3D Computer Vision

Radim Šára Martin Matoušek

Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering Czech Technical University in Prague
https://cw.fel.cvut.cz/wiki/courses/tdv/start
http://cmp.felk.cvut.cz
mailto:sara@cmp.felk.cvut.cz phone ext. 7203
rev. November 28, 2023

Open Informatics Master's Course

Bundle Adjustment

Goal: Use a good (and expensive) error model and improve the initial estimates of all parameters

Given:

1. set of 3D points $\left\{\mathbf{X}_{i}\right\}_{i=1}^{p}$
2. set of cameras $\left\{\mathbf{P}_{j}\right\}_{j=1}^{c}$
3. correspondence \& fixed tentative projections $\mathbf{m}_{i j}$

Required:

1. corrected 3D points $\left\{\mathbf{X}_{i}^{\prime}\right\}_{i=1}^{p}$
2. corrected cameras $\left\{\mathbf{P}_{j}^{\prime}\right\}_{j=1}^{c}$

Latent:

1. visibility decision $v_{i j} \in\{0,1\}$ per $\mathbf{m}_{i j}$

- for simplicity, \mathbf{X}, \mathbf{m} are considered Cartesian (not homogeneous)
- we have projection error $\mathbf{e}_{i j}\left(\mathbf{X}_{i}, \mathbf{P}_{j}\right)=\mathbf{x}_{i}-\mathbf{m}_{i}$ per image feature, where $\underline{\mathbf{x}}_{i}=\mathbf{P}_{j} \underline{\mathbf{X}}_{i}$
- for simplicity, we will work with scalar error $e_{i j}=\left\|\mathbf{e}_{i j}\right\|$

Robust Objective Function for Bundle Adjustment

The data model is constructed by marginalization over $v_{i j}$, as in the Robust Matching Model $\rightarrow 120$

$$
p(\{\mathbf{e}\} \mid\{\mathbf{P}, \mathbf{X}\})=\prod_{\text {pts: }: i=1}^{p} \prod_{\text {cams }: j=1}^{c}\left(\left(1-P_{0}\right) p_{1}\left(e_{i j} \mid \mathbf{X}_{i}, \mathbf{P}_{j}\right)+P_{0} p_{0}\left(e_{i j} \mid \mathbf{X}_{i}, \mathbf{P}_{j}\right)\right)
$$

the marginalized negative log-density is $(\rightarrow 121)$

$$
\begin{aligned}
& -\log p(\{\mathbf{e}\} \mid\{\mathbf{P}, \mathbf{X}\})=\sum_{i} \sum_{j} \underbrace{-\log \left(e^{-\frac{e_{i j}^{2}\left(\mathbf{x}_{i}, \mathbf{P}_{j}\right)}{2 \sigma_{1}^{2}}}+t\right)}_{\rho\left(e_{i j}^{2}\left(\mathbf{X}_{i}, \mathbf{P}_{j}\right)\right)=\nu_{i j}^{2}\left(\mathbf{X}_{i}, \mathbf{P}_{j}\right)} \stackrel{\text { def }}{=} \sum_{i} \sum_{j} \nu_{i j}^{2}\left(\mathbf{X}_{i}, \mathbf{P}_{j}\right)
\end{aligned}
$$

- $\boldsymbol{\theta}=\{\mathbf{P}, \mathbf{X}\}$
- we can use LM, $e_{i j}$ is the exact projection error function (not Sampson error)
- $\nu_{i j}$ is a 'robust' error fcn.; it is non-robust $\left(\nu_{i j}=e_{i j}\right)$ when $t=0$
- $\rho(\cdot)$ is a 'robustification function' often found in M-estimation
- the $\mathbf{L}_{i j}$ in Levenberg-Marquardt changes to vector

