
Invitation to Nonlinear Algebra

Mateusz Micha lek

Bernd Sturmfels

Max Planck Institute for Mathematics in the Sciences, In-
selstrasse 22, 04103 Leipzig, Germany

E-mail address: michalek@mis.mpg.de

Max Planck Institute for Mathematics in the Sciences, In-
selstrasse 22, 04103 Leipzig, Germany

E-mail address: bernd@mis.mpg.de



2010 Mathematics Subject Classification. Primary





Contents

Preface xi

Chapter 1. Polynomial Rings 1

§1.1. Ideals 1
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Preface

This book grew out of the lecture notes for a graduate course we taught
during the Summer Semester 2018 at the Max-Planck Institute (MPI) for
Mathematics in the Sciences in Leipzig, Germany. This was part of the gen-
eral lecture series (called Ringvorlesung in German) which is offered biannu-
ally by the International Max-Planck Research School (IMPRS). The aim
of our course was to introduce the theme of Nonlinear Algebra, which is also
the name of the research group that started at MPI Leipzig in early 2017.

Linear algebra is the foundation of much of mathematics, particularly
in applied mathematics. Numerical linear algebra is the basis of scientific
computing, and its importance for the sciences and engineering can hardly
be overestimated. The ubiquity of linear algebra masks the fairly recent
growth of nonlinear models across the mathematical sciences. There has
been a proliferation of methods based on systems of multivariate polynomial
equations and inequalities. This is fueled by recent theoretical advances, ef-
ficient software, and an increased awareness of these tools. At the heart
of this lies algebraic geometry, but there are links to many other branches,
such as combinatorics, algebraic topology, commutative algebra, convex and
discrete geometry, tensors and multilinear algebra, number theory, represen-
tation theory, and symbolic and numerical computation. Application areas
include optimization, statistics, complexity theory, among many others.

Nonlinear algebra is not simply a rebranding of algebraic geometry. It
is a recognition that a focus on computation and applications, and the the-
oretical needs that this requires, results in a body of inquiry that is comple-
mentary to the existing curriculum. The term nonlinear algebra is intended
to capture these trends, and to be more friendly to applied scientists. A spe-
cial research semester with that title, held in the fall of 2018 at the Institute

xi



xii Preface

for Computational and Experimental Research in Mathematics (ICERM)
at Brown University, explored the theoretical and computational challenges
that have arisen, and it charted the course for the future. This book supports
this effort by offering a warm welcome to nonlinear algebra.

Our presentation is structured into 13 chapters, one for each week in a
semester. Many of our chapters are rather ambitious in that they promise a
first introduction to an area of mathematics that would normally be covered
in a full-year course. But what we offer is really just an invitation. Our read-
ers are hence encouraged to go further in their studies with other sources.
We hope that students will find our presentation of use and that nonlinear
algebra will encourage them to think critically and deeply, and to question
the historic boundaries between “pure” and “applied” mathematics.

Mateusz Micha lek and Bernd Sturmfels



Chapter 1

Polynomial Rings

“Algebra is but written geometry”, Sophie Germain

A natural next step after linear algebra is commutative algebra. In that
subject area one studies algebraic structures such as fields, rings and ideals.
In this first chapter we introduce the relevant basics, with a focus on poly-
nomials and Gröbner basis. We show how to use these for computing basic
invariants of a polynomial ideal, like dimension or degree. The formalism
we develop now will be applied to geometric situations in later chapters.

1.1. Ideals

Our most basic algebraic structure is that of a field. The elements of the field
serve as numbers, also called scalars. We can add, subtract, multiply and
divide them. It is customary to denote fields by the letter K, for the German
word Körper. Our favorite field is the set K = Q of rational numbers.
Another important field is the set K = R of real numbers. In practise, these
two fields are very different. Numbers in Q can be manipulated by exact
symbolic computation, whereas numbers in R are approximated by floating
point representations and manipulated by numerical computation.

Other widely used fields are the complex numbers C and the finite field
Fq with q elements. If K is not algebraically closed then we write K for
its algebraic closure. This is the smallest field in which every non-constant
polynomial with coefficients in K has a root. For instance, Q and Fq are
the algebraic closures of the two fields above. Another important example is
the field of rational functions Q(t). Its algebraic closure Q(t) is contained in
the field of Puiseux series, denoted C{{t}}, which is also algebraically closed.

1



2 1. Polynomial Rings

In this section we study the ring of polynomials in n variables x1, . . . , xn
with coefficients in our field K. It is denoted K[x] = K[x1, . . . , xn]. If the
number n is small then we typically use letters without indices to denote
the variables. For instance, we write K[x],K[x, y], or K[x, y, z] for the
polynomial ring when n = 1, 2, 3.

Many of the constructions we present work not just for the polynomial
ring K[x] but for an arbitrary commutative ring R with unit 1. We allow
1 = 0, i.e. R as a set may contain just one element 0. For the most part, the
reader may assume R = K[x]. But, it would not hurt to peruse a standard
text book on abstract algebra and look up the axioms of a ring and the formal
definitions of commutative and unit. Important examples of commutative
rings are the integers Z, the polynomial ring of the integers Z[x], or the
quotient of a polynomial ring by an ideal. The latter will be discussed soon.

The polynomial ring K[x] is an infinite-dimensional K-vector space. A
distinguished basis of this vector space consists of the monomials xa =
xa11 x

a2
2 · · ·xann . There is one monomial for each nonnegative integer vector

a = (a1, a2, . . . , an) ∈ Nn. Every polynomial f ∈ K[x] is written uniquely
as a finite K-linear combination of monomials:

f =
∑

a

cax
a.

The degree of f is the maximum of the quantities |a| = a1 + · · ·+ an, where
ca 6= 0. For polynomials of degree 1, 2, 3, 4, 5, 6 we use the words linear,
quadratic, cubic, quartic, quintic, sextic. These can be adjectives or nouns.

Figure 1. A cubic surface with four singular points.

For example, the following is a cubic polynomial in n = 3 variables:

(1.1) f = det




1 x y
x 1 z
y z 1


 = 2xyz − x2 − y2 − z2 + 1.
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The zero set of this f is the surface in R3 that is shown in Figure 1. It
consists of all points at which the rank of the 3× 3-matrix in (1.1) drops.

Our cubic determinantal surface has four singular points, namely the
points (1, 1, 1), (1,−1,−1), (−1, 1,−1), and (−1,−1, 1). These four points
are the common zeros in R3 of the cubic f and its three partial derivatives

∂f

∂x
= 2yz − 2x ,

∂f

∂y
= 2xz − 2y ,

∂f

∂z
= 2xy − 2z.

These are the points at which the rank of the 3×3-matrix in (1.1) equals 1.

Definition 1.1. An ideal in a ring R is a nonempty subset I of R such that

(a) if f ∈ R and g ∈ I then fg ∈ I;

(b) if g, h ∈ I then g + h ∈ I.

If R = K[x] then an ideal I is a nonempty subset of K[x] that is closed
under taking linear combinations with polynomial coefficients. An alterna-
tive definition is as follows: A subset I of a ring R is an ideal if and only if
there exists a ring homomorphism φ : R → S whose kernel kerφ = φ−1(0)
is equal to I. For instance, if R = Z then the set I of even integers is an
ideal. It is the kernel of the ring homomorphism Z → Z/2Z = {0, 1} that
takes an integer to either 0 or 1, depending on its parity.

Ideals in a ring play the same role as normal subgroups in a group. They
are the subobjects used to define quotients. Consider the quotient of abelian
groups R/I. Its elements are the congruence classes f + I modulo I. The
axioms (a) and (b) in Definition 1.1 ensure that the following identities hold:

(1.2) (f + I) + (g + I) = (f + g) + I and (f + I)(g + I) = fg + I.

Corollary 1.2. If I ⊂ R is an ideal then the quotient R/I is a ring.

Given any subset F of a ring R, we write 〈F〉 for the smallest ideal
containing F . This is the ideal generated by F . If R = K[x] then the ideal
〈F〉 is the set of all polynomial linear combinations of finite subsets of F .

Proposition 1.3. If I and J are ideals in a ring R then the following subsets
of R are ideals as well: the sum I+J , the intersection I∩J , the product IJ ,
and the quotient (I : J). The latter two subsets of R are defined as follows:

IJ = 〈 fg : f ∈ I, g ∈ J 〉 and (I : J) =
{
f ∈ R : fJ ⊆ I

}
.

Proof. The product IJ is an ideal by definition. For the others one checks
that conditions (a) and (b) hold. We shall carry this out for the ideal
quotient (I : J). To show (a), suppose that f ∈ R and g ∈ (I : J). We have:

(fg)J = f(gJ) ⊂ fI ⊂ I.
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For (b), suppose f and g are in (I : J). We have:

(f + g)J ⊂ fJ + gJ ⊂ I + I = I.

This implies f + g ∈ (I : J). We have shown that (I : J) is an ideal. �

The Euclidean algorithm works in the polynomial ring K[x] in one vari-
able x over a field K. This implies that K[x] is a principal ideal domain
(PID), i.e. every ideal I in K[x] is generated by one element. That generator
can be uniquely factored into irreducible polynomials.

Unique factorization of polynomials also holds when the number of vari-
ables satisfies n ≥ 2. We say that the polynomial ring K[x] is a unique
factorization domain (UFD). However, K[x] is not a PID when n ≥ 2.

Example 1.4 (n = 1). Consider the following two ideals in Q[x]:

I = 〈x3 + 6x2 + 12x+ 8 〉 and J = 〈x2 + x− 2 〉.

