3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz
phone ext. 7203

rev. September 26, 2023

Open Informatics Master's Course

Module II

Perspective Camera

2.1)Basic Entities: Points, Lines
2.2 Homography: Mapping Acting on Points and Lines
23. Canonical Perspective Camera
24.) Changing the Outer and Inner Reference Frames
2.5 Projection Matrix Decomposition
2.) Anatomy of Linear Perspective Camera
2.7) Vanishing Points and Lines
covered by
[H\&Z] Secs: 2.1, 2.2, 3.1, 6.1, 6.2, 8.6, 2.5, Example: 2.19

Basic Geometric Entities, their Representation, and Notation

- entities have names and representations
- names and their components:

entity	in 2-space	in 3-space
point	$m=(u, v)$	$X=(x, y, z)$
line	n	O
plane		π, φ

- associated vector representations

$$
\mathbf{m}=\left[\begin{array}{l}
u \\
v
\end{array}\right]=[u, v]^{\top}, \quad \mathbf{X}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right], \quad \mathbf{n}
$$

will also be written in an 'in-line' form as $\mathbf{m}=(u, v), \mathbf{X}=(x, y, z)$, etc.

- vectors are always meant to be columns $\mathbf{x} \in \mathbb{R}^{n \times 1}$
- associated homogeneous representations

$$
\underline{\mathbf{m}}=\left[m_{1}, m_{2}, m_{3}\right]^{\top}, \quad \underline{\mathbf{X}}=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{\top}, \quad \underline{\mathbf{n}}
$$

'in-line' forms: $\underline{\mathbf{m}}=\left(m_{1}, m_{2}, m_{3}\right), \underline{\mathbf{X}}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, etc.

- matrices are $\mathbf{Q} \in \mathbb{R}^{m \times n}$, linear map of a $\mathbb{R}^{n \times 1}$ vector is $\mathbf{y}=\mathbf{Q x}$
- j-th element of vector \mathbf{m}_{i} is $\left(\mathbf{m}_{i}\right)_{j}$; element i, j of matrix \mathbf{P} is $\mathbf{P}_{i j}$

Image Line (in 2D)

a finite line in the $2 \mathrm{D}(u, v)$ plane

$$
(u, v) \in \mathbb{R}^{2} \quad \text { s.t. } \quad a u+b v+c=0
$$

has a parameter (homogeneous) vector

$$
\underline{\mathbf{n}} \simeq(a, b, c), \quad\|\underline{\mathbf{n}}\| \neq 0
$$

and there is an equivalence class for $\lambda \in \mathbb{R}, \lambda \neq 0 \quad(\lambda a, \lambda b, \lambda c) \simeq(a, b, c)$

'Finite' lines

- standard representative for finite $\underline{\mathbf{n}}=\left(n_{1}, n_{2}, n_{3}\right)$ is $\lambda \underline{\mathbf{n}}$, where $\lambda=\frac{\mathbf{1}}{\sqrt{n_{1}^{2}+n_{2}^{2}}}$
assuming $n_{1}^{2}+n_{2}^{2} \neq 0 ; \mathbf{1}$ is the unit, usually $\mathbf{1}=1$
'Infinite’ line
- we augment the set of lines for a special entity called the line at infinity (ideal line)

$$
\underline{\mathbf{n}}_{\infty} \simeq(0,0, \mathbf{1}) \quad(\text { standard representative })
$$

- the set of equivalence classes of vectors in $\mathbb{R}^{3} \backslash(0,0,0)$ forms the projective space \mathbb{P}^{2}
- line at infinity is a proper member of \mathbb{P}^{2}
- I may sometimes wrongly use $=$ instead of \simeq, if you are in doubt, ask me

- Image Point

Finite point $\mathbf{m}=(u, v)$ is incident on a finite line $\underline{\mathbf{n}}=(a, b, c)$ iff

$$
a u+b v+c=0
$$

can be rewritten as (with scalar product): $\quad(u, v, \mathbf{1}) \cdot(a, b, c)=\underline{\mathbf{m}}^{\top} \underline{\mathbf{n}}=0$

'Finite' points

- a finite point is also represented by a homogeneous vector $\underline{\mathbf{m}} \simeq(u, v, \mathbf{1}),\|\underline{\mathbf{m}}\| \neq 0$
- the equivalence class for $\lambda \in \mathbb{R}, \lambda \neq 0$ is $\left(m_{1}, m_{2}, m_{3}\right)=\lambda \underline{\mathbf{m}} \simeq \underline{\mathbf{m}}$
- the standard representative for finite point $\underline{\mathbf{m}}$ is $\lambda \underline{\mathbf{m}}$, where $\lambda=\frac{\mathbf{1}}{m_{3}}$
- when $\mathbf{1}=1$ then units are pixels and $\lambda \underline{\mathbf{m}}=(u, v, 1)$
- when $\mathbf{1}=f$ then all elements have a similar magnitude, $f \sim$ image diagonal
use $1=1$ unless you know what you are doing; all entities participating in a formula must be expressed in the same units