$$
\left(\mathbf{L}_{i j}\right)_{l}=\frac{\partial \nu_{i j}}{\partial \theta_{l}}=\underbrace{\frac{1}{1+t e^{e_{i j}^{2}(\theta) /\left(2 \sigma_{1}^{2}\right)}}}_{\text {small for } e_{i j} \gg \sigma_{1}} \cdot \frac{1}{\nu_{i j}(\theta)} \cdot \frac{1}{4 \sigma_{1}^{2}} \cdot \frac{\partial e_{i j}^{2}(\theta)}{\partial \theta_{l}}
$$

but the LM method stays the same as before $\rightarrow 110-111$

- outliers (wrong $v_{i j}$): almost no impact on \mathbf{d}_{s} in normal equations because the red term in (35) scales contributions to both sums down for the particular $i j$

$$
-\sum_{i, j} \mathbf{L}_{i j}^{\top} \nu_{i j}\left(\theta^{s}\right)=\left(\sum_{i, j}^{k} \mathbf{L}_{i j}^{\top} \mathbf{L}_{i j}\right) \mathbf{d}_{s}
$$

-Sparsity in Bundle Adjustment

We have $q=3 p+11 k$ parameters: $\boldsymbol{\theta}=\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots, \mathbf{X}_{p} ; \mathbf{P}_{1}, \mathbf{P}_{2}, \ldots, \mathbf{P}_{k}\right)$
We will use a multi-index $r=1, \ldots, z, z=p \cdot k$. Then
r correspond to point-cam pairs (i, j)

$$
\boldsymbol{\theta}^{*}=\arg \min _{\boldsymbol{\theta}} \sum_{r=1}^{z} \nu_{r}^{2}(\boldsymbol{\theta}), \quad \boldsymbol{\theta}^{s+1}:=\boldsymbol{\theta}^{s}+\mathbf{d}_{s}, \quad-\sum_{r=1}^{z} \mathbf{L}_{r}^{\top} \nu_{r}\left(\boldsymbol{\theta}^{s}\right)=\left(\sum_{r=1}^{z} \mathbf{L}_{r}^{\top} \mathbf{L}_{r}+\lambda \operatorname{diag}\left(\mathbf{L}_{r}^{\top} \mathbf{L}_{r}\right)\right) \mathbf{d}_{s}
$$

The block-form of \mathbf{L}_{r} in Levenberg-Marquardt $(\rightarrow 110)$ is zero except in columns i and j :
r-th error term is $\nu_{r}^{2}=\rho\left(e_{i j}^{2}\left(\mathbf{X}_{i}, \mathbf{P}_{j}\right)\right)$

$$
r=(i, j) \text { blocks: }
$$

- "points-first-then-cameras" parameterization scheme

－Choleski Decomposition for B．A．

The most expensive computation in $\mathrm{B} . \mathrm{A}$ ．is solving the normal eqs：

$$
\text { find } \mathrm{x} \text { such that } \quad \mathbf{b} \stackrel{\text { def }}{=}-\sum_{r=1}^{z} \mathbf{L}_{r}^{\top} \nu_{r}\left(\theta^{s}\right)=\left(\sum_{r=1}^{z} \mathbf{L}_{r}^{\top} \mathbf{L}_{r}+\lambda \operatorname{diag}\left(\mathbf{L}_{r}^{\top} \mathbf{L}_{r}\right)\right) \mathbf{x} \stackrel{\text { def }}{=} \mathbf{A x}
$$

－ \mathbf{A} is very large
approx． $3 \cdot 10^{4} \times 3 \cdot 10^{4}$ for a small problem of 10000 points and 5 cameras
－ \mathbf{A} is sparse，symmetric，positive definite， \mathbf{A}^{-1} is dense direct matrix inversion is prohibitive

Choleski：A symmetric positive definite matrix \mathbf{A} can be decomposed to $\mathbf{A}=\mathbf{L L}^{\top}$ ， where \mathbf{L} is lower triangular．If \mathbf{A} is sparse then \mathbf{L} is sparse，too．

