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»Bundle Adjustment

Goal: Use a good (and expensive) error model and improve the initial estimates of all parameters

Given: Required:
1. set of 3D points {X;}?_, 1. corrected 3D points {X;}7_;
2. set of cameras {P;}j_, 2. corrected cameras {P’}5_;
3. correspondence & fixed tentative projections my; Latent:

1. visibility decision v;; € {0,1} per m;;
X;

&
m;o

® for simplicity, X, m are considered Cartesian (not homogeneous)
® we have projection error e;;(X;,P;) = x; — m; per image feature, where x; = P;X;
e for simplicity, we will work with scalar error e;; = [|e;;||
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Robust Objective Function for Bundle Adjustment

The data model is constructed by marginalization over v;;, as in the Robust Matching Model —120

sier | x)= [] T (- Rmes | X0P)) + Foples; | X0, P,))

pts:i=1 cams:j=1

the marginalized negative log-density is (—121) 2, x,.P))

—logp({e} [{P,X}) =D > —log(e T +1) 3N uE(Xi,Py)
7 J [ J

p(ef;(X,P;)) =v7;(X;,P;)

6 ={P X}

we can use LM, e;; is the exact projection error function (not Sampson error) 1

c=1,t=0.02

2

— eiz.(x)=x

v;; is a ‘robust’ error fcn.; it is non-robust (v;; = e;;) when t =0
p(+) is a ‘robustification function’ often found in M-estimation
the L;; in Levenberg-Marquardt changes to vector

vy 1 1 1 0e3(0)

-log p

L;), = . . .
(Lis) 0, 1 40200 1ii(0) 407 ael

(35)

small for e;; > o1 4 2 0 2 4
but the LM method stays the same as before —110-111 "

® outliers (wrong v;;): almost no impact on ds in normal equations because the red term in (35) scales contributions to

both sums down for the particular ij
- Z L v (0 (Z LiLij)ds
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»Sparsity in Bundle Adjustment

We have ¢ = 3p + 11k parameters: 0 = (X1,Xo,...,X,; P1,P2,..., Py) points, cameras
We will use a multi-index r =1,...,z, z=p-k. Then r correspond to point-cam pairs (i, j)
0" = argmin Zl v2(6), 05t :=0° + d, — Zl L, v (6°%) = <Zl L L.+ diag(L:Lr)> d

The block-form of L, in Levenberg-Marquardt (—110) is zero except in columns ¢ and j:

r-th error term is v = p(e?;(Xi, P;))

i J r = (i,7) blocks:
L= OomomoreT 17 O: X;,1x3
0:P;,1x11

. . 3'8 11k
[ J

: blocks: » 3
Ty _ o Pl 0 X; —X;,3x3 Ty _
L, Ly _j D """" I:[ """ 0. X;,—-P;,3x11 ZLT L, =
i Toose 0:P; —Pj, 11 x 11 =t

® “points-first-then-cameras” parameterization scheme
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»Choleski Decomposition for B. A.
The most expensive computation in B. A. is solving the normal egs:

z z
find x such that b <" — S L1, (0°) = (Z L L, + A diag(L,TLr))x 4f Ax
r=1 r=1

® A is very large approx. 3 - 10 x 3 - 10 for a small problem of 10000 points and 5 cameras

® A is sparse, symmetric, positive definite, A1 is dense direct matrix inversion is prohibitive

Choleski: A symmetric positive definite matrix A can be decomposed to A = LL ",
where L is lower triangular. If A is sparse then L is sparse, too.

1. decompose A = LLT L = chol(A); transforms the problemto LL'x=b

c
2. solve for x in two passes:

Lc=b c; = Li_il (bi — Z LijCj) forward substitution, ¢ = 1,..., ¢ (params)
j<i

L'x=c X; 1= Li_i1 (ci — Z Ljin) back-substitution
j>i

® Choleski decomposition is fast (does not touch zero blocks)

non-zero elements are 9p 4+ 121k 4 66pk ~ 3.4 - 106; ca. 250X fewer than all elements
® it can be computed on single elements or on entire blocks
® use profile Choleski for sparse A and diagonal pivoting for semi-definite A see above; [Triggs et al. 1999]
® )\ controls the definiteness
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Profile Choleski Decomposition is Simple

function L = pchol(A)

pA

% PCHOL profile Choleski factorization,

% L = PCHOL(A) returns lower-triangular sparse L such that A = LxL’
% for sparse square symmetric positive definite matrix A,

% especially efficient for arrowhead sparse matrices.