We compute the four ideals in Proposition 1.3. For this, it helps to factor:

I = 〈 (x+ 2)3 〉 and J = 〈 (x− 1)(x+ 2) 〉.

The four new ideals are

I ∩ J = 〈 (x− 1)(x+ 2)3 〉 IJ = 〈 (x− 1)(x+ 2)4 〉
I + J = 〈x+ 2 〉 I : J = 〈 (x+ 2)2 〉.

We see that arithmetic in Q[x] is just like arithmetic in the ring of integers Z.

A non-zero element f in a ring R is called

• a nilpotent if fm = 0 for some positive integer m,

• a zero divisor if there exists 0 6= g ∈ R such that gf = 0.

A ring R is called an integral domain if it has no zero divisors and 1 6= 0 in
R, i.e. 0 is a ring but not an integral domain.

We examine these properties for the quotient ring R/I where I is an
ideal in R. Properties of the ideal I correspond to properties of the ring
R/I. This summarized in the following table:

property definition the quotient ring R/I
I is maximal no other proper ideal contains I is a field
I is prime fg ∈ I ⇒ f ∈ I or g ∈ I is an integral domain
I is radical (∃s : fs ∈ I) ⇒ f ∈ I has no nilpotent elements
I is primary fg ∈ I and g 6∈ I ⇒ (∃s : fs ∈ I) all zero divisor are nilpotent

Maximal, prime and primary ideals are proper. In other words, the ring R
itself is an ideal in R, but it is neither maximal, nor prime, nor primary.
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Example 1.5. The ideal I = 〈x2 + 10x + 34, 3y − 2x − 13〉 is maximal in
the polynomial ring R[x, y]. The field R[x, y]/I is isomorphic to the field of
complex numbers C = R[i]/〈i2 + 1〉. One isomorphism is gotten by sending
i =
√
−1 to 1

13(x + 5y). The square of that expression is −1 mod I. The

principal ideal J = 〈x2 +10x+34〉 is prime but not maximal in R[x, y]. The
quotient R[x, y]/J is an integral domain. It is isomorphic to C[y].

Examples for the other two classes of ideals are given in the next proof.

Proposition 1.6. We have the following implications for an ideal I in R:

I maximal ⇒ I prime ⇒ I radical,
⇒ I primary.

None of these implications is reversible. However, every ideal that is both
radical and primary is prime. Every intersection of prime ideals is radical.

Proof. The first implication holds because there are no zero divisors in
a field. To see that prime implies radical, we take g = fs−1 and we use
induction on s. Prime implies primary is clear. To prove that every radical
primary ideal is prime assume fg ∈ I and f 6∈ I. Then, as I is primary, we
have gs ∈ I for some s ∈ N. As I is radical, we now conclude that g ∈ I.

To see that no implication is reversible, we consider the following three
ideals in the polynomial ring R[x, y] with n = 2 variables:

• I = 〈x2 〉 is primary but not radical,

• I = 〈x(x− 1) 〉 is radical but not primary,

• I = 〈x 〉 is prime but not maximal.

The last statement holds since intersections of radical ideals are radical. �

We now revisit the surface in Figure 1 from the perspective of ideals.

Example 1.7 (n = 3). We consider the ideal generated by the partial
derivatives of the cubic f = 2xyz − x2 − y2 − z2 + 1. This is the ideal

I =
〈 ∂f
∂x

,
∂f

∂y
,
∂f

∂x

〉
= 〈xy − z , xz − y , yz − x 〉 ⊂ R[x, y, z].

The cubic f is not in this ideal because every polynomial in I has zero con-
stant term. The ideal I is radical because we can write it as the intersection
of five maximal ideals. Namely, using a computer algebra system, we find
that I equals the intersection

(1.3)
I = 〈x, y, z〉 ∩ 〈x− 1, y − 1, z − 1〉 ∩ 〈x− 1, y + 1, z + 1〉

∩ 〈x+ 1, y − 1, z + 1〉 ∩ 〈x+ 1, y + 1, z − 1〉.
The cubic f lies in the last four maximal ideals. Their intersection is equal to
I+ 〈f〉. The zero set of the radical ideal I+ 〈f〉 consists of the four singular
points on the surface seen in in Figure 1. The Chinese Remainder Theorem
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implies that the quotient ring is a product of fields. Namely, we have an
isomorphism R[x, y]/I ' R × R × R × R × R. It takes each polynomial
modulo I to its residue classes modulo in the intersectands in (1.3).

1.2. Gröbner Bases

Every ideal has many different generating sets. There is no canonical notion
of basis for an ideal. For instance, the set F = {x6 − 1, x10 − 1, x15 − 1}
minimally generates the ideal 〈x − 1〉 in the polynomial ring Q[x] in one
variable. Of course, the singleton {x − 1} is a preferable generating set
for that ideal. Recall that every ideal in Q[x] is principal for n = 1. The
Euclidean algorithm transforms the set F into the set {x− 1}.

Here is a certificate for the fact that x−1 is in the ideal generated by F :

x5 · (x6 − 1) − (x5 + x) · (x10 − 1) + 1 · (x15 − 1) = x− 1.

Such identities can be found with the Extended Euclidean Algorithm. Please
google this. Finding certificates for ideal membership when n ≥ 2 is a harder
problem. This topic comes up when we discuss Hilbert’s Nullstellensatz in
Chapter 6. In this section we introduce the basics for computing with ideals.

Gaussian elimination is familar from linear algebra. It gives a process for
manipulating ideals that are generated by linear polynomials. For example,
the following two ideals are identical in the polynomial ring Q[x, y, z]:

〈 2x+ 3y + 5z + 7, 11x+ 13y + 17z + 19, 23x+ 29y + 31z + 37 〉
= 〈 7x− 16, 7y + 12, 7z + 9 〉.

Undergraduate linear algebra taught us how to transform the three gener-
ators on the left into the simpler ones on the right. This is the process
of solving a system of linear equations. In our example there is a unique
solution, namely the point

(
16
7 ,−12

7 ,−9
7

)
in R3.

We next introduce Gröbner bases. The framework of Gröbner bases
offers practical methods for computing with ideals in a polynomial ring
K[x] in n variables. Here K is a field whose arithmetic we can compute.
Implementations of Gröbner bases are available in many computer algebra
systems. We strongly encourage our readers to experiment with these tools.

Informally, we can think of Gröbner bases as a version of the Euclidean
algorithm for polynomials in n ≥ 2 variables, or as a version of Gaussian
elimination for polynomials of degree ≥ 2. Gröbner bases for ideals in K[x]
are fundamental in nonlinear algebra, just like Gaussian elimination for ma-
trices is fundamental when one studies linear algebra. The premise of this
book is that nonlinear algebra is the next step after linear algebra.

We identify the set Nn of non-negative integer vectors with the monomial
basis of the polynomial ring K[x]. The coordinatewise partial order on Nn
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corresponds to divisibility of monomials. To be precise, we have a ≤ b in
Nn if and only if the monomial xa divides the monomial xb.

Theorem 1.8 (Dickson’s Lemma). Any infinite subset of Nn contains a
pair {a,b} that satisfies a ≤ b.

Proof. We proceed by induction on n. The statement is trivial for n = 1.
Any subset of cardinality at least two in N contains a comparable pair.
Suppose now that Dickson’s Lemma has been proved for n−1, and consider
an infinite subset M of Nn. For each i ∈ N let Mi denote the set of all
vectors a ∈ Nn−1 such that (a, i) ∈ M. If some Mi is infinite then we are
done by the induction hypothesis. Hence eachMi is a finite subset of Nn−1,
and we have Mi 6= ∅ for infinitely many i.

The infinite subset ∪∞i=0Mi of Nn−1 satisfies the assertion. This means
that its subset of minimal elements with respect to the coordinatewise order
is finite. Hence there exists an index j such that all minimal elements are

contained in the finite set ∪ji=0Mi. Pick any element (b, k) ∈Mk for k > j.
Since b is not minimal in ∪∞i=0Mi, there exists an index i with i ≤ j < k
and an element a ∈Mi with a ≤ b. Then we have (a, i) ≤ (b, k) inM. �

Corollary 1.9. For any nonempty setM⊂ Nn, its subset of coordinatewise
minimal elements is finite and nonempty.

Proof. The fact that it is nonempty follows by induction on n. The set is
finite by Dickson’s Lemma. �

Definition 1.10. Consider a total ordering ≺ of the set Nn. We write a � b
if a ≺ b or a = b. The ordering ≺ is a monomial order if, for all a,b, c ∈ Nn,

• (0, 0, . . . , 0) � a;

• a � b implies a + c � b + c.

This gives a total order on monomials in K[x]. Three standard examples are:

• the lexicographic ordering: we set a ≺lex b if the leftmost non-zero
entry of b− a is positive.

• the degree lexicographic order: we set a ≺deglex b if either |a| < |b|,
or |a| = |b| and the leftmost non-zero entry of b− a is positive.

• the degree reverse lexicographic order: we set a ≺revlex b if either
|a| < |b|, or |a| = |b| and the rightmost non-zero entry of b− a is
negative.

All three orders satisfy x1 � x2 � · · · � xn, but they differ on monomi-
als of higher degree. We recommend that the reader list the 10 quadratic
monomials for n = 4 in each of the three orderings above.
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Throughout this book we specify a monomial order by giving the name of
the order and how the variables are sorted. For instance, we might say: “let
≺ denote the degree lexicographic order on K[x, y, z] given by y ≺ z ≺ x”.
Further choices of monomial orderings can be obtained by assigning positive
weights to the variables. See [10, Exercise 11 in §2.4]. We also note that
any monomial order is a refinement of the coordinatewise partial order on
Nn:

if xa divides xb then a � b.