'Infinite' points

- we augment for points at infinity (ideal points) $\underline{\mathbf{m}}_{\infty} \simeq\left(m_{1}, m_{2}, 0\right)$ proper members of \mathbb{P}^{2}
- all such points lie on the line at infinity (ideal line) $\underline{\mathbf{n}}_{\infty} \simeq(0,0,1)$, i.e. $\underline{\mathbf{m}}_{\infty}^{\top} \underline{\mathbf{n}}_{\infty}=0$

Line Intersection and Point Join

The point of intersection m of image lines n and $n^{\prime}, n \not \not n^{\prime}$ is

$$
\underline{\mathbf{m}} \simeq \underline{\mathbf{n}} \times \underline{\mathbf{n}}^{\prime}
$$

proof: If $\underline{\mathbf{m}}=\underline{\mathbf{n}} \times \underline{\mathbf{n}}^{\prime}$ is the intersection point, it must be incident on both lines. Indeed, using known equivalences from vector algebra

$$
\underline{\mathbf{n}}^{\top} \underbrace{\left(\underline{\mathbf{n}} \times \underline{\mathbf{n}}^{\prime}\right)}_{\underline{\underline{m}}} \equiv \underline{\mathbf{n}}^{\prime \top} \underbrace{\left(\underline{\mathbf{n}} \times \underline{\mathbf{n}}^{\prime}\right)}_{\underline{\underline{m}}} \equiv 0
$$

The join n of two image points m and $m^{\prime}, m \nsucceq m^{\prime}$ is

$$
\underline{\mathbf{n}} \simeq \underline{\mathbf{m}} \times \underline{\mathbf{m}}^{\prime}
$$

$$
\begin{aligned}
& a u+b v+c=0, \\
& a u+b v+d=0, \\
& \quad(a, b, c) \times(a, b, d) \simeq(b,-a, 0)
\end{aligned}
$$

- all such intersections lie on $\underline{\mathbf{n}}_{\infty}$
- line at infinity therefore represents the set of (unoriented) directions in the plane
- Matlab: m = cross(n, n_prime);

Homography in \mathbb{P}^{2}

Homography in \mathbb{P}^{2} : Non-singular linear mapping in \mathbb{P}^{2}
an analogic definition for \mathbb{P}^{3}

$$
\underline{\mathbf{x}}^{\prime} \simeq \mathbf{H} \underline{x}, \quad \mathbf{H} \in \mathbb{R}^{3,3} \text { non-singular }
$$

Defining properties

- collinear points are mapped to collinear points
- concurrent lines are mapped to concurrent lines
- and point-line incidence is preserved
lines of points are mapped to lines of points concurrent $=$ intersecting at a point e.g. line intersection points mapped to line intersection points
- \mathbf{H} is a 3×3 non-singular matrix, $\lambda \mathbf{H} \simeq \mathbf{H}$ equivalence class, 8 degrees of freedom
- homogeneous matrix representative: $\operatorname{det} \mathbf{H}=1$

$$
\mathbf{H} \in \mathrm{SL}(3)
$$

- what we call homography here is often called 'projective collineation' in mathematics

Mapping 2D Points and Lines by Homography

$$
\begin{aligned}
\underline{\mathbf{m}}^{\prime} & \simeq \mathbf{H} \underline{\mathbf{m}} & & \text { (image) point } \\
\underline{\mathbf{n}}^{\prime} & \simeq \mathbf{H}^{-\top} \underline{\mathbf{n}} & & \text { (image) line }
\end{aligned} \quad \mathbf{H}^{-\top}=\left(\mathbf{H}^{-1}\right)^{\top}=\left(\mathbf{H}^{\top}\right)^{-1}
$$

－incidence is preserved：$\left(\underline{\mathbf{m}}^{\prime}\right)^{\top} \underline{\mathbf{n}}^{\prime} \simeq \underline{\mathbf{m}}^{\top} \mathbf{H}^{\top} \mathbf{H}^{-\top} \underline{\mathbf{n}}=\underline{\mathbf{m}}^{\top} \underline{\mathbf{n}}=0$
Mapping a finite 2D point $\mathbf{m}=(u, v)$ to $\underline{\mathbf{m}}=\left(u^{\prime}, v^{\prime}\right)$
1．extend the Cartesian（pixel）coordinates to homogeneous coordinates，$\underline{\mathbf{m}}=(u, v, \mathbf{1})$
2．map by homography，$\underline{\mathbf{m}}^{\prime}=\mathbf{H} \underline{\mathbf{m}}$
3．if $m_{3}^{\prime} \neq 0$ convert the result $\underline{\mathbf{m}}^{\prime}=\left(m_{1}^{\prime}, m_{2}^{\prime}, m_{3}^{\prime}\right)$ back to Cartesian coordinates（pixels），

$$
u^{\prime}=\frac{m_{1}^{\prime}}{m_{3}^{\prime}} \mathbf{1}, \quad v^{\prime}=\frac{m_{2}^{\prime}}{m_{3}^{\prime}} \mathbf{1}
$$

－note that，typically，$m_{3}^{\prime} \neq 1$
$m_{3}^{\prime}=1$ when \mathbf{H} is affine
－an infinite point $\underline{\mathbf{m}}=(u, v, 0)$ maps the same way

