3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

https://cw.fel.cvut.cz/wiki/courses/tdv/start

http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz
phone ext. 7203

rev. September 26, 2023

Open Informatics Master's Course

Module II

Perspective Camera

- 21 Basic Entities: Points, Lines
- 49Homography: Mapping Acting on Points and Lines
- 29 Canonical Perspective Camera
- Ochanging the Outer and Inner Reference Frames
- ²⁹Projection Matrix Decomposition
- ²⁰Anatomy of Linear Perspective Camera
- 20 Vanishing Points and Lines
- covered by

[H&Z] Secs: 2.1, 2.2, 3.1, 6.1, 6.2, 8.6, 2.5, Example: 2.19

Basic Geometric Entities, their Representation, and Notation

- entities have names and representations
- names and their components:

entity	in 2-space	in 3-space
point	m = (u, v)	X = (x, y, z)
line	n	0
plane		π , φ

• associated vector representations

$$\mathbf{m} = \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} u, v \end{bmatrix}^{\top}, \quad \mathbf{X} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad \mathbf{n}$$

will also be written in an 'in-line' form as $\mathbf{m} = (u, v)$, $\mathbf{X} = (x, y, z)$, etc.

- vectors are always meant to be columns $\mathbf{x} \in \mathbb{R}^{n imes 1}$
- associated homogeneous representations

$$\underline{\mathbf{m}} = [m_1, m_2, m_3]^{\top}, \quad \underline{\mathbf{X}} = [x_1, x_2, x_3, x_4]^{\top}, \quad \underline{\mathbf{n}}$$

'in-line' forms: $\underline{\mathbf{m}} = (m_1, m_2, m_3), \ \underline{\mathbf{X}} = (x_1, x_2, x_3, x_4),$ etc.

- matrices are $\mathbf{Q} \in \mathbb{R}^{m imes n}$, linear map of a $\mathbb{R}^{n imes 1}$ vector is $\mathbf{y} = \mathbf{Q} \mathbf{x}$
- *j*-th element of vector \mathbf{m}_i is $(\mathbf{m}_i)_j$; element i, j of matrix \mathbf{P} is \mathbf{P}_{ij}

►Image Line (in 2D)

a finite line in the 2D (u, v) plane $(u, v) \in \mathbb{R}^2$ s.t. a u + b v + c = 0

has a parameter (homogeneous) vector $\mathbf{\underline{n}}\simeq (a,\,b,\,c)$, $\|\mathbf{\underline{n}}\|\neq 0$

and there is an equivalence class for $\lambda \in \mathbb{R}, \lambda \neq 0$ $(\lambda a, \lambda b, \lambda c) \simeq (a, b, c)$

'Finite' lines

• standard representative for <u>finite</u> $\underline{\mathbf{n}} = (n_1, n_2, n_3)$ is $\lambda \underline{\mathbf{n}}$, where $\lambda = \frac{1}{\sqrt{n_1^2 + n_2^2}}$ assuming $n_1^2 + n_2^2 \neq 0$; 1 is the unit, usually $\mathbf{1} = 1$

'Infinite' line

• we augment the set of lines for a special entity called the line at infinity (ideal line)

 $\underline{\mathbf{n}}_{\infty} \simeq (0, 0, \mathbf{1})$ (standard representative)

- the set of equivalence classes of vectors in $\mathbb{R}^3 \setminus (0,0,0)$ forms the projective space \mathbb{P}^2
- line at infinity is a proper member of \mathbb{P}^2
- I may sometimes wrongly use = instead of \simeq , if you are in doubt, ask me

a set of rays $\rightarrow 21$

►Image Point

Finite point $\mathbf{m} = (u, v)$ is incident on a finite line $\underline{\mathbf{n}} = (a, b, c)$ iff

a u + b v + c = 0

can be rewritten as (with scalar product): $(u, v, \mathbf{1}) \cdot (a, b, c) = \mathbf{\underline{m}}^\top \mathbf{\underline{n}} = 0$