Remark 1.11. Fix a monomial order ≺ and letM be any nonempty subset
of Nn. Then M has a unique minimal element with respect to ≺. To show
this, we apply Dickson’s Lemma as in Corollary 1.9. Our setM has a finite,
nonempty subset of minimal elements in the componentwise order on Nn.
This finite subset is linearly ordered by ≺. We select its minimal element.

We now fix a monomial order ≺. Given any nonzero polynomial f ∈
K[x], its initial monomial in≺(f) is the ≺-largest monomial xa among those
that appear in f with non-zero coefficient. To illustrate this for the orders
above, let n = 3 with variable order x � y � z: Fix the polynomial f =
x2+xz2+y3. Then in≺lex

(f) = x2, in≺deglex
(f) = xz2 and in≺revlex

(f) = y3.

For any ideal I ⊂ K[x], we define the initial ideal of I with respect to a
given monomial order ≺ as follows:

in≺(I) = 〈 in≺(f) : f ∈ I 〉.
This is a monomial ideal, i.e. it is generated by a set of monomials. A priori,
this generating set is infinite. However, it turns out that we can always
choose a finite subset that suffices to generate this monomial ideal.

Proposition 1.12. Fix a monomial order ≺. Every ideal I in the polyno-
mial ring K[x] has a finite subset G such that

in≺(I) = 〈 in≺(f) : f ∈ G 〉.
Such a finite subset G of I is called a Gröbner basis for I with respect to ≺.

Proof. Suppose no such finite set G exists. Then we can create a list of
infinitely many polynomials f1, f2, f3, . . . in I such that none of the initial
monomials in≺(fi) divides any other initial monomial in≺(fj). This would
be a contradiction to Dickson’s Lemma. �

We next show that every Gröbner basis actually generates its ideal.

Theorem 1.13. If G is a Gröbner basis for an ideal I in K[x] then I = 〈G〉.

Proof. Suppose that G does not generate I. Among all elements in the set-
theoretic difference I\〈G〉, there exists a polynomial f whose initial mono-
mial xb = in≺(f) is minimal with respect to ≺. This follows from Remark
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1.11. Since xb ∈ in≺(I), there exists an element g ∈ G whose initial mono-
mial divides xb, say xb = xc · in≺(g). Now, f − xcg is a polynomial with
strictly smaller initial monomial. It lies in I but it does not lie in the ideal
〈G〉. This is a contradiction to the choice of f . �

Corollary 1.14 (Hilbert’s Basis Theorem). Every ideal I in K[x] is finitely
generated.

Proof. Fix any monomial order ≺. By Proposition 1.12, the ideal I has a
finite Gröbner basis G. By Theorem 1.13, the finite set G generates I. �

Gröbner bases are not unique. If G is a Gröbner basis of an ideal I with
respect to a monomial order ≺ then so is every other finite subset of I that
contains G. In that sense, Gröbner bases differ from the bases we know from
linear algebra. The issue of minimality and uniqueness is addressed next.

Definition 1.15. Fix I and ≺. A Gröbner basis G is reduced if the following
two conditions hold:

(a) The leading coefficient of each polynomial g ∈ G is 1.

(b) For distinct g, h ∈ G, no monomial in g is a multiple of in≺(h).

In what follows we fix an ideal I ⊂ K[x] and a monomial ordering ≺.

Theorem 1.16. The ideal I has a unique reduced Gröbner basis for ≺.

Proof idea. We refer to [10, §2.7, Theorem 5]. The idea is as follows. We
start with any Gröbner basis G and we turn it into a reduced Gröbner basis
by applying the following steps. First we divide each g ∈ G by its leading
coefficient to make it monic, so that (a) holds. We then remove all elements g
from G whose initial monomial is not a minimal generator of in≺(I). For any
pair of polynomials with the same initial monomial we delete one of them.
Next we apply the division algorithm [10, §2.3] to any trailing monomial
until no more trailing monomial is divisible by any leading monomial. The
resulting set is the reduced Gröbner basis. �

Let S≺(I) be the set of all monomials xb that are not in the initial ideal
in≺(I). We call these xb the standard monomials of I with respect to ≺.

Theorem 1.17. The set S≺(I) of standard monomials is a basis for the
K-vector space K[x]/I.

Proof. The image of S≺(I) in K[x]/I is linearly independent because every
non-zero polynomial f has at least one monomial, namely in≺(f), that is
not in S. We next prove that S≺(I) spans K[x]/I. Suppose not. Then
there exists a monomial xc which is not in the K-span of S≺(I) modulo I.
We may assume that xc is minimal with respect to the monomial order ≺.
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Since xc is not in S≺(I), it lies in the initial ideal in≺(I). Hence there exists
h ∈ I with in≺(h) = xc. Each monomial in h other than xc is smaller with
respect to ≺, so it lies in the K-span of S≺(I) modulo I. Hence xc has the
same property. This is a contradiction. �

Software for Gröbner bases rests on Buchberger’s Algorithm [10, §2.7].
This is implemented in all major computer algebra systems. It takes as
its input a monomial order ≺ and a finite set F of polynomials in K[x].
The output of Buchberger’s Algorithm is the unique reduced Gröbner basis
G for the ideal I = 〈F〉 with respect to ≺. Experimenting with such an
implementation is an essential step for any student in nonlinear algebra.

In what follows we present some examples of input-output pairs (F ,G)
for n = 3. Here we take the lexicographic monomial order with x � y � z.

Example 1.18. A computer algebra system, like Maple, Mathematica,
Magma, Macaulay2, or Singular, transforms the input F ⊂ Q[x, y, z] into
its reduced Gröbner basis G. The initial monomials are always underlined:

• For n = 1, computing the reduced Gröbner basis means computing
the greatest common divisor of the input polynomials:
F = {x3−6x2−5x−14, 3x3+8x2+11x+10, 4x4+4x3+7x2−x−2},
G = {x2 + x+ 2}.
• For linear polynomials, running Buchberger’s algorithm amounts

to Gaussian elimination: For F = {2x + 3y + 5z + 7, 11x + 13y +
17z+19, 23x+29y+31z+37}, the reduced Gröbner basis is found
to be G = {x− 16

7 , y + 12
7 , z + 9

7}.
• Here is another ideal we saw earlier: F = {xy − z, xz − y, yz − x}

yields G = {x−yz, y2−z2, yz2−y, z3−z}. There are precisely five

standard monomials: S≺(I) = {1, y, z, yz, z2}. This is consistent
with Example 1.7, where we saw that F has five zeros in C3.

• This input is a curve in the (y, z)-plane parametrized by two cubics
in one variable x. We write this as F = {y−x3+4x, z−x3−x+1}.
The Gröbner basis has the implicit equation of this curve as its
second element: G = {x+ 1

5y + 1
5z − 1

5 , y
3 − 3y2z − 3y2 + 3yz2 +

6yz + 28y − z3 − 3z2 + 97z + 99 }.
• Let z be the sum of x = 3

√
7 and y = 4

√
5. We encode this in the

set F = {x3 − 7, y4 − 5, z − x− y}. The real number z = 3
√

7 + 4
√

5
is algebraic of degree 12 over Q. Its minimal polynomial is the first
element in the Gröbner basis G = {z12 − 28z9 − 15z8 + 294z6 −
1680z5 + 75z4 − 1372z3 − 7350z2 − 2100z + 2276, . . .}.
• The elementary symmetric polynomials F = {x+ y+ z, xy+ xz+
yz, xyz} have the reduced Gröbner basis G = {x + y + z, y2 +
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yz + z2, z3 }. There are six standard monomials. The quotient
Q[x, y, z]/I is the regular representation of the symmetric group S3.

For each of the six ideals above, what is the reduced Gröbner basis for the
degree lexicographic order? What are the possible initial monomial ideals?

In general, the choice of monomial order can make a huge difference in
the complexity of the reduced Gröbner basis, even for two input polynomials.

Example 1.19 (Intersecting two quartic surfaces in projective 3-space P3).
A random homogeneous polynomial of degree four in n = 4 variables has 35
monomials. Consider the ideal I generated by two such random polynomials.
If ≺ is the degree reverse lexicographic order then the reduced Gröbner basis
G contains 5 elements of degree up to 7. If ≺ is the lexicographic order then
G contains 150 elements of degree up to 73.

Naturally, one uses a computer to find the 150 polynomials above. Many
computer algebra systems offer an implementation of Buchberger’s algo-
rithm for Gröbner bases. We reiterate: our readers are strongly encouraged
to experiment with a computer algebra system while studying this book.

For an introduction to Buchberger’s algorithm and many further details
regarding Gröbner bases, the reader is referred to the textbooks by Cox-
Little-O’Shea [10], Greuel-Pfister [25] and Kreuzer-Robbiano [31]. In later
chapters we shall freely use concepts from this area, like S-polynomials and
Buchberger’s Criterion. After all, our book is nothing but an “Invitation”.

1.3. Dimension and Degree

The two most important invariants of an ideal I in a polynomial ring K[x]
are its dimension and its degree. We shall define these invariants, starting
with the case of monomial ideals. In this section we focus on combinatorial
aspects. The geometric interpretation of will be presented in Chapter 2.

Definition 1.20 (Hilbert function). Let I ⊂ K[x] be a monomial ideal.
The Hilbert function hI takes nonnegative integers to nonnegative integers.
The value hI(q) is the number of monomials of degree q not belonging to I.

