
3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception
Department of Cybernetics

Faculty of Electrical Engineering
Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/tdv/start

http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz

phone ext. 7203

rev. September 26, 2023

Open Informatics Master’s Course

https://cw.fel.cvut.cz/wiki/courses/tdv/start
h
http://cmp.felk.cvut.cz
h
mailto:sara@cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz


Module II

Perspective Camera

2.1Basic Entities: Points, Lines

2.2Homography: Mapping Acting on Points and Lines

2.3Canonical Perspective Camera

2.4Changing the Outer and Inner Reference Frames

2.5Projection Matrix Decomposition

2.6Anatomy of Linear Perspective Camera

2.7Vanishing Points and Lines

covered by

[H&Z] Secs: 2.1, 2.2, 3.1, 6.1, 6.2, 8.6, 2.5, Example: 2.19

3D Computer Vision: II. Perspective Camera (p. 16/197) R. Šára, CMP; rev. 26–Sep–2023



▶Basic Geometric Entities, their Representation, and Notation

• entities have names and representations

• names and their components:

entity in 2-space in 3-space

point m = (u, v) X = (x, y, z)

line n O

plane π, φ

• associated vector representations

m =

[
u
v

]
= [u, v]⊤, X =

xy
z

 , n

will also be written in an ‘in-line’ form as m = (u, v), X = (x, y, z), etc.

• vectors are always meant to be columns x ∈ Rn×1

• associated homogeneous representations

m= [m1,m2,m3]
⊤, X= [x1, x2, x3, x4]

⊤, n

‘in-line’ forms: m= (m1,m2,m3), X= (x1, x2, x3, x4), etc.

• matrices are Q ∈ Rm×n, linear map of a Rn×1 vector is y = Qx

• j-th element of vector mi is (mi)j ; element i, j of matrix P is Pij

3D Computer Vision: II. Perspective Camera (p. 17/197) R. Šára, CMP; rev. 26–Sep–2023



▶Image Line (in 2D)

a finite line in the 2D (u, v) plane (u, v) ∈ R2 s.t. a u+ b v + c = 0

has a parameter (homogeneous) vector n ≃ (a, b, c) , ∥n∥ ̸= 0

and there is an equivalence class for λ ∈ R, λ ̸= 0 (λa, λb, λc) ≃ (a, b, c)

‘Finite’ lines

• standard representative for finite n= (n1, n2, n3) is λn, where λ = 111√
n2
1+n2

2

assuming n2
1 + n2

2 ̸= 0; 111 is the unit, usually 111 = 1

‘Infinite’ line

• we augment the set of lines for a special entity called the line at infinity (ideal line)

n∞ ≃ (0, 0,111) (standard representative)

• the set of equivalence classes of vectors in R3 \ (0, 0, 0) forms the projective space P2 a set of rays →21

• line at infinity is a proper member of P2

• I may sometimes wrongly use = instead of ≃, if you are in doubt, ask me

3D Computer Vision: II. Perspective Camera (p. 18/197) R. Šára, CMP; rev. 26–Sep–2023



▶Image Point

Finite point m = (u, v) is incident on a finite line n= (a, b, c) iff iff = works either way!

a u+ b v + c = 0

can be rewritten as (with scalar product): (u, v,111) · (a, b, c) = m⊤n= 0

’Finite’ points

• a finite point is also represented by a homogeneous vector m≃ (u, v,111) , ∥m∥ ≠ 0

• the equivalence class for λ ∈ R, λ ̸= 0 is (m1, m2, m3) = λm≃ m

• the standard representative for finite point m is λm, where λ = 111
m3

assuming m3 ̸= 0

• when 111 = 1 then units are pixels and λm= (u, v, 1)

• when 111 = f then all elements have a similar magnitude, f ∼ image diagonal
use 111 = 1 unless you know what you are doing;

all entities participating in a formula must be expressed in the same units

’Infinite’ points

• we augment for points at infinity (ideal points) m∞ ≃ (m1,m2, 0) proper members of P2