1．decompose $\mathbf{A}=\mathbf{L} \mathbf{L}^{\top}$
$L=\operatorname{chol}(A) ;$ transforms the problem to $\mathbf{L}_{\mathbf{c}}^{\mathbf{L}^{\top} \mathbf{x}}=\mathbf{b}$
2．solve for x in two passes：

$$
\begin{array}{rlr}
\mathbf{L} \mathbf{c}=\mathbf{b} & \mathbf{c}_{i}:=\mathbf{L}_{i i}^{-1}\left(\mathbf{b}_{i}-\sum_{j<i} \mathbf{L}_{i j} \mathbf{c}_{j}\right) & \text { forward substitution, } i=1, \ldots, q \text { (params) } \\
\mathbf{L}^{\top} \mathbf{x}=\mathbf{c} & \mathbf{x}_{i}:=\mathbf{L}_{i i}^{-1}\left(\mathbf{c}_{i}-\sum_{j>i} \mathbf{L}_{j i} \mathbf{x}_{j}\right) & \text { back-substitution }
\end{array}
$$

－Choleski decomposition is fast（does not touch zero blocks）
non－zero elements are $9 p+121 k+66 p k \approx 3.4 \cdot 10^{6}$ ；ca． $250 \times$ fewer than all elements
－it can be computed on single elements or on entire blocks
－use profile Choleski for sparse A and diagonal pivoting for semi－definite A
see above；［Triggs et al．1999］
－λ controls the definiteness

Profile Choleski Decomposition is Simple

```
function L = pchol(A)
%
% PCHOL profile Choleski factorization,
% L = PCHOL(A) returns lower-triangular sparse L such that A = L*L'
% for sparse square symmetric positive definite matrix A,
% especially efficient for arrowhead sparse matrices.
% (c) 2010 Radim Sara (sara@cmp.felk.cvut.cz)
[p,q] = size(A);
if p ~= q, error 'Matrix A is not square'; end
L = sparse(q,q);
F = ones(q,1);
for i=1:q
    F(i) = find(A(i,:),1); % 1st non-zero on row i; we are building F gradually
    for j = F(i):i-1
        k = max(F(i),F(j));
        a = A(i,j) - L(i,k:(j-1))*L(j,k:(j-1))';
        L(i,j) = a/L(j,j);
    end
    a = A(i,i) - sum(full(L(i,F(i):(i-1))).^2);
    if a < O, error 'Matrix A is not positive definite'; end
    L(i,i) = sqrt(a);
end
end
```


-Gauge Freedom

1. The external frame is not fixed:

See the Projective Reconstruction Theorem $\rightarrow 135$

$$
\underline{\mathbf{m}}_{i j} \simeq \mathbf{P}_{j} \underline{\mathbf{X}}_{i}=\mathbf{P}_{j} \mathbf{H}^{-1} \mathbf{H} \underline{X}_{i}=\mathbf{P}_{j}^{\prime} \underline{\mathbf{X}}_{i}^{\prime}
$$

2. Some representations are not minimal, e.g.

- \mathbf{P} is 12 numbers for 11 parameters
- we may represent \mathbf{P} in decomposed form $\mathbf{K}, \mathbf{R}, \mathbf{t} \quad 5+3+3=11$
- but \mathbf{R} is 9 numbers representing the 3 parameters of rotation

If ignored, then

- there is no unique solution
- matrix $\sum_{r} \mathbf{L}_{r}^{\top} \mathbf{L}_{r}$ is singular

Solutions

1. fixing the external frame (e.g. a selected camera frame) explicitly or by constraints
2. fixing the scale (e.g. $s_{1,2}=1$)

3a. either imposing constraints on projective entities

- cameras, e.g. $\mathbf{P}_{3,4}=1$
this excludes affine cameras
- points, e.g. $\left(\underline{\mathbf{X}}_{i}\right)_{4}=1$ or $\left\|\underline{\mathbf{X}}_{i}\right\|^{2}=1$ the $2 n d$: can represent points at infinity
3b. or using minimal representations
- points in their Cartesian representation $\mathbf{X}_{i} \quad$ but finite points may be an unrealistic model
- rotation matrices can be represented by (the exponential of) skew-symmetric matrices $\rightarrow 152$

Implementing Simple Linear Constraints

(by programmatic elimination)

What for?