A convenient way to represent a function N → N is by its generating
function. This is a formal power series with nonnegative integer coefficients.
The generating function for the Hilbert function is known as Hilbert series.

Definition 1.21 (Hilbert series). Let I ⊂ K[x] be a monomial ideal. We
fix a formal variable z. The Hilbert series of I is the generating function

HSI(z) =
∞∑

q=0

hI(q)z
q.
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We begin with zero ideal I = {0}. Here we count all monomials in K[x].

Example 1.22. The Hilbert series of the zero ideal is the rational function

HS{0}(q) =
1

(1− z)n =

∞∑

q=0

(
n+ q − 1

n− 1

)
zq.

The number of monomials of degree q in n variables equals hI(q) =
(
n+q−1
n−1

)
.

Note that the Hilbert function h{0}(q) is a polynomial of degree n− 1 in q.

We next consider the case of a principal ideal.

Example 1.23. Let I = 〈xa11 · · ·xann 〉, where
∑n

i=1 ai = e. We must count
monomials of degree q that are not divisible by the generator of I. To do
this, we can count all monomials and then subtract those that are in I.
This yields

HSI(z) =
1− ze

(1− z)n =
∞∑

q=0

[(
n+ q − 1

n− 1

)
−
(
n+ q − e− 1

n− 1

)]
zq.

The second binomial coefficient is zero when q < e. For all q ≥ e, the Hilbert
function hI(q) =

(
n+q−1
n−1

)
−
(
n+q−e−1
n−1

)
is a polynomial in q of degree n− 2 .

Our third example concerns ideals generated by two monomials:

Example 1.24. Fix an ideal I = 〈m1,m2〉 in K[x], where mi is a monomial
of degree ei for i = 1, 2. We count the monomials in I of degree q by

(1) computing the number of monomials divisible by m1,

(2) adding the number of monomials divisible by m2,

(3) subtracting the number of monomials divisible both by m1 and m2.

Case (3) concerns monomials that are divisible by the least common multiple
m12 = lcm(m1,m2). Let e12 denote the degree of m12. Then the Hilbert
series equals

HSI(z) =
1− ze1 − ze2 + ze12

(1− z)n .

Therefore, the Hilbert function is an alternating sum of binomial coefficients:

hI(q) =
(
n+q−1
n−1

)
−
(
n+q−e1−1

n−1
)
−
(
n+q−e1−1

n−1
)

+
(
n+q−e12−1

n−1
)
.

This expression agrees with a polynomial in q, provided q ≥ e12.
Theorem 1.25. The Hilbert series of a monomial ideal I ⊂ K[x] equals

(1.4) HSI(z) =
κI(z)

(1− z)n ,

where κI(z) is polynomial with integer coefficients and κI(0) = 1. There
exists a polynomial HP in one unknown q of degree ≤ n− 1, known as the
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Hilbert polynomial of the ideal I, such that HP(q) = hI(q) for all values of
the integer q that are sufficiently large.

Proof. We prove this result by counting monomials using inclusion-exclusion,
as hinted at in the three examples above. Let m1,m2, . . . ,mr be the mono-
mials that minimally generate I. For any subset τ of the index set {1, 2, . . . , r},
we write mτ for the least common multiple of the set {mi : i ∈ τ}, and we
set eτ = degree(mτ ). This includes the empty set τ = ∅, for which m∅ = 1
and e∅ = 0. The desired numerator polynomial (1.4) can be written as an
alternating sum of 2r powers of z:

κI(z) =
∑

τ⊆{1,2,...,r}
(−1)|τ | · zeτ .

The cases r = 0, 1, 2 were seen above. The general case is inclusion-exclusion.
Note that κI ∈ Z[z] with κI(0) = 1. By regrouping the terms of (1.4),

(1.5) hI(q) =
∑

τ⊆{1,2,...,r}
(−1)|τ |

(
n+ q − eτ − 1

n− 1

)
.

This expression is a polynomial for q � 0. More precisely, the Hilbert
function hI(q) coincides with the Hilbert polynomial HPI(q) for all q that
exceed e{1,2,...,r}. This number is the degree of the least common multiple
of all generators of I. �

Remark 1.26. The inclusion-exclusion principle carried out in the proof
of Theorem 1.25 is a powerful idea, but it also hints at possible simplifica-
tions. We wrote the numerator polynomial κI(z) and the Hilbert polynomial
HPI(q) as an alternating sum of 2r terms. However, in most applications
r is much larger than n, and the vast majorities of terms will cancel each
other. Doing the correct bookkeeping leads us the the topic of minimal
free resolutions of monomial ideals. This is a main theme in a subject area
known as combinatorial commutative algebra. Yes, please google this.

Example 1.27. Let n = 2 and consider the monomial ideal

I = 〈x〉 ∩ 〈y〉 ∩ 〈x, y〉r+1 = 〈xry, xr−1y2, xr−2y3, . . . , x2yr−1, xyr〉.
Our formula for κI involves 2r terms. After cancellations, only 2r remain:

κI(z) = 1 − rzr+1 + (r − 1)zr+2.

The Hilbert polynomial is the constant hI(q) ≡ 2. This is also the value of
the Hilbert function HFI(q) for q > r. Note that HFI(q) = q+ 1 for q ≤ r.
Definition 1.28 (Dimension, Degree). Let I be a monomial ideal and write

HPI(q) =
g

(d− 1)!
qd−1 + lower order terms in q.

The dimension of I is d and the degree of I is g. Here g is a positive integer.
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Remark 1.29. The fact that g is a positive integer is a non-trivial piece
of combinatorics. This proof is omitted here. From the inclusion-exclusion
formulas above, one can show that the numerator of the Hilbert series factors
as κI(z) = λI(z) · (1− z)n−d, where λI(z) is also a polynomial with integer
coefficients. The degree of I equals g = λI(1).

Example 1.30. Let I be a principal ideal as in Example 1.23, generated
by a monomial of degree e > 0. Then the dimension of I is n − 1 and the
degree of I is e. This follows from the formula we gave for the Hilbert series.

Example 1.31. Let n = 2m be even and consider the monomial ideal

I = 〈x1x2, x3x4, x5x6, . . . , x2m−3x2m−2, x2m−1x2m 〉.
The dimension of I equals m and the degree of I equals 2m. It is instructive
to work out the Hilbert series and the Hilbert polynomial of I for m = 3, 4.

We now consider an arbitrary ideal I in K[x]. We now longer assume
that I is generated by monomials. Let ≺ be any degree-compatible monomial
order. This means that |a| < |b| implies a ≺ b for all a,b ∈ I.

Lemma 1.32. The number of standard monomials of I in a given degree
q is independent of the choice of monomial order ≺, provided ≺ is degree-
compatible.

Proof. Let K[x]≤q denote the vector space of polynomials of degree ≤ q.
We write I≤q := I ∩ K[x]≤q for the subspace of polynomials that lie in the
ideal I. Also, consider the set of standard monomials of degree at most q:

S≺(I)≤q = S≺(I) ∩ K[x]≤q

We claim that S≺(I)≤q is a K-vector space basis for the quotient space
K[x]≤q/I≤q. It is linearly independent since no K-linear combination of
S≺(I) lies in I. But, given that ≺ is degree compatible, it also spans because
taking the normal form of a polynomial modulo the Gröbner basis can only
decrease the total degree. �

Remark 1.33. The function that associates to q the dimension of the quo-
tient space dimK[x]≤q/I≤q is known as the affine Hilbert function. We will
see its relations to the Hilbert function, as in Definition 1.20, in Chapter 2,
after introducing projective varieties and homogenization.

Definition 1.34. Given any ideal I in a polynomial ring K[x], we define
its Hilbert function hI to be that of its initial ideal in≺(I), where ≺ is any
degree-compatible term order. For all q ∈ N we have

hI(q) = hin≺(I)(q) = |S≺(I)≤q| − |S≺(I)≤q−1|
= dim(K[x]≤q/I≤q)− dim(K[x]≤q−1/I≤q−1).
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This is the number of standard monomials whose degree is exactly q. This
number is independent of ≺, thanks to Lemma 1.32. We also define the
Hilbert series and the Hilbert polynomial to be that of any degree-compatible
initial monomial ideal:

HSI(z) = HSin≺(I)(z) and HPI(q) = HPin≺(I)(q).

Finally, we define the dimension of I as the definition of in≺(I), and similarly
for the degree of I. Here ≺ is any degree-compatible monomial ordering. All
of these concepts are now well-defined, thanks to Lemma 1.32.

Example 1.35. Let I be a principal ideal generated by a polynomial f of
degree e in n variables. The dimension of I is n − 1 and the degree of I
is e. This follows from Example 1.30 because the singleton {f} is a Gröbner
basis, and its initial monomial in≺(f) has degree e in any degree-compatible
monomial order ≺.

What we have accomplished in this section is to give a purely combina-
torial definition of dimension and degree of an ideal I. In Chapter 2 we shall
see that that notion of dimension agrees with the intuitive one for the asso-
ciated algebraic variety V (I). Namely, a variety has dimension 0 if and only
it consists of finitely many points. The number of these points is counted by
the degree of the corresponding radical ideal. Likewise, the ideal of a curve
has dimension 1, the ideal of a surface has dimension 2 etc. The degree is a
measure for how curvy these shapes are. One can show that a prime ideal
has degree 1 if and only if it is generated by linear polynomials.

Example 1.36. Fix the polynomial ring K[x, y, z] and let f = xyz − x2 −
y2 − z2 + 1 as in (1.1). The ideal 〈f〉 has dimension 2 and degree 3. Let I
be the ideal generated by its partial derivatives, as in Example 1.7. Then I
has dimension 0 and degree 5. The ideal I + 〈f〉, whose zeros are the four
singular points of the surface in Figure 1, has dimension 0 and degree 4.