'Finite' points

- a finite point is also represented by a homogeneous vector $\mathbf{\underline{m}}\simeq(u,v,\mathbf{1})$, $\|\mathbf{\underline{m}}\|\neq 0$
- the equivalence class for $\lambda \in \mathbb{R}, \, \lambda \neq 0$ is $(m_1, \, m_2, \, m_3) = \lambda \, \underline{\mathbf{m}} \simeq \underline{\mathbf{m}}$
- the standard representative for <u>finite</u> point <u>m</u> is $\lambda \underline{m}$, where $\lambda = \frac{1}{m_3}$
- when $\mathbf{1} = 1$ then units are pixels and $\lambda \mathbf{\underline{m}} = (u, v, 1)$
- when $\mathbf{1} = f$ then all elements have a similar magnitude, $f \sim$ image diagonal

use $\mathbf{1} = 1$ unless you know what you are doing;

all entities participating in a formula must be expressed in the same units

'Infinite' points

- we augment for points at infinity (ideal points) $\ {f m}_\infty\simeq(m_1,m_2,0)$
- proper members of \mathbb{P}^2
- all such points lie on the line at infinity (ideal line) $\mathbf{n}_{\infty} \simeq (0,0,1)$, i.e. $\mathbf{m}_{\infty}^{\top} \mathbf{n}_{\infty} = 0$

assuming $m_3 \neq 0$

iff = works either way!

► Line Intersection and Point Join

The point of intersection m of image lines n and n', $n \not\simeq n'$ is

The join n of two image points m and m', $m \not\simeq m'$ is

 $\mathbf{\underline{n}} \simeq \mathbf{\underline{m}} \times \mathbf{\underline{m}}'$

Paralel lines intersect (somewhere) on the line at infinity $\underline{\mathbf{n}}_{\infty} \simeq (0, 0, 1)$:

$$a u + b v + c = 0,$$

 $a u + b v + d = 0,$
 $(a, b, c) \times (a, b, d) \simeq (b, -a, 0)$
 $d \neq d$

- $\bullet\,$ all such intersections lie on \underline{n}_∞
- line at infinity therefore represents the set of (unoriented) directions in the plane
- Matlab: m = cross(n, n_prime);

3D Computer Vision: II. Perspective Camera (p. 20/197) つくや

proof: If $\underline{\mathbf{m}} = \underline{\mathbf{n}} \times \underline{\mathbf{n}}'$ is the intersection point, it must be incident on both lines. Indeed, using known equivalences from vector algebra

$$\underline{\mathbf{n}}^{\top}\underbrace{(\underline{\mathbf{n}}\times\underline{\mathbf{n}}')}_{\mathbf{m}} \equiv \underline{\mathbf{n}}'^{\top}\underbrace{(\underline{\mathbf{n}}\times\underline{\mathbf{n}}')}_{\mathbf{m}} \equiv \mathbf{0}$$

Homography in \mathbb{P}^2

$$\mathbf{ \underline{x}}'\simeq \mathbf{H}\,\mathbf{ \underline{x}}, \quad \mathbf{H}\in \mathbb{R}^{3,3}$$
 non-singular

Defining properties

- collinear points are mapped to collinear points
- concurrent lines are mapped to concurrent lines
- and point-line incidence is preserved
- H is a 3×3 non-singular matrix, $\lambda H \simeq H$ equivalence class, 8 degrees of freedom
- homogeneous matrix representative: det H = 1
- what we call homography here is often called 'projective collineation' in mathematics

lines of points are mapped to lines of points concurrent = intersecting at a point e.g. line intersection points mapped to line intersection points

 $\mathbf{H} \in SL(3)$

► Mapping 2D Points and Lines by Homography

• incidence is preserved: $(\underline{\mathbf{m}}')^{\top} \underline{\mathbf{n}}' \simeq \underline{\mathbf{m}}^{\top} \mathbf{H}^{\top} \mathbf{H}^{-\top} \underline{\mathbf{n}} = \underline{\mathbf{m}}^{\top} \underline{\mathbf{n}} = 0$

Mapping a finite 2D point $\mathbf{m} = (u, v)$ to $\underline{\mathbf{m}} = (u', v')$

- 1. extend the Cartesian (pixel) coordinates to homogeneous coordinates, $\mathbf{\underline{m}}=(u,v,\mathbf{1})$
- 2. map by homography, $\underline{\mathbf{m}}'=\mathbf{H}\,\underline{\mathbf{m}}$
- 3. if $m'_3 \neq 0$ convert the result $\underline{\mathbf{m}}' = (m'_1, m'_2, m'_3)$ back to Cartesian coordinates (pixels),

$$u' = rac{m_1'}{m_3'} \mathbf{1}, \qquad v' = rac{m_2'}{m_3'} \mathbf{1}$$

- note that, typically, $m'_3 \neq 1$
- an infinite point $\mathbf{\underline{m}}=(u,v,0)$ maps the same way