1. fixing external frame as in $\theta_{i}=\mathbf{t}_{i}, s_{k l}=1$ for some i, k, l
'trivial gauge'
2. representing additional knowledge as in $\theta_{i}=\theta_{j}$
e.g. cameras share calibration matrix \mathbf{K}

Introduce reduced parameters $\hat{\theta}$ and replication matrix \mathbf{T} :

$$
\theta=\mathbf{T} \hat{\theta}+\mathbf{t}, \quad \mathbf{T} \in \mathbb{R}^{p, \hat{p}}, \quad \hat{p} \leq p
$$

then \mathbf{L}_{r} in LM changes to $\mathbf{L}_{r} \mathbf{T}$ and everything else stays the same $\rightarrow 110$

these \mathbf{T}, \mathbf{t} represent	
$\theta_{1}=\hat{\theta}_{1}$	no change
$\theta_{2}=\hat{\theta}_{2}$	no change
$\theta_{3}=t_{3}$	constancy
$\theta_{4}=\theta_{5}=\hat{\theta}_{4}$	equality

- \mathbf{T} deletes columns of \mathbf{L}_{r} that correspond to fixed parameters
it reduces the problem size
- consistent initialisation: $\theta^{0}=\mathbf{T} \hat{\theta}^{0}+\mathbf{t} \quad$ or filter the init by pseudoinverse $\theta^{0} \mapsto \mathbf{T}^{\dagger} \theta^{0}$
- no need for computing derivatives for θ_{j} corresponding to all-zero rows of \mathbf{T}
- constraining projective entities $\rightarrow 152-154$
- more complex constraints tend to make normal equations dense
- implementing constraints is safer than reparameterization, it gives a flexibility to experiment
- other methods are much more involved, see [Triggs et al. 1999]
- BA resource: http://www.ics.forth.gr/~lourakis/sba/ [Lourakis 2009]

Matrix Exponential: A Path to Minimal Parameterization and Motion Representation

- for any square matrix we define

$$
\operatorname{expm}(\mathbf{A})=\sum_{k=0}^{\infty} \frac{1}{k!} \mathbf{A}^{k} \quad \text { note: } \mathbf{A}^{0}=\mathbf{I}
$$

- some properties:

$$
\begin{aligned}
& \operatorname{expm}(x)=e^{x}, \quad x \in \mathbb{R}, \quad \operatorname{expm} \mathbf{0}=\mathbf{I}, \quad \operatorname{expm}(-\mathbf{A})=(\operatorname{expm} \mathbf{A})^{-1} \\
& \operatorname{expm}(a \mathbf{A}+b \mathbf{A})=\operatorname{expm}(a \mathbf{A}) \operatorname{expm}(b \mathbf{A}), \quad \operatorname{expm}(\mathbf{A}+\mathbf{B}) \neq \operatorname{expm}(\mathbf{A}) \operatorname{expm}(\mathbf{B}) \\
& \operatorname{expm}\left(\mathbf{A}^{\top}\right)=(\operatorname{expm} \mathbf{A})^{\top} \quad \text { hence if } \mathbf{A} \text { is skew symmetric then } \operatorname{expm} \mathbf{A} \text { is orthogonal: } \\
& \quad(\operatorname{expm}(\mathbf{A}))^{\top}=\operatorname{expm}\left(\mathbf{A}^{\top}\right)=\operatorname{expm}(-\mathbf{A})=(\operatorname{expm}(\mathbf{A}))^{-1} \\
& \operatorname{det}(\operatorname{expm} \mathbf{A})=e^{\operatorname{tr} \mathbf{A}}
\end{aligned}
$$

Some consequences

- traceless matrices ($\operatorname{tr} \mathbf{A}=0$) map to unit-determinant matrices \Rightarrow we can represent homogeneous matrices
- skew-symmetric matrices map to orthogonal matrices \Rightarrow we can represent rotations
- matrix exponential provides the exponential map from the powerful (matrix) Lie group theory