Exercises

(1) The polynomial f = 5x3 − 25x2y + 25y3 + 15xy − 50y2 − 5x + 25y − 1
is a product of three linear factors in R[x, y]. Prove this and draw the
plane curve {f = 0}.

(2) For n = 2, define a monomial order ≺ such that (2, 3) ≺ (4, 2) ≺ (1, 4).

(3) Let n = 2 and fix the monomial ideals I = 〈x, y2〉 and J = 〈x2, y〉.
Compute the ideals I+J , I ∩J , IJ and I3J4 = IIIJJJJ . How many
minimal generators does the ideal I123J234 have?



16 1. Polynomial Rings

(4) The radical
√
I of an ideal I in a ring R is the smallest radical ideal

containing I. Prove that the radical of a primary ideal is prime. For
ideals in a polynomial ring K[x], prove that
• the radical of a principal ideal is principal;
• the radical of a monomial ideal is a monomial ideal.

(5) Show that the following inclusions always hold and are strict in general:
√
I
√
J ⊆

√
IJ and in≺

(√
I
)
⊆
√

in≺(I).

(6) Using Gröbner bases, find the minimal polynomials of 5
√

6 + 7
√

8 and
5
√

6− 7
√

8. This is analogous to the fifth item in Example 1.18.

(7) Find the implicit equation of the curve {(x5− 6, x7− 8) ∈ R2 : x ∈ R}.
(8) Study the ideal I = 〈x3− yz, y3−xz, z3−xy〉. Is it radical? If not, find√

I. Regarding I as a triple of equations, what are its solutions in R3 ?

(9) For the ideals I and
√
I in the previous exercise, determine the Hilbert

function, the Hilbert series, Hilbert polynomial, dimension, and degree.

(10) Find an ideal in Q[x, y] whose reduced Gröbner basis (in lexicographic
order) has cardinality 5 and there are precisely 19 standard monomials.

(11) Prove: An ideal in a polynomial ring K[x] is principal if and only if its
reduced Gröbner basis is a singleton.

(12) Let I be the ideal generated by the n elementary symmetric polynomials
in x1, . . . , xn. Pick a monomial order and find the initial ideal in≺(I).

(13) Let X be 2 × 2-matrix whose entries are variables. Let Is be the ideal
generated by the entries of the matrix power Xs for s = 2, 3, 4, . . ..
Investigate these ideals. What are the dimension and the degree of Is?

(14) A symmetric 3× 3-matrix with unknown entries has seven principal mi-
nors: three of size 1×1, three of size 2×2, and one of size 3×3. Does
there exist an algebraic relation among these minors? Hint: lexico-
graphic Gröbner basis.

(15) Prove that if in≺(I) is radical then I is radical. Does the converse hold?

(16) Determine all straight lines that lie on the cubic surface in Figure 1.

(17) Identify maximal, prime, radical and primary ideals in the ring R = Z.

(18) Let I be the ideal generated by all 2× 2 minors of a 2× n matrix filled
with 2n variables. What is the degree and dimension of I for n = 2, 3, 4?

(19) Find a prime ideal of degree three and dimension one in n variables for
• n = 2,
• n = 3,
• n = 3 with further assumption that hI(1) = 4.

(20) Compute the dimension and degree of the ideal generated by two random
degree four polynomials in n = 4 variables, as in Example 1.19.



Chapter 2

Varieties

“Geometry is but drawn algebra”, Sophie Germain

A variety is the set of solutions to.a system of polynomial equations in
several unknowns. These are the main objects of study in algebraic geome-
try. Varieties are the geometric counterparts to ideals in a polynomial ring.
The latter live on the algebraic side. We distinguish between affine varieties
and projective varieties. The former arise from arbitrary polynomials, while
the latter are the zero sets of systems of homogeneous polynomials. Geome-
ters prefer projective varieties because of their nice properties, explained in
some of the results we present, like Theorem 2.22. But, for starters, our
readers are invited to peruse the pictures shown in this chapter.

2.1. Affine varieties

Algebraic varieties represent solutions of a system of polynomial equations.
Fix a field K and consider polynomials f1, . . . , fk in K[x] = K[x1, . . . , xn].
The variety defined by these polynomials is the set of their common zeros:

V(f1, . . . , fk) :=
{

p = (p1, . . . , pn) ∈ Kn : f1(p) = · · · = fk(p) = 0
}
.

Different sets of polynomials can define the same variety. For instance,

(2.1) V(f1, f2) = V(f21 , f
5
2 ) = V(f1, f1 + f2).

Instead of thinking about the polynomials themselves, we consider the ideal
they generate, I = 〈f1, . . . , fk〉, and we define V(I) := V(f1, . . . , fk). A
subset of Kn is a variety if it has the form V(I) for some ideal I ⊂ K[x].
Given any ideal I ⊂ K[x], by Hilbert’s Basis Theorem 1.14, we can always

17
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find a finite set of generators. By Exercise 1, the definition of V(I) does not
depend on the choice of generators of I.

Remark 2.1. Two distinct ideals may define the same variety. For instance,
for two non-constant polynomials f1 and f2, the ideal 〈f21 , f52 〉 is strictly
contained in 〈f1, f2〉 = 〈f1, f1 + f2〉, but they define the same variety in
(2.1). Chapter 6 on the Nullstellensätze deals with this issue for fields K
that are either algebraically closed, like the complex numbers K = C, or
real closed, like the reals K = R.

Algebraic geometry is the study of the geometry of varieties. As in
many branches of mathematics, one considers the basic, irreducible building
blocks for the objects of study. A variety V(I) is called irreducible if it
cannot be written as a union of proper subvarieties in Kn. In symbols, V(I)
is irreducible if and only if, for any ideals J and J ′ in K[x] we have

V(I) = V(J) ∪ V(J ′) =⇒ V(I) = V(J) or V(I) = V(J ′).

Any variety can be decomposed into irreducible varieties. The relevant al-
gebraic tool is primary decomposition. This is our topic in the next chapter.

Example 2.2. Consider the ideal I = 〈xy〉 ⊂ R[x, y]. Its variety V(I) =
V(x)∪V(y) is a union of two lines in the plane R2. Hence, this is a reducible
variety. Algebraically, I is the intersection of two larger ideals 〈x〉 and 〈y〉.
Their respective varieties V(x) and V(y) are irreducible. This follows from
Proposition 2.3 because 〈x〉 and 〈y〉 are prime ideals.

For any field K, we can turn Kn into a topological space, using the
Zariski topology . In this topology, the closed set are the varieties in Kn.
In this setting, the definition of an irreducible variety coincides with the
definition of an irreducible topological space. If K = R or K = C then we
also have the classical Euclidean topology on Kn. The Euclidean topology
is much finer than the Zariski topology because it has many more open sets.

Our aim is to relate geometric properties of the variety V(I) to algebraic
properties of the ideal I. Consider a maximal ideal of the form m :=
〈x1−p1, . . . , xn−pn〉 in K[x]. The point (p1, . . . , pn) lies in V(I) if and only
if I ⊆ m. Given any subset W ⊂ Kn, we consider the set of all polynomials
that vanish on W . This set is a radical ideal, denoted

I(W ) :=
{
f ∈ K[x] : f(p) = 0 for all p ∈W

}
.

The set W is a variety if and only if W = V(I(W )). Furthermore, given any
two varieties V and W in Kn, we have V ⊆W if and only if I(W ) ⊆ I(V ).

Proposition 2.3. A variety W ⊂ Kn is irreducible if and only if its ideal
I(W ) is prime.
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Proof. Suppose I(W ) is prime and W = V(J) ∪ V(J ′). If W 6= V(J) then
there exists f ∈ J and v ∈ W such that f(v) 6= 0. Therefore, f 6∈ I(W ).
For any g ∈ J ′ we know that fg vanishes on V(J) and V(J ′), hence on W .
Thus fg ∈ I(W ). As I(W ) is prime, we have g ∈ I(W ). we conclude that
J ′ ⊂ I(W ). By Exercise 2, this implies W = V(I(W )) ⊂ V(J ′).

For the converse, suppose that W is irreducible and fg ∈ I(W ). Hence

W = W ∩ V(fg) = W ∩ (V(f) ∪ V(g)) = (W ∩ V(f)) ∪ (W ∩ V(g)).

Without loss of generality, W = W ∩V(f). This means that W ⊆ V(f) and
hence f ∈ I(W ). This argument proves that I(W ) is a prime ideal. �

Remark 2.4. Proposition 2.3 relates geometry and number theory. Prime
ideals in a polynomial ring K[x] correspond to irreducible varieties, while
prime ideals in the ring of integers Z correspond to prime numbers (or zero).
Hence irreducible varieties are to varieties what primes are to all integers.

Prime ideals appear in applications as the constraints satisfied by a
generative model. Such models are common in statistics. One considers
a vector θ of real parameters and one expresses probabilities (or moments of
densities) as functions in θ. These functions are often polynomials or rational
functions in θ, and one is interested in all valid polynomial constraints among
the probabilities in question. Geometrically, this corresponds to computing
the closure (in the Zariski topology) of the image of a polynomial map. This
closure is an irreducible variety, so its ideal is prime by Proposition 2.3.
That prime ideal represents the image and hence the generative model. It
is computed as the kernel of the ring map dual to the polynomial map.