• all such points lie on the line at infinity (ideal line) n∞ ≃ (0, 0, 1), i.e. m⊤
∞ n∞ = 0

3D Computer Vision: II. Perspective Camera (p. 19/197) R. Šára, CMP; rev. 26–Sep–2023



▶Line Intersection and Point Join

The point of intersection m of image lines n and n′, n ̸≃ n′ is

m≃ n× n′

n′

n

m

proof: If m= n× n′ is the intersection point, it
must be incident on both lines. Indeed, using
known equivalences from vector algebra

n⊤ (n× n′)︸ ︷︷ ︸
m

≡ n′⊤ (n× n′)︸ ︷︷ ︸
m

≡ 0

The join n of two image points m and m′, m ̸≃ m′ is

n≃ m×m′ m

n

m′

Paralel lines intersect (somewhere) on the line at infinity n∞ ≃ (0, 0, 1):

a u+ b v + c = 0,

a u+ b v + d = 0, d ̸= c

(a, b, c)× (a, b, d) ≃ (b,−a, 0)

• all such intersections lie on n∞

• line at infinity therefore represents the set of (unoriented) directions in the plane

• Matlab: m = cross(n, n prime);

3D Computer Vision: II. Perspective Camera (p. 20/197) R. Šára, CMP; rev. 26–Sep–2023



▶Homography in P2

λx2

x1

x2
(0, 0, 0)

x3

the representatives

elements of P2

a plane selecting

R3

Projective plane P2: Vector space of dimension 3 excluding the
zero vector, R3 \ (0, 0, 0), factorized to linear equivalence classes
(‘rays’), x≃ λx, λ ̸= 0 including ‘points at infinity’

we call x ∈ P2 ‘points’

Homography in P2: Non-singular linear mapping in P2 an analogic definition for P3

x′ ≃ Hx, H ∈ R3,3 non-singular

Defining properties

• collinear points are mapped to collinear points lines of points are mapped to lines of points

• concurrent lines are mapped to concurrent lines concurrent = intersecting at a point
• and point-line incidence is preserved e.g. line intersection points mapped to line intersection points

• H is a 3× 3 non-singular matrix, λH ≃ H equivalence class, 8 degrees of freedom
• homogeneous matrix representative: detH = 1 H ∈ SL(3)

• what we call homography here is often called ‘projective collineation’ in mathematics

3D Computer Vision: II. Perspective Camera (p. 21/197) R. Šára, CMP; rev. 26–Sep–2023



▶Mapping 2D Points and Lines by Homography

H−⊤

H

m′ ≃ Hm (image) point

n′ ≃ H−⊤n (image) line H−⊤ = (H−1)⊤ = (H⊤)−1

• incidence is preserved: (m′)⊤n′ ≃ m⊤H⊤H−⊤n= m⊤n= 0

Mapping a finite 2D point m = (u, v) to m= (u′, v′)

1. extend the Cartesian (pixel) coordinates to homogeneous coordinates, m= (u, v,111)

2. map by homography, m′ = Hm

3. if m′
3 ̸= 0 convert the result m′ = (m′

1,m
′
2,m

′
3) back to Cartesian coordinates (pixels),

u′ =
m′

1

m′
3

111, v′ =
m′

2

m′
3

111

• note that, typically, m′
3 ̸= 1 m′

3 = 1 when H is affine

• an infinite point m= (u, v, 0) maps the same way

3D Computer Vision: II. Perspective Camera (p. 22/197) R. Šára, CMP; rev. 26–Sep–2023



Some Homographic Tasters

Rectification of camera rotation: →59 (geometry), →129 (homography estimation)

H ≃ KR⊤K−1 maps from image plane to facade plane

Homographic Mouse for Visual Odometry: [Mallis 2007]

illustrations courtesy of AMSL Racing Team, Meiji University and LIBVISO: Library for VISual Odometry

H ≃ K
(
R− tn⊤

d

)
K−1 maps from plane to translated plane [H&Z, p. 327]