Lie Groups Useful in 3D Vision

group		matrix	represent
special linear	$\mathrm{SL}(3, \mathbb{R})$	real 3×3, unit determinant \mathbf{H}	2D homography
special linear	$\mathrm{SL}(4, \mathbb{R})$	real 4×4 ，unit determinant \mathbf{H}	3D homography
special orthogonal	$\mathrm{SO}(3)$	real 3×3 orthogonal \mathbf{R}	3D rotation
special Euclidean	$\mathrm{SE}(3)$	$4 \times 4\left[\begin{array}{cc}\mathbf{R} \mathbf{t} \\ \mathbf{0} & 1\end{array}\right], \mathbf{R} \in \mathrm{SO}(3), \mathbf{t} \in \mathbb{R}^{3}$	3D rigid motion
similarity	$\operatorname{Sim}(3)$	$4 \times 4\left[\begin{array}{cc}\mathbf{R} & \mathbf{t} \\ \mathbf{0} & s^{-1}\end{array}\right], s \in \mathbb{R} \backslash 0$	rigid motion＋scale

－Lie group $G=$ topological group that is also a smooth manifold with nice properties
－Lie algebra $\mathfrak{g}=$ vector space associated with a Lie group（tangent space of the manifold）
－group：this is where we need to work
－algebra：this is how to represent group elements with a minimal number of parameters
－Exponential map $=$ map between algebra and its group $\exp : \mathfrak{g} \rightarrow G$
－for matrices exp＝expm
－in most of the above groups we a have a closed－form formula for the exponential and for its principal inverse
－Jacobians are also readily available for $\mathrm{SO}(3), \mathrm{SE}(3)$［Solà 2020］

Homography

$$
\mathbf{H}=\operatorname{expm}(\mathbf{Z})
$$

- $\operatorname{SL}(3, \mathbb{R})$ group element

$$
\mathbf{H}=\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right] \quad \text { s.t. } \quad \operatorname{det}(\mathbf{H})=1
$$

- $\mathfrak{s l}(3, \mathbb{R})$ algebra element

$$
\mathbf{Z}=\left[\begin{array}{ccc}
z_{11} & z_{12} & z_{13} \\
z_{21} & z_{22} & z_{23} \\
z_{31} & z_{32} & -\left(z_{11}+z_{22}\right)
\end{array}\right]
$$

- note that $\operatorname{tr} \mathbf{Z}=0$

Rotation in 3D

$$
\mathbf{R}=\operatorname{expm}[\boldsymbol{\phi}]_{\times}, \quad \phi=\left(\phi_{1}, \phi_{2}, \phi_{3}\right)=\varphi \mathbf{e}_{\varphi} \in \mathbb{R}^{3}, \quad 0 \leq \varphi<\pi, \quad\left\|\mathbf{e}_{\varphi}\right\|=1
$$

- $\mathrm{SO}(3)$ group element

$$
\mathbf{R}=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right] \quad \text { s.t. } \quad \mathbf{R}^{-1}=\mathbf{R}^{\top}
$$

3 parameters

- $\mathfrak{s o}(3)$ algebra element

$$
[\boldsymbol{\phi}]_{\times}=\left[\begin{array}{ccc}
0 & -\phi_{3} & \phi_{2} \\
\phi_{3} & 0 & -\phi_{1} \\
-\phi_{2} & \phi_{1} & 0
\end{array}\right]
$$

- exponential map in closed form

Rodrigues' formula

$$
\mathbf{R}=\operatorname{expm}[\boldsymbol{\phi}]_{\times}=\sum_{n=0}^{\infty} \frac{[\phi]_{\times}^{n}}{n!}=\stackrel{\circledast}{\cdots}^{1}=\mathbf{I}+\frac{\sin \varphi}{\varphi}[\boldsymbol{\phi}]_{\times}+\frac{1-\cos \varphi}{\varphi^{2}}[\boldsymbol{\phi}]_{\times}^{2}
$$