Example 2.5. We give an illustration for the most basic generative model,
namely the independence model for two random variables X and Y , each
with state space {1, . . . ,m}. Probability distribution of X (resp. Y ) are
vectors (p1, . . . , pm) (resp. (q1, . . . , qm)) in Rm with nonnegative entries that
sum to 1. The probability that X (resp. Y ) is in state i equals pi (resp. qi).
The joint random variable (X,Y ) has m2 states. The set of all probability

distributions of (X,Y ) that are independent is viewed as a variety in Rm2
.

Consider the map that takes a distribution of X and a distribution of Y
to the joint distribution of (X,Y ). This map extends to a polynomial map

(2.2)
Rm × Rm → Rm2

(p1, . . . , pm, q1, . . . , qm) 7→
(
p1q1, p1q2, . . . , p1qm, p2q1, . . . , pmqm

)
.

In statistics one incorporates the requirement
∑
pi =

∑
qi = 1. We do so

by restricting the domain. We write the resulting map explicitly for m = 3:

(2.3)
(p1, p2, q1, q2) 7→

(
p1q1, p1q2, p1(1−q1−q2), p2q1, p2q2,

p2(1−q1−q2), (1−p1−p2)q1, (1−p1−p2)q2, (1−p1−p2)(1−q1−q2)
)
.
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In Exercise 9 we ask for the variety and ideal given by the image of this map.

The algebraic study of the independence model was a point of departure
for the development of Algebraic Statistics. In that subject it is now common
to use prime ideals to represent statistical models. This allows for the use of
algebraic invariants (like dimension and degree) and algebraic methods (like
Gröbner bases) for data analysis and inference. Readers wishing to learn
more about Algebraic Statistics should consult the textbooks [18, 42, 50].

We have argued that prime ideals are basic building blocks in algebraic
geometry and its applications. This motivates the following definition on
the algebra side. We now take R to be any commutative ring with unity.

Definition 2.6. The spectrum of the ring R is the set of proper prime ideals:

Spec(R) :=
{
p ( R : p is a prime ideal

}
.

The set Spec(R) is a topological space with the Zariski topology. Its closed sets
are the varieties V(I) =

{
p ∈ SpecR : I ⊆ p

}
, where I is any ideal in R.

The spectrum of the ring remembers a lot of information: all prime
ideals and how they are related geometrically. Our most basic example of a
ring R is the polynomial ring K[x] in n variables. Its spectrum is a topologi-
cal space with many points. Among them are the usual points (p1, . . . , pn) ∈
Kn. These correspond to maximal ideals of the form 〈x1− p1, . . . , xn− pn〉.
However, the spectrum Spec(K[x]) has points corresponding to all irre-
ducible subvarieties of Kn, not just those of dimension 1. In this manner,
Kn is a subset of Spec(K[x]). Exercise 4 asks you to prove that the Zariski
topology on Kn is the one induced one the Zariski topology on SpecK[x].

Our next example is the coordinate ring R = K[W ] of a subvariety W ⊂
Kn. By definition, this is the quotient ring R = K[x]/J where J = I(W ) is
the radical ideal in the polynomial ring K[x] that encodes the variety. The
prime ideals in K[W ] are in natural bijection with the prime ideals in K[x]
that contain J . Geometrically, these correspond to irreducible subvarieties
of W . Among these are the points (p1, . . . , pn) ∈ W , which correspond to
maximal ideals 〈x1− p1, . . . , xn− pn〉 in K[W ], just like before. The Zariski
topologies on W and Spec(K[W ]) are compatible, in the sense of Exercise 4.

Example 2.7. A paraboloid in R3 is defined by the equation z = x2 + y2.
Its ideal equals J = 〈z−x2−y2〉. The ring of (polynomial) functions on the
parabola equals R[x, y, z]/J . What are the Gröbner bases of J and what
are the standard monomials? How about the dimension and the degree?

The Zariski topology on the paraboloid has various points. First, there
are the classical real points on the surface. Second, there are pairs of complex
conjugate points satisfying the equation z = x2 + y2. And, next there are
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all irreducible curves lying on the surface, one for each non-maximal prime
ideal of R[x, y, z] that strictly contains J . This includes curves that lie on
the complex surface but have no real points, like that for 〈z2+1, x2+y2−z〉.

Remark 2.8. We continue the analogy from Remark 2.4 in order give geo-
metric intuition for Chinese remainder theorem. Fix n1, . . . , nk ∈ Z pairwise
coprime. In the language of varieties, the fact that (ni) + (nj) = Z is equiv-
alent to the fact that the associated varieties do not intersect—recall that
the ideal of the intersection is the union of ideals. For each ni we are given
a number ai ∈ Z/niZ, i.e. a function on the variety associated to ni. As
these varieties do not intersect, we expect to obtain a unique function on
their union that restricts to the given functions on each piece. The union
of varieties is given by the intersection of the ideals, which corresponds to

the product N =
∏k
i=1 ni. This is precisely the statement of the Chinese

remainder theorem: there exists a unique x ∈ Z/NZ such that x = ai
mod ni. The reader is encouraged to push the analogy further. If the va-
rieties intersect (i.e. the numbers are not pairwise coprime) we expect the
global function to exist if and only if the functions associated to varieties
agree on intersections.

Consider two varieties W1,W2 and a map f : W1 → W2 between them.
Given a function on the target variety, say g : W2 → K, we define its pull-
back to be the function f∗(g) := g ◦ f from W1 to K. Of course, here were
are interested in polynomial functions, so g is an element in the ring K[W2].
Likewise, we want to the pullback f∗(g) to be element in the ring K[W1].

Hence, given any polynomial map f : W1 → W2 between varieties, we
would like the map f∗ : K[W2]→ K[W1] to be a well-defined ring morphism.
In Exercise 5 you will show that any ring morphism K[W2]→ K[W1] induces
a continuous map of topological spaces SpecK[W1] → SpecK[W2]. Hence,
we may think about maps between varieties as homomorphisms between
their rings of functions in the opposite direction. In the fancy language of
category theory: our star ∗ is a contravariant functor from varieties to rings.
It furnishes an equivalence of categories between irreducible affine varieties
(over K) and finitely generated K-algebras that are integral domains.

Example 2.9. The following ring homomorphism is an isomorphism:

f∗ : R[x, y]/〈y − x2〉 → R[z], x 7→ z, y 7→ z2.

It arises from a map of varieties that takes a line to a parabola in the plane:

f : R → V(y − x2) ⊂ R2 , λ 7→ (λ, λ2).

Under this parametrization of the parabola, the coordinate functions x and
y on R2 pull back to the functions z and z2 on the line R. We use the letter
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λ in the parametrization for extra clarity. It can get confusing when you
pass to the map of spectra, a continuous map in the Zariski topologies.

Remark 2.10. Textbooks in algebraic geometry usually define affine va-
rieties to be SpecR, with its Zariski topology, for any (commutative, with
unity) ring R. Here R need not be a finitely generated algebra over a field
K. However, in this book, affine varieties are zero sets of polynomials in
K[x].

The dependence on the field is crucial for geometric properties of maps.
Consider the squaring map K1 → K1, λ 7→ λ2 from the affine line to itself.

• If K = C then the squaring map is surjective.

• If K = R then its image is the set of nonnegative real numbers. In
both cases, the Zariski closure of the image is the whole line.

• If K = Fp and p 6= 2, then the image is a proper subset of K1. It
is Zariski closed. What if we replace K by its algebraic closure?

• In each case, is the map Spec(K[x])→ Spec(K[x]) surjective?

From the perspective of spectra, it is instructive to study the ideal I =
〈x2 + 1〉 in K[x]. Exercise 6 asks the reader to give a description of V(I).

Example 2.11. Consider the three ideals I1 = 〈x2 − y2〉, I2 = 〈x2 − 2y2〉
and I3 = 〈x2 + y2〉 in K[x, y]. The first one is not prime for any K. The
second one is not prime for K = R or C, but it is a prime ideal when K = Q.
The ideal I3 is not prime for K = C, but it is a prime ideal for K = Q or R.

We prove the last statement. Suppose fg ∈ I3 ⊂ R[x, y]. This means
that fg = (x2+y2)·h, where f, g, h ∈ R[x, y]. By the Fundamental Theorem
of Algebra, every homogeneous polynomial p in two variables has a unique
(up to multiplication by constants) representation as a product of linear
forms with complex coefficients p =

∏
lj . If p has real coefficients, then the

decomposition is stable under complex conjugation: for every j, either lj
has real coefficients or lj must also appear in the decomposition. We have
x2 + y2 = (x+ iy)(x− iy). In the ring C[x, y], without loss of generality, we
may assume (x + iy)|f . But then, by the above argument also (x − iy)|f .

Thus f = (x+iy)(x−iy)
∏
i l̃i for l̃i ∈ C[x, y]. However,

∏
i l̃i is stable under

conjugation, i.e. defines a real polynomial. Thus x2 +y2 divides f in R[x, y].

Many models arise in applications as the image of a polynomial map f .
It is important to note that the image of f need not be closed if K = C. And,
it need not be dense in its Zariski closure if K = R. This will be discussed
in detail in Chapter 4. The following definition plays an important role.

Definition 2.12. A subset A ⊂ Kn is constructible if it can be described
as a finite union of differences of varieties. Over the real numbers, a subset
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B ⊂ Rn is semi-algebraic if it can be described as the solutions of a finite
system of polynomial inequalities (both ≥ and >) or a finite union of such.

Remark 2.13. Every constructible subset of Rn is semi-algebraic, but the
converse is not true. See below. The complement of a constructible set is
constructible, and the complement of a semi-algebraic set is semi-algebraic.