Some Homographic Tasters

Rectification of camera rotation：$\rightarrow 59$（geometry），$\rightarrow 129$（homography estimation）

Homographic Mouse for Visual Odometry：［Mallis 2007］

illustrations courtesy of AMSL Racing Team，Meiji University and LIBVISO：Library for VISual Odometry

$$
\mathbf{H} \simeq \mathbf{K}\left(\mathbf{R}-\frac{\mathbf{t n}^{\top}}{d}\right) \mathbf{K}^{-1} \quad \text { maps from plane to translated plane }[\mathbf{H} \& Z, \text { p. 327] }
$$

Homography Subgroups: Euclidean Mapping (aka Rigid Motion)

- Euclidean mapping (EM): rotation, translation and their combination

$$
\mathbf{H}=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & t_{x} \\
\sin \phi & \cos \phi & t_{y} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0}^{\top} & 1
\end{array}\right] \in \mathrm{SE}(2)
$$

- note: action $H(\mathbf{x})=\mathbf{R x}+\mathbf{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, not commutative

rotation by 30°, then translation by $(7,2)$ $\mathrm{EM}=$ The most general homography preserving

1. lengths: Let $\mathbf{x}_{i}^{\prime}=H\left(\mathbf{x}_{i}\right)$. Then

$$
\left\|\mathbf{x}_{2}^{\prime}-\mathbf{x}_{1}^{\prime}\right\|=\left\|H\left(\mathbf{x}_{2}\right)-H\left(\mathbf{x}_{1}\right)\right\|={ }^{\circledast} \stackrel{\mathrm{P} 1 ; 1 \mathrm{pt}}{\cdots}=\left\|\mathbf{x}_{2}-\mathbf{x}_{1}\right\|
$$

2. angles check the dot-product of normalized differences from a point $(\mathbf{x}-\mathbf{z})^{\top}(\mathbf{y}-\mathbf{z}) \quad$ (Cartesian(!))
3. areas: $\operatorname{det} \mathbf{H}=1 \Rightarrow$ unit determinant of the action's Jacobian \mathbf{J}
it follows from: $\mathbf{J}=\mathbf{R}, \operatorname{det} \mathbf{R}=1$

- eigenvalues $\left(1, e^{-i \phi}, e^{i \phi}\right)$
- eigenvectors when $\phi \neq k \pi, k=0,1, \ldots$ (columnwise)

$$
\mathbf{e}_{1} \simeq\left[\begin{array}{c}
t_{x}+t_{y} \cot \frac{\phi}{2} \\
t_{y}-t_{x} \cot \frac{\phi}{2} \\
2
\end{array}\right], \quad \mathbf{e}_{2} \simeq\left[\begin{array}{l}
i \\
1 \\
0
\end{array}\right], \quad \mathbf{e}_{3} \simeq\left[\begin{array}{c}
-i \\
1 \\
0
\end{array}\right] \quad \mathbf{e}_{2}, \mathbf{e}_{3}-\text { circular points, } i-\text { imaginary unit }
$$

4. circular points: complex points at infinity $(i, 1,0),(-i, 1,0)$ (preserved even by similarity)

- similarity: scaled Euclidean mapping (does not preserve lengths, areas)

Homography Subgroups: Affine Mapping (Affinity)

$$
\mathbf{H}=\left[\begin{array}{ccc}
a_{11} & a_{12} & t_{x} \\
a_{21} & a_{22} & t_{y} \\
0 & 0 & 1
\end{array}\right]
$$

Affinity $=$ The most general homography preserving

- parallelism
- ratio of areas
- ratio of lengths on parallel lines
- linear combinations of vectors (e.g. midpoints, centers of gravity)
- convex hull
- line at infinity $\underline{\mathbf{n}}_{\infty}$ (not pointwise)

$$
\text { observe } \mathbf{H}^{\top} \underline{\mathbf{n}}_{\infty} \simeq\left[\begin{array}{ccc}
a_{11} & a_{21} & 0 \\
a_{12} & a_{22} & 0 \\
t_{x} & t_{y} & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\underline{\mathbf{n}}_{\infty} \quad \Rightarrow \quad \underline{\mathbf{n}}_{\infty} \simeq \mathbf{H}^{-\top} \underline{\mathbf{n}}_{\infty}
$$ does not preserve

- lengths
- angles
- areas
- circular points

Homography Subgroups: General Homography

$$
\mathbf{H}=\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right] \quad \mathbf{H} \in \operatorname{SL}(3)
$$

preserves only

- incidence and concurrency
- collinearity
- cross-ratio (ratio of ratios) on the line $\rightarrow 46$ does not preserve
- lengths
- areas
- parallelism
- ratio of areas
- ratio of lengths
- linear combinations of vectors
- convex hull
- line at infinity $\underline{\mathbf{n}}_{\infty}$

line $\underline{\mathbf{n}}=(1,0,1)$ is mapped to $\underline{\mathbf{n}}_{\infty}: \mathbf{H}^{-\top} \underline{\mathbf{n}} \simeq \underline{\mathbf{n}}_{\infty}$
(where in the picture is the line n ?)

Thank You