- (principal) logarithm
\log is a periodic function

$$
0 \leq \varphi<\pi, \quad \cos \varphi=\frac{1}{2}(\operatorname{tr}(\mathbf{R})-1), \quad[\boldsymbol{\phi}]_{\times}=\frac{\varphi}{2 \sin \varphi}\left(\mathbf{R}-\mathbf{R}^{\top}\right)
$$

- ϕ is rotation axis vector \mathbf{e}_{φ} scaled by rotation angle φ in radians
- finite limits for $\varphi \rightarrow 0$ exist: $\sin (\varphi) / \varphi \rightarrow 1,(1-\cos \varphi) / \varphi^{2} \rightarrow 1 / 2$

3D Rigid Motion

$$
\mathbf{M}=\operatorname{expm}[\boldsymbol{\nu}]_{\wedge}, \quad \boldsymbol{\nu} \in \mathbb{R}^{6}
$$

- SE(3) group element

$$
\mathbf{M}=\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0} & 1
\end{array}\right] \quad \text { s.t. } \quad \mathbf{R} \in \mathrm{SO}(3), \mathbf{t} \in \mathbb{R}^{3}
$$

- $\mathfrak{s e}(3)$ algebra element

$$
[\boldsymbol{\nu}]_{\wedge}=\left[\begin{array}{cc}
{[\phi]_{\times}} & \boldsymbol{\rho} \\
\mathbf{0} & 0
\end{array}\right] \quad \text { s.t. } \quad \phi \in \mathbb{R}^{3}, \varphi=\|\boldsymbol{\phi}\|<\pi, \boldsymbol{\rho} \in \mathbb{R}^{3}
$$

- exponential map in closed form

$$
\begin{gathered}
\mathbf{R}=\operatorname{expm}[\boldsymbol{\phi}]_{\times}, \quad \mathbf{t}=\operatorname{dexpm}\left([\boldsymbol{\phi}]_{\times}\right) \boldsymbol{\rho} \\
\operatorname{dexpm}\left([\boldsymbol{\phi}]_{\times}\right)=\sum_{n=0}^{\infty} \frac{[\boldsymbol{\phi}]_{\times}^{n}}{(n+1)!}=\mathbf{I}+\frac{1-\cos \varphi}{\varphi^{2}}[\boldsymbol{\phi}]_{\times}+\frac{\varphi-\sin \varphi}{\varphi^{3}}[\boldsymbol{\phi}]_{\times}^{2} \\
\operatorname{dexpm}^{-1}\left([\boldsymbol{\phi}]_{\times}\right)=\mathbf{I}-\frac{1}{2}[\boldsymbol{\phi}]_{\times}+\frac{1}{\varphi^{2}}\left(1-\frac{\varphi}{2} \cot \frac{\varphi}{2}\right)[\boldsymbol{\phi}]_{\times}^{2}
\end{gathered}
$$

- dexpm: differential of the exponential in $\mathrm{SO}(3)$
- (principal) logarithm via a similar trick as in $\mathrm{SO}(3)$
- finite limits exist: $(\varphi-\sin \varphi) / \varphi^{3} \rightarrow 1 / 6$
- this form is preferred to $\mathrm{SO}(3) \times \mathbb{R}^{3}$

Minimal Representations for Other Entities

－fundamental matrix via $\mathrm{SO}(3) \times \mathrm{SO}(3) \times \mathbb{R}^{+}$

$$
\mathbf{F}=\mathbf{U D V}^{\top}, \quad \mathbf{D}=\operatorname{diag}\left(1, d^{2}, 0\right), \quad \mathbf{U}, \mathbf{V} \in \mathrm{SO}(3), \quad 3+1+3=7 \mathrm{DOF}
$$

