n′ ≃ H−⊤n (image) line H−⊤ = (H−1)⊤ = (H⊤)−1

• incidence is preserved: (m′)⊤n′ ≃ m⊤H⊤H−⊤n= m⊤n= 0

Mapping a finite 2D point m = (u, v) to m= (u′, v′)

1. extend the Cartesian (pixel) coordinates to homogeneous coordinates, m= (u, v,111)

2. map by homography, m′ = Hm

3. if m′
3 ̸= 0 convert the result m′ = (m′

1,m
′
2,m

′
3) back to Cartesian coordinates (pixels),

u′ =
m′

1

m′
3

111, v′ =
m′

2

m′
3

111

• note that, typically, m′
3 ̸= 1 m′

3 = 1 when H is affine

• an infinite point m= (u, v, 0) maps the same way
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Some Homographic Tasters

Rectification of camera rotation: →59 (geometry), →129 (homography estimation)

H ≃ KR⊤K−1 maps from image plane to facade plane

Homographic Mouse for Visual Odometry: [Mallis 2007]

illustrations courtesy of AMSL Racing Team, Meiji University and LIBVISO: Library for VISual Odometry

H ≃ K
(
R− tn⊤

d

)
K−1 maps from plane to translated plane [H&Z, p. 327]
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▶Homography Subgroups: Euclidean Mapping (aka Rigid Motion)

• Euclidean mapping (EM): rotation, translation and their
combination

H =

cosϕ − sinϕ tx
sinϕ cosϕ ty
0 0 1

 =

[
R t

0⊤ 1

]
∈ SE(2)

• note: action H(x) = Rx+ t : R2 → R2, not commutative

−2 −1 0 1 2 3 4 5 6 7 8 9 10

−1

0

1

2

3

4

5

u

v

rotation by 30◦, then translation by (7, 2)

EM = The most general homography preserving

1. lengths: Let x′
i = H(xi). Then

∥x′
2 − x′

1∥ = ∥H(x2)−H(x1)∥ =
⊛ P1; 1pt

· · · = ∥x2 − x1∥

2. angles check the dot-product of normalized differences from a point (x − z)⊤(y − z) (Cartesian(!))

3. areas: detH = 1 ⇒ unit determinant of the action’s Jacobian J it follows from: J = R, detR = 1

• eigenvalues
(
1, e−iϕ, eiϕ

)
• eigenvectors when ϕ ̸= kπ, k = 0, 1, . . . (columnwise)

e1 ≃

tx + ty cot ϕ
2

ty − tx cot ϕ
2

2

 , e2 ≃

i
1
0

 , e3 ≃

−i
1
0

 e2, e3 – circular points, i – imaginary unit

4. circular points: complex points at infinity (i, 1, 0), (−i, 1, 0) (preserved even by similarity)

• similarity: scaled Euclidean mapping (does not preserve lengths, areas)
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▶Homography Subgroups: Affine Mapping (Affinity)

H =

a11 a12 tx
a21 a22 ty
0 0 1



−2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

−1

0

1

2

3

4

5

u

v

rotation by 30◦

then scaling by diag(1, 1.5, 1)

then translation by (7, 2)

Affinity = The most general homography preserving
• parallelism
• ratio of areas
• ratio of lengths on parallel lines
• linear combinations of vectors (e.g. midpoints, centers of gravity)
• convex hull
• line at infinity n∞ (not pointwise)

does not preserve
• lengths
• angles
• areas
• circular points
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observe H
⊤
n∞ ≃

a11 a21 0
a12 a22 0
tx ty 1

0
0
1

 =

0
0
1

 = n∞ ⇒ n∞ ≃ H
−⊤

n∞



▶Homography Subgroups: General Homography

H =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 H ∈ SL(3)

preserves only

• incidence and concurrency
• collinearity
• cross-ratio (ratio of ratios) on the line →46

does not preserve

• lengths
• areas
• parallelism
• ratio of areas
• ratio of lengths
• linear combinations of vectors
• convex hull
• line at infinity n∞

−2 −1 0 1 2 3 4 5 6 7 8 9

−1

0

1

2

3

4

5

u

v

H =

7 −0.5 6
3 1 3
1 0 1


line n = (1, 0, 1) is mapped to n∞: H−⊤n ≃ n∞

(where in the picture is the line n?)
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Thank You
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