Example 2.14. Take n = 2 and K = R. The singleton V(x, y) = {(0, 0)}
is constructible and hence so is R2\{(0, 0)} = V(0)\V(x, y). The orthant
R2
≥0 = {(u, v) ∈ R2 : u ≥ 0 and v ≥ 0} is semi-algebraic. But it is not con-

structible, because the Euclidean closure of a constructible set is a variety.
Its complement B = {(u, v) ∈ R2 : u < 0 or v < 0} is also semi-algebraic.
Can you write B as set of solutions to a finite list of polynomial inequalities?

The two most important invariants of a variety V inKn are its dimension
and its degree. We defined these in Section 1.3, via the ideal I(V ) ⊂ K[x].

Example 2.15. Let V be a linear subspace of Kn. The dimension of V as a
variety equals its dimension as a linear space. The degree of V is one. Indeed,
we may assume I(V ) = 〈x1, . . . , xs〉 where s = n − dim(V ). The result
follows from Example 1.22 because K[x]/〈x1, . . . , xs〉 ' K[xs+1, . . . , xn].

We note an important property of dimension. If V1 ( V2 then dim(V1) ≤
dim(V2). The inequality is strict if V2 is irreducible. The latter is not easy
to prove from the definition we gave. It helps to consult a textbook in com-
mutative algebra for alternative (but equivalent) definitions of dimension.

Here is a method for computing the dimension of a variety V(I). We use
that V(in≺(I)) is a union of linear spaces in Kn, for any monomial order ≺.

(1) Compute a Gröbner basis of I and hence the monomial ideal in≺(I).

(2) Let m1, . . . ,mk monomials that generate in≺(I). Find the smallest
(with respect to cardinality) set of variables S = {xi1 , . . . , xid} such
that every monomial generatormj is divisible by some variable in S.

(3) The cardinality d of S is dimension of both V(in≺(I)) and V(I).

The second most important invariant of a variety V = V(I) ⊂ Kn is
the degree. We now provide its geometric interpretation. Suppose K is
algebraically closed. A general subspace L ⊂ Kn with dim(L)+dim(V ) = n
intersects V in finitely many points. This is the degree of V . Indeed, this
follows inductively by the fact that a general linear polynomial is not a zero-
divisor in K[V ]. Hence, adding it I changes the Hilbert function in such a
way that the dimension drops by one and the degree remains the same. If
dim(I) = 0 and I is radical then the degree is the cardinality of V = V(I).

Some points on a variety are singular, like the four nodes of the cubic
surface in Figure 1. Our aim is now to discuss singularities in general. We
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start with the case of a hypersurface, defined by one polynomial f ∈ K[x].

A point p ∈ V(f) is singular if all partial derivatives vanish, i.e. ∂f
∂xi

(p) = 0
for i = 1, . . . , n. Thus the singular locus of f is the variety of the ideal
〈f, ∂f∂x1 , . . . ,

∂f
∂xn
〉. If this ideal has no zeros, we say that the hypersurface

V(f) is smooth. Smoothness is a very important condition. It tells us that
our variety can be locally approximated by a linear space - the tangent space.

Let I = 〈f1, f2, . . . , fk〉 ⊂ K[x] be a prime ideal, defining an irreducible
variety Y = V(I) in Kn of dimension d. A point p ∈ Y is singular if and
only if the rank of the Jacobian matrix at p is smaller than the codimension:

rank




∂f1
∂x1

. . . ∂f1
∂xn

∂f2
∂x1

. . . ∂f2
∂xn

...
. . .

...
∂fk
∂x1

. . . ∂fk
∂xn




(p) < n− d.

A point that is not singular is called smooth. For a smooth point the inequal-
ity above turns into equality. The singular locus Sing(Y ) is a variety in Kn.
Its ideal is the sum of the ideal I and the ideal generated by (n−d)×(n−d)
minors of the Jacobian matrix. The kernel of this matrix evaluated at the
point p is, by definition, the vector space parallel to the tangent space to
V at p. Hence, the definition of the smooth point assures that the tangent
space and the variety are of the same dimension.

If a variety X ⊂ Kn is reducible and p lies in more than one irreducible
component of X, then p is singular in X. If p belongs to a unique irreducible
component Y then p is singular in X if and only if it is singular in Y .

2.2. Projective varieties

The geometric objects we encountered so far are subsets of Kn. We called
them varieties, but more precisely we should refer to them as affine varieties.
We now change our perspective by focusing on projective varieties.

We start by recalling the construction of the projective space P(V ) over
a vector space V of dimension n+1. The points of P(V ) are the lines through
the origin in V . Hence [a0 : · · · : an] ∈ P(V ) represents a line going through
the point (a0, . . . , an) ∈ V . Here not all ai are zero. Formally, P(V ) is the set
of equivalence classes [v], for v ∈ V \{0}, modulo the relation v1 ∼ v2 if and
only if v1 = λv2 for some λ ∈ K∗ = K\{0}. For the topological construction
over R or C, we note that each line through the origin in V intersects the unit
sphere precisely in two points. Thus P(V ) may be regarded as a quotient
of the sphere, identifying antipodal points. In particular, P(V ) is compact
with respect to the classical topology. On the subset Si = {ai 6= 0} of
P(V ) we rescale to get ai = 1. We thus identify Si with Kn. The affine
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spaces Si = Kn cover Pn := P(V ), because every point has some nonzero
coordinate. We obtain projective n space Pn by glueing these n+ 1 charts.

As before, we are interested in functions on Pn. The first problem is that,
for a polynomial f , it does not make sense to evaluate f on [a0 : · · · : an],
as the result depends on the choice of representative. It may even happen
that f vanishes for some representatives, but not for others. Thus, we focus
on homogeneous polynomials, i.e. linear combinations of monomials of fixed
degree. If f is a homogeneous polynomial of degree d in n + 1 variables,
then f(ta0, . . . , tan) = tdf(a0, . . . , an). In particular, f vanishes on some
representative of [a0 : · · · : an] if and only if it vanishes on any representative.

Let f1, . . . , fk be homogeneous polynomials in K[x]. They are allowed
to have distinct degrees. We define the associated projective variety :

V(f1, . . . , fk) =
{

[a0 : · · · : an] ∈ P(V ) : fi(a0, . . . , an) = 0 for i = 1, . . . , k
}
.

An ideal I in K[x] is homogeneous if it is generated by homogeneous poly-
nomials f1, . . . , fk. Just like in the affine case, we set V(I) := V(f1, . . . , fk).

Remark 2.16. Homogeneous ideals contain (many) nonhomogeneous poly-
nomials. For instance, 〈x+ y2, y〉 is a homogeneous ideal. See Exercise 11.

For any projective variety X ⊂ Pn one defines the affine cone X̂ over it,
i.e. the variety defined by the same ideal, but in V = Kn+1. The dimension
and degree of a projective variety can be defined via its affine cone:

(2.4) dim(X) := dim(X̂)− 1 and degree(X) := degree(X̂).

It is usually preferable to work with projective varieties. Algebraic geometry
is simpler in Pn than in Kn. For instance, parallel lines in K2 do not
intersect, but any two lines in P2 intersect. If X is any projective variety
of degree ≥ 2 then the affine cone X̂ is always singular at the point 0 ∈ V .
However, if this is the only singular point of X̂ then X ⊂ Pn is smooth.

If Y is any variety in Kn then there is an associated projective variety Ȳ
in Pn, called the projective closure of Y . This is defined via its ideal. If I ⊂
K[x1, . . . , xn] is the ideal of Y then the ideal Ī of Ȳ lives in K[x0, x1, . . . , xn].
It is generated by the following infinite set of homogeneous polynomials:

(2.5)
{
x
deg(g)
0 · g

(x1
x0
, . . . ,

xn
x0

)
: g ∈ I

}
.

Here is an algorithm for computing the ideal Ī of the projective closure Ȳ .

Proposition 2.17. Let I be an ideal in K[x1, . . . , xn] and let G be its re-
duced Gröbner basis for a degree-compatible monomial ordering. Then Ī is
generated by the homogeneous polynomials in (2.5) where g runs only over
G.
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Proof. Let f = f(x0, x1, . . . , xn) be any homogeneous polynomial in Ī.
Suppose G = {g1, g2, . . . , gs}. The dehomogenization f(1, x1, . . . , xn) lies in
I and hence its normal form modulo the Gröbner basis G is zero. This gives
a representation

f(1, x1, . . . , xn) =
s∑

i=1

hi(x1, . . . , xn)gi(x1, . . . , xn),

where deg(higi) ≤ deg(f) for all i. By homogenizing the summands in this
identity,

f(x0, x1, . . . , xn) =

s∑

i=1

x
deg(f)−deg(higi)
0 ·hi

(x1
x0
, . . . ,

xn
x0

) ·gi(
x1
x0
, . . . ,

xn
x0

)
.

Hence f lies in the ideal generated by the set (2.5) with I replaced by G. �

Corollary 2.18. The dimension and degree of an affine variety Y ⊂ Kn

are preserved when passing to its projective closure Ȳ ⊂ Pn:

dim(Ȳ ) = dim(Y ) and deg(Ȳ ) = deg(Y ).

Proof. The initial ideal of Ī and the initial ideal of I have the same gener-
ators. These monomials in x1, . . . , xn determine dimension and degree. �

Example 2.19. Let I be the ideal generated by xi − xi1 for i = 2, 3, . . . , n.
Then Y = V(I) is a curve of degree n in Kn. For the degree-lexicographic
monomial order≺, the reduced Gröbner basis has

(
n
2

)
elements, and in≺(I) =

〈x1, x2, . . . , xn−1〉2. The ideal Ī is minimally generated by the 2× 2-minors
of the 2× (n− 1) matrix

(
x0 x1 x2 · · · xn−1
x1 x2 x3 · · · xn

)
.