－essential matrix via $\mathrm{SO}(3) \times \mathbb{R}^{3}$

$$
\mathbf{E}=[-\mathbf{t}]_{\times} \mathbf{R}, \quad \mathbf{R} \in \mathrm{SO}(3), \quad \mathbf{t} \in \mathbb{R}^{3},\|\mathbf{t}\|=1, \quad 3+2=5 \mathrm{DOF}
$$

－camera pose via $\mathrm{SO}(3) \times \mathbb{R}^{3}$ or $\mathrm{SE}(3)$

$$
\mathbf{P}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{R} & \mathbf{t}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{K} & \mathbf{0}
\end{array}\right] \mathbf{M}, \quad 5+3+3=11 \mathrm{DOF} \quad \mathbf{M} \in \mathrm{SE}(3)
$$

－ $\operatorname{Sim}(3)$ useful for SfM without scale
－closed－form formulae still exist but they are a bit too messy［Eade（2017）］
－a（bit too brief）intro to Lie groups in 3D vision／robotics and SW：
國
J．Solà，J．Deray，and D．Atchuthan．A micro Lie theory for state estimation in robotics．arXiv：1812．01537v7 ［cs．RO］，August 2020.
圊
E．Eade．Lie groups for 2D and 3D transformations．On－line at http：／／www．ethaneade．org／，May 2017.

Motion Interpolation

- let G be a Lie group
- let $\mathbf{M} \in G$ be motion from time $t=0$ to time $t=1$
- then the motion from $t=0$ to t is interpolated as

$$
\mathbf{M}(t)=\exp (t \log (\mathbf{M})), \quad t \in[0,1]
$$

- the trajectory is constant-speed,
- and the speed is $\log (\mathbf{M})$

Examples in $\mathrm{SE}(3)$:

Distance between Lie Group Elements

- Integration formula the motion is along the geodesic (shortest-distance curve)

$$
\lim _{n \rightarrow \infty} \prod_{i=1}^{n} \exp \left(\frac{1}{n} \log (\mathbf{M})\right)=\mathbf{M}
$$

- hat and vee functions:
- $[\mathbf{a}]_{\wedge}$ maps vector $\mathbf{a} \in \mathbb{R}^{d}$ to algebra \mathfrak{g} element (matrix)
- $(\mathbf{B})_{V}$ maps algebra element $\mathbf{B} \in \mathfrak{g}$ to vector element, $\left([\mathbf{a}]_{\wedge}\right)_{V}=\mathbf{a}$
- the Log function is a composition of \log and vee, $\log : G \rightarrow \mathbb{R}^{d}, \log (\mathbf{M})=(\log (\mathbf{M}))_{V}$

$$
G \rightarrow \mathfrak{g} \rightarrow \mathbb{R}^{d}
$$

- then: left/right difference

$$
\mathbf{Y} \overleftarrow{\ominus} \mathbf{X} \in \mathbb{R}^{d}
$$

$$
\mathbf{Y} \stackrel{\leftarrow}{\ominus} \mathbf{X}=\log \left(\mathbf{Y} \mathbf{X}^{-1}\right), \quad \mathbf{Y} \vec{\ominus} \mathbf{X}=\log \left(\mathbf{X}^{-1} \mathbf{Y}\right)
$$

- skew-symmetry

$$
\mathbf{Y} \stackrel{\leftarrow}{\ominus} \mathbf{X}=-(\mathbf{X} \stackrel{\leftarrow}{\ominus} \mathbf{Y}), \quad \mathbf{Y} \vec{\ominus} \mathbf{X}=-(\mathbf{X} \vec{\ominus} \mathbf{Y})
$$

- left/right distance

$$
\overleftarrow{d}(\mathbf{X}, \mathbf{Y})=\|\mathbf{Y} \overleftarrow{\ominus} \mathbf{X}\|, \quad \vec{d}(\mathbf{X}, \mathbf{Y})=\|\mathbf{Y} \vec{\ominus} \mathbf{X}\|
$$

- not equal but both are non-negative, symmetric $\quad+$ additional properties, e.g. left/right invariance,...

Thank You