3D Computer Vision: II. Perspective Camera (p. 23/197) R. Šára, CMP; rev. 26–Sep–2023



▶Homography Subgroups: Euclidean Mapping (aka Rigid Motion)

• Euclidean mapping (EM): rotation, translation and their
combination

H =

cosϕ − sinϕ tx
sinϕ cosϕ ty
0 0 1

 =

[
R t

0⊤ 1

]
∈ SE(2)

• note: action H(x) = Rx+ t : R2 → R2, not commutative

−2 −1 0 1 2 3 4 5 6 7 8 9 10

−1

0

1

2

3

4

5

u

v

rotation by 30◦, then translation by (7, 2)

EM = The most general homography preserving

1. lengths: Let x′
i = H(xi). Then

∥x′
2 − x′

1∥ = ∥H(x2)−H(x1)∥ =
⊛ P1; 1pt

· · · = ∥x2 − x1∥

2. angles check the dot-product of normalized differences from a point (x − z)⊤(y − z) (Cartesian(!))

3. areas: detH = 1 ⇒ unit determinant of the action’s Jacobian J it follows from: J = R, detR = 1

• eigenvalues
(
1, e−iϕ, eiϕ

)
• eigenvectors when ϕ ̸= kπ, k = 0, 1, . . . (columnwise)

e1 ≃

tx + ty cot ϕ
2

ty − tx cot ϕ
2

2

 , e2 ≃

i
1
0

 , e3 ≃

−i
1
0

 e2, e3 – circular points, i – imaginary unit

4. circular points: complex points at infinity (i, 1, 0), (−i, 1, 0) (preserved even by similarity)

• similarity: scaled Euclidean mapping (does not preserve lengths, areas)

3D Computer Vision: II. Perspective Camera (p. 24/197) R. Šára, CMP; rev. 26–Sep–2023



▶Homography Subgroups: Affine Mapping (Affinity)

H =

a11 a12 tx
a21 a22 ty
0 0 1



−2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

−1

0

1

2

3

4

5

u

v

rotation by 30◦

then scaling by diag(1, 1.5, 1)

then translation by (7, 2)

Affinity = The most general homography preserving
• parallelism
• ratio of areas
• ratio of lengths on parallel lines
• linear combinations of vectors (e.g. midpoints, centers of gravity)
• convex hull
• line at infinity n∞ (not pointwise)

does not preserve
• lengths
• angles
• areas
• circular points

Euclidean mappings preserve all properties affine mappings preserve, of course3D Computer Vision: II. Perspective Camera (p. 25/197) R. Šára, CMP; rev. 26–Sep–2023

observe H
⊤
n∞ ≃

a11 a21 0
a12 a22 0
tx ty 1

0
0
1

 =

0
0
1

 = n∞ ⇒ n∞ ≃ H
−⊤

n∞



▶Homography Subgroups: General Homography

H =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 H ∈ SL(3)

preserves only

• incidence and concurrency
• collinearity
• cross-ratio (ratio of ratios) on the line →46

does not preserve

• lengths
• areas
• parallelism
• ratio of areas
• ratio of lengths
• linear combinations of vectors
• convex hull
• line at infinity n∞

−2 −1 0 1 2 3 4 5 6 7 8 9

−1

0

1

2

3

4

5

u

v

H =

7 −0.5 6
3 1 3
1 0 1


line n = (1, 0, 1) is mapped to n∞: H−⊤n ≃ n∞

(where in the picture is the line n?)

3D Computer Vision: II. Perspective Camera (p. 26/197) R. Šára, CMP; rev. 26–Sep–2023



Thank You



−2 −1 0 1 2 3 4 5 6 7 8 9

−1

0

1

2

3

4

5

u
v

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 26–Sep–2023


	Perspective Camera
	Basic Entities: Points, Lines
	Homography: Mapping Acting on Points and Lines
	Canonical Perspective Camera
	Changing the Outer and Inner Reference Frames
	Projection Matrix Decomposition
	Anatomy of Linear Perspective Camera
	Vanishing Points and Lines

	End of Slides