% (c) 2010 Radim Sara (sara@cmp.felk.cvut.cz)

[p,q]l = size(A);

if p "= q, error ’Matrix A is not square’; end
L = sparse(q,q);

F = ones(q,1);

for i=1:q

F(i) = find(A(i,:),1); % 1st non-zero on row i; we are building F gradually
for j = F(i):i-1
k = max(F(i),F(j));
a=A(®i,j) - L,k: (J-1))*L(j,k: (j-1));
L(i,j) = a/L(j,j);
end
a = A(i,i) - sum(full(L(i,F(i):(i-1)))."2);
if a < 0, error ’Matrix A is not positive definite’; end
L(i,i) = sqrt(a);
end
end
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»Gauge Freedom (kalibraéni invariance

1. The external frame is not fixed: See the Projective Reconstruction Theorem —135
m;; ~ P,X; = P,H 'HX, = P/X]

2. Some representations are not minimal, e.g.

® P is 12 numbers for 11 parameters
® we may represent P in decomposed form K, R, t 5+3+3=11
® but R is 9 numbers representing the 3 parameters of rotation

If ignored, then

® there is no unique solution
® matrix >, L, L, is singular
Solutions

1. fixing the external frame (e.g. a selected camera frame) explicitly or by constraints

2. fixing the scale (e.g. s1,2 = 1)
3a. either imposing constraints on projective entities

® cameras, e.g. P3,4 =1 this excludes affine cameras

® points, e.g. (X;), =1or IX;12 =1 the 2nd: can represent points at infinity
3b. or using minimal representations

® points in their Cartesian representation X; but finite points may be an unrealistic model

® rotation matrices can be represented by (the exponential of) skew-symmetric matrices —152
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Implementing Simple Linear Constraints  (by programmatic elimination)

What for?
1. fixing external frame as in 6; = t;, sx; = 1 for some i, k, [

2. representing additional knowledge as in 0; = 6;

Introduce reduced parameters 6 and replication

matrix T P
_— 1
0=TO+t, TERP?P p<p 02

T= 03

then L, in LM changes to L, T and everything else 'R
stays the same —110 05

0y 0 6 6,

1

® T deletes columns of L, that correspond to fixed parameters

e consistent initialisation: §° = T8° +t

‘trivial gauge’

e.g. cameras share calibration matrix K

these T, t represent

6, = él no change
6> = éz no change
03 = t3 constancy

04 =05 = 04 equality

it reduces the problem size

or filter the init by pseudoinverse 60 — TT6°

® no need for computing derivatives for 6; corresponding to all-zero rows of T fixed 6
® constraining projective entities —152-154

® more complex constraints tend to make normal equations dense

® implementing constraints is safer than reparameterization, it gives a flexibility to experiment

® other methods are much more involved, see [Triggs et al. 1999]

[ ]

BA resource: http://www.ics.forth.gr/~lourakis/sba/ [Lourakis 2009]

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 148/199) ¥wa®

R. Sara, CMP; rev. 28-Nov—2023 [Eill


http://www.ics.forth.gr/~lourakis/sba/

Matrix Exponential: A Path to Minimal Parameterization and Motion Representation

® for any square matrix we define

- 1,
expm(A Z k‘i note: A° =1
k=0

® some properties:
expm(z) =€e”, z€R, expm0=1I expm(—A)= (expm A)71 ,
expm(aA + bA) = expm(a A)expm(bA), expm(A + B) # expm(A)expm(B)
expm(AT) = (expm A)T hence if A is skew symmetric then expm A is orthogonal:
(expm(A))T =expm(AT) = expm(—A) = (expm(A))71

det (expm A) =d=e

Some consequences

® traceless matrices (tr A = 0) map to unit-determinant matrices = we can represent homogeneous matrices

® skew-symmetric matrices map to orthogonal matrices = we can represent rotations

® matrix exponential provides the exponential map from the powerful (matrix) Lie group theory
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Lie Groups Useful in 3D Vision

group matrix represent
special linear SL(3,R)  real 3 x 3, unit determinant H 2D homography
special linear SL(4,R)  real 4 x 4, unit determinant H 3D homography
special orthogonal  SO(3) real 3 x 3 orthogonal R 3D rotation

special Euclidean ~ SE(3) 4x4 [Bt] ReSO@3), teR? 3D rigid motion
similarity Sim(3) 4x4 [1; Sfl ] s€R\O rigid motion + scale

® Lie group G = topological group that is also a smooth manifold with nice properties

® Lie algebra g = vector space associated with a Lie group (tangent space of the manifold)

® group: this is where we need to work

® algebra: this is how to represent group elements with a minimal number of parameters

® Exponential map = map between algebra and its group exp: g =+ G

® for matrices exp = expm

® in most of the above groups we a have a closed-form formula for the exponential and for its principal inverse
® Jacobians are also readily available for SO(3), SE(3) [Sola 2020]
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Homography