 $m'_3 = 1$ when **H** is affine

Some Homographic Tasters

Rectification of camera rotation: \rightarrow 59 (geometry), \rightarrow 129 (homography estimation)

 $\mathbf{H}\simeq \mathbf{K}\mathbf{R}^{\top}\mathbf{K}^{-1}$ maps from image plane to facade plane

Homographic Mouse for Visual Odometry: [Mallis 2007]

illustrations courtesy of AMSL Racing Team, Meiji University and LIBVISO: Library for VISual Odometry

$$\mathbf{H} \simeq \mathbf{K} \left(\mathbf{R} - \frac{\mathbf{t} \mathbf{n}^{\top}}{d} \right) \mathbf{K}^{-1}$$

maps from plane to translated plane [H&Z, p. 327]

► Homography Subgroups: Euclidean Mapping (aka Rigid Motion)

 Euclidean mapping (EM): rotation, translation and their combination

$$\mathbf{H} = \begin{bmatrix} \cos\phi & -\sin\phi & t_x \\ \sin\phi & \cos\phi & t_y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{bmatrix} \in \operatorname{SE}(2)$$

• note: action
$$H(\mathbf{x}) = \mathbf{R}\mathbf{x} + \mathbf{t} \colon \mathbb{R}^2 o \mathbb{R}^2$$
, not commutative

EM = The most general homography preserving

1. lengths: Let $\mathbf{x}'_i = H(\mathbf{x}_i)$. Then

rotation by
$$30^\circ$$
, then translation by $(7, 2)$

$$\|\mathbf{x}_{2}' - \mathbf{x}_{1}'\| = \|H(\mathbf{x}_{2}) - H(\mathbf{x}_{1})\| = \overset{()}{\cdots} \overset{\text{P1; 1pt}}{\cdots} = \|\mathbf{x}_{2} - \mathbf{x}_{1}\|$$

2. angles

check the dot-product of normalized differences from a point $(\mathbf{x} - \mathbf{z})^{\top} (\mathbf{y} - \mathbf{z})$ (Cartesian(!)) 3. areas: det $H = 1 \Rightarrow$ unit determinant of the action's Jacobian J it follows from: $\mathbf{J} = \mathbf{R}$, det $\mathbf{R} = 1$

- eigenvalues $(1, e^{-i\phi}, e^{i\phi})$
- eigenvectors when $\phi \neq k\pi$, k = 0, 1, ... (columnwise)

$$\mathbf{e}_1 \simeq \begin{bmatrix} t_x + t_y \cot \frac{\phi}{2} \\ t_y - t_x \cot \frac{\phi}{2} \\ 2 \end{bmatrix}, \quad \mathbf{e}_2 \simeq \begin{bmatrix} i \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{e}_3 \simeq \begin{bmatrix} -i \\ 1 \\ 0 \end{bmatrix}$$

 e_2 , e_3 – circular points, i – imaginary unit

- 4. circular points: complex points at infinity (i, 1, 0), (-i, 1, 0) (preserved even by similarity)
- similarity: scaled Euclidean mapping (does not preserve lengths, areas) ٠

► Homography Subgroups: Affine Mapping (Affinity)

$$\mathbf{H} = \begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Affinity = The most general homography preserving

- parallelism
- ratio of areas
- ratio of lengths on parallel lines
- linear combinations of vectors (e.g. midpoints, centers of gravity)
- convex hull
- line at infinity $\underline{\mathbf{n}}_\infty$ (not pointwise)

does not preserve

- lengths
- angles
- areas
- circular points

$$\text{observe } \mathbf{H}^{\top} \underline{\mathbf{n}}_{\infty} \simeq \begin{bmatrix} a_{11} & a_{21} & 0 \\ a_{12} & a_{22} & 0 \\ t_x & t_y & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \underline{\mathbf{n}}_{\infty} \quad \Rightarrow \quad \underline{\mathbf{n}}_{\infty} \simeq \mathbf{H}^{-\top} \underline{\mathbf{n}}_{\infty}$$

► Homography Subgroups: General Homography

$$\mathbf{H} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \qquad \mathbf{H} \in \mathrm{SL}(3)$$

preserves only

- incidence and concurrency
- collinearity
- cross-ratio (ratio of ratios) on the line \rightarrow 46

does not preserve

- lengths
- areas
- parallelism
- ratio of areas
- ratio of lengths
- linear combinations of vectors
- convex hull
- line at infinity \underline{n}_∞

Thank You