H = expm(Z)
® SL(3,R) group element
hi1 hi2  his
H= |h2a1 h22 hos s.t. det(H) =1
h31  h32 hss
® 5l(3,R) algebra element 8 parameters
z11 212 213
Z = |z 222 223
231 232 —(z11 + 222)

® note that trZ =10
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» Rotation in 3D
R:expm[qﬁ]x, ¢:(¢1,¢2’¢3):¢Q¢ER3, 0§90<7Ta HeSO”:l

® SO(3) group element
T11 T12 T13
R = |r21 722 1793 s.t. Ril = RT

31 T32 T33

® 50(3) algebra element 3 parameters
0 —¢3 o2
[d)} x — ¢3 0 _¢l
—¢2 @1 0
® exponential map in closed form Rodrigues’ formula
o0 n
(] ® 1 sin 1 — cos
R:expm[qf)]xzz n'X: :I+J[¢]X+72‘p[¢]i
n—o ¥ P ¥
¢ (principal) logarithm log is a periodic function
0<p<m cosp= 1(t]r(R)—l) [¢P], = 2 (R-R")
- ’ 2 ’ X 2sing ’

® ¢ is rotation axis vector e, scaled by rotation angle ¢ in radians

e finite limits for ¢ — 0 exist: sin(p)/¢ — 1, (1 —cos@)/p? — 1/2
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3D Rigid Motion
M = expm [V], ,

® SE(3) group element
R t

M:[o 1

® se(3) algebra element

0 0

veRS

4 X 4 matrix

] st. ReSO(3), teR?

4 x 4 matrix; A = x in SO(3)

MA:[M’]X ”] st. R, p=|p <m pecR®

® exponential map in closed form

R = expm [¢]
— [¢]%
dexpm([¢],) = nz::O CES I+
dexpm™ (19],) = 1= 5[], + — (1-
dexpm: differential of the exponential in SO(3)

(principal) logarithm via a similar trick as in SO(3)
finite limits exist: (¢ —singp)/> — 1/6
this form is preferred to SO(3) x R?

x» t=dexpm([¢],)p

. -
— (Bl e
gcot g) [d)]i
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»Minimal Representations for Other Entities

e fundamental matrix via SO(3) x SO(3) x RT

F=UDV', D =diag(1,d*0), U, VeSO(3), 3+1+3=7DOF

® essential matrix via SO(3) x R?

E=[-t],R, Re€S0(3), teR’ |t]|=1, 342 =15DOF

® camera pose via SO(3) x R? or SE(3)

P=K[R t]=[K 0|M, 5+3+3=11DOF M € SE(3)

® Sim(3) useful for SfM without scale
® closed-form formulae still exist but they are a bit too messy [Eade(2017)]

® a (bit too brief) intro to Lie groups in 3D vision/robotics and SW:

@ J. Sola, J. Deray, and D. Atchuthan. A micro Lie theory for state estimation in robotics. arXiv:1812.01537v7
[cs.RO], August 2020.

@ E. Eade. Lie groups for 2D and 3D transformations. On-line at http://www.ethaneade.org/, May 2017.

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 154/199) 9 a R. Sara, CMP; rev. 28-Nov—2023 [Cill



Motion Interpolation

® let G be a Lie group like SO(3), SE(3)
® let M € G be motion from time t =0 to time t =1

® then the motion from ¢ = 0 to ¢ is interpolated as
M(t) = exp(t log(M)), t€10,1]

® the trajectory is constant-speed,
® and the speed is log(M)

Examples in SE(3):
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Distance between Lie Group Elements

® Integration formula the motion is along the geodesic (shortest-distance curve)
- 1
lim e —log(M) | =M
n%oHl Xp (n 8( ))
im

® hat and vee functions:
® [a], maps vector a € R to algebra g element (matrix)

® (B), maps algebra element B € g to vector element, ([a]/\)v =a
® the Log function is a composition of log and vee, Log : G — R?, Log(M) = (log(M)),, G—g—RI
® then: left/right difference Y & X € RY

= -1 = -1
YoX=Log(YX "), YoX=Log(X Y)
® skew-symmetry - - . .
YoX=—-(X8Y), YeX=—-(XeY)
® left/right distance

— —

«— —
dX,Y)=[YoX|, dXY)=[YoX]|

® not equal but both are non-negative, symmetric + additional properties, e.g. left/right invariance,. ..

3D Computer Vision: VI. 3D Structure and Camera Motion (p. 156/199) A R. Sara, CMP; rev. 28-Nov—2023 [Cill



Thank You



	3D Structure and Camera Motion
	Reconstructing Camera System: From Triples and from Pairs
	Bundle Adjustment
	Motion Representations

	End of Slides