The initial monomials of the
(
n−1
2

)
minors are the antidiagonal products.

The projective variety Ȳ = V(Ī) is the rational normal curve of degree n in
Pn.

We now return to our discussion of desirable properties of projective
varieties.

Remark 2.20. If K = C or K = R then every projective variety is compact
in the classical topology. Indeed, the projective space Pn is compact, and
every subvariety X is closed in the classical topology. Hence X is compact.
If X is also smooth of dimension d then X is a compact real manifold, of
dimension d if K = R and of dimension 2d if K = C. Many interesting
manifolds arise in this manner.

The following theorem discussed in greater detail in Chapter 4, Theorem
4.18 shows one aspect of a nice behaviour of projective varieties over C.
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Theorem 2.21. Over an algebraically closed field, the image of a projective
variety X under a polynomial map (that is defined on all of X) is Zariski
closed.

Another nice property of projective varieties is their behavior under
intersection.

Theorem 2.22. [46, 6.2 Theorem 6] Fix an algebraically closed field K.
Let X,Y be two projective varieties in the n-dimensional ambient space Pn,
where d1 = dim(X) and d2 = dim(Y ). Then their intersection X ∩ Y has
dimension at least d1 + d2 − n. In particular, if d1 + dn ≥ n then X ∩ Y is
always non-empty.

The hypotheses are needed in this theorem. Consider the intersection
of two surfaces in P3, where n = 3 and d1 = d2 = 2. The statement fails in
affine space C3 where we can take two parallel planes. It also fails in P3 if
the field is K = R.

Example 2.23. Consider the two surfaces X = V(x20 + x21 − x22 + x23) and
Y = V(x20 + x21 + x22 − x23) in P3. Over C, their intersection is the union of
four lines, so dim(X ∩ Y ) = 1 = 2 + 2 − 3 as expected. However, over R,
the intersection consists of two points, so dim(X ∩Y ) = 0 < 1, which would
violate Theorem 2.22.

Many models in the sciences and engineering are given by homogeneous
polynomial equations. Typically, these constraints arise from a construction
familiar from linear algebra. Whenever one encounters such a model then it
makes much sense to regard it as a projective variety. We close this section
with two examples.

Example 2.24 (Nilpotent Matrices). An n×n-matrix A is a point in a pro-

jective space Pn2−1. The set of nilpotent matrices A is an irreducible projec-

tive variety X ⊂ Pn2−1. We have dim(X) = n2−n− 1 and degree(X) = n!.
Indeed, X is a complete intersection. Its prime ideal I(X) is generated by
the coefficients of the characteristic polynomial of A. For instance, if n = 2
then I(X) = 〈trace(A), det(A)〉.
Example 2.25 (Kalman Varieties). In control theory, one is interested in
the set of n×n-matrices A that have an eigenvector in a given linear subspace

of Kn. This set is a projective variety in Pn2−1. For instance, let n = 4 and
consider 4×4-matrices that have an eigenvector with the last two coordinates
zero. This Kalman variety has dimension 13 and degree 4 in P15. It is defined
by the 2× 2-minors of
(
a31 a41 a11a31+a21a32+a31a33+a34a41 a11a41+a21a42+a31a43+a41a44
a32 a42 a12a31+a22a32+a32a33+a34a42 a12a41+a22a42+a32a43+a42a44

)
.
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2.3. Geometry in Low Dimensions

Smooth projective varieties in low dimensions furnish interesting manifolds.
Studying the geometry and topology of these manifolds leads to valuable in-
sights that prove to be very useful also for understanding higher-dimensional
scenarios.

We work in projective spaces over the real numbers R and over the
complex numbers C. To distinguish these, we use the notations PnR and PnC.
We regard both of these as compact real manifolds, of dimension n and 2n
respectively. Students of topology are encouraged to review the homology
groups of these manifolds.

Let us start with n = 1. The real projective line P1
R is a circle. The

complex projective line P1
C is a sphere, known as the Riemann sphere. Every

subvariety of P1
R or P1

C is a finite collection of points, defined by a binary
form f(x, y), i.e. a homogeneous polynomial in two variables. For instance,
let f = x11y − 11x6y6 − xy11. The variety X = V(f) has dimension 0 and
degree 12 in P1

C. These 12 points on the Riemann sphere are famous in
the history of geometry and arithmetic. They serve as the vertices of the
icosahedron in Felix Klein’s Lectures on the Icosahedron. Out of these 12
complex solutions four are real. The remaining eight come in four conjugate
pairs.

We now move on to the n = 2 case. The real projective plane P2
R is a

surface. However, it cannot be embedded homeomorphically in R3 (only in
R4), thus it is impossible to make a good picture. The simplest curve in the
projective plane P2

K is a line L, defined by one linear form in three variables.
Of course, L is a projective line L ' P1

K , so the discussion in the previous
paragraph applies to L. The complement P2

K\L is the affine plane K2. In
particular, this complement is connected when K = R. The decomposition
into L and K2 may be used to give a schematic picture of P2

R. We identify R2

with the interior of the square. The boundary of the square should represent
the line L. However, we need to identify the opposite points of the boundary
- this is often represented by putting directed arrows on the boundary as in
Figure 1.

For any curve C in P2
C, the complement P2

C\C is connected because C is
a surface in the 4-dimensional manifold P2

C. By contrast, consider a smooth
conic C in P2

R. Then P2
R\C has two connected components. One is a disk

and the other is a Möbius strip (cf. Figure 2). The former is the inside of
C and the latter is the outside of C. A curve D in P2

R is called a pseudoline
if P2

R\D is connected and it is an oval otherwise. Every oval behaves like a
conic in P2

R: it has an inside and an outside.
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Figure 1. Schematic representation of P2
R.

Figure 2. Six topological ovals in P2
R with shaded interiors. It is possi-

ble to cut out the interior of the lower right oval from the square and glue
together the remaining antipodal points on the boundary. This shows
that indeed the complement of the interior of the oval is the Möbius

strip.

Theorem 2.26. Let C be a smooth curve of degree d in the projective

plane P2
K . If K = C then C is an orientable surface of genus g = (d−1)(d−2)

2 .
If K = R then C is a curve with at most g + 1 connected components. If d
is even then all components are ovals. If d is odd then one component is a
pseudoline but all others are ovals.

Let us illustrate the above theorem for d = 3, i.e. g = 1. For example
consider a cubic curve given in its Weierstrass form:

f(x, y, z) = zy2 − x3 − xz2.
We decompose the projective space P2

R into a line L given by the equation
z = 0 and its complement: the affine space A = R2. The cubic has two com-
ponents: an oval and a pseudoline. We can see both of them by intersecting
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Figure 3. Real elliptic curve y2 = x3 − x. The component on the left
is an oval. The component on the right is a pseudoline. For a more
complete picture see Figures 4 and 5.

C with A, as depicted in Figures 3 and 5. There is an additional point P
of the curve we do not see on this picture, that belongs to the line L. It is
given by z = x = 0 and y = 1. We may consider the surface in R3 that is
the affine cone over our curve, as in Figure 4.

How can we imagine the complex elliptic curve? This is not simple, as
the correct picture just of the affine part would be in C2 ' R4. However,
there exists a homeomorphism (but not a polynomial map!) of the complex
curve C with the real topological torus, i.e. the product of two circles S1×S1.
It can be described as follows. We fix a point p ∈ C. For any point q ∈ C
consider a path γ from p to q - this is always possible as over the complex
numbers C is connected. To a point q we associate the complex number∫
γ
dx
y . Identifying the complex plane with R2 we obtain a map f : C → R2.

It turns out that f(q) depends on our choice of γ. Indeed, let us choose p
given by z = 1, y = 0 and x = −1. We may choose q = p and γ equal to the
oval depicted in Figure 3. The integral

∫
γ
dx
y will be a nonzero real number

λ. Thus f(p) may be equal to any integral multiple of λ. Further, on the
curve C there exists another loop γ′ giving rise to the integral

∫
γ′
dx
y that

is a complex number τ . We may consider a lattice M , that is a subset of
C ' R2 given by all integral combinations aλ + bτ for a, b ∈ Z. We know
that f(p) may be any point in M . Let π : R2 → R2/M be the natural
projection. The map π ◦ f : C → R2/M is now well-defined!

As R2/M may be identified with the torus, we indeed obtain a home-
omorphism C ' R2/M . The real part of the curve C is mapped to two
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Figure 4. The cone zy2 − x3 − xz2 = 0 over an elliptic curve. The
irreducible variety is depicted in yellow and blue according to two con-
nected components in the real projective space. We intersect the cone
with the grey plane given by z = 1. This corresponds to the affine chart,
and the blue curve C we obtain is exactly the same as in Figure 3.

disjoint circles, as shown in Figure 6. Indeed, both the oval and the pseudo-
line are circles - they are only distinguished by their embedding in the real
projective plane.

Remark 2.27. We contrast the topological torus mentioned here with the
algebraic torus (C∗)n playing a central role in Chapters 8 and 10. Indeed, a
variety with a dense algebraic torus action will be called toric. The elliptic
curve C is the most basic example of a smooth, projective variety that is
not toric.

Remark 2.28. Elliptic curves make probably their first appearance in third
century. Diophantus of Alexandria, in modern terms, asked for a (positive)
rational point on a specific elliptic curve y(6 − y) = x3 − x. As we argued
above, an elliptic curve has a structure of a group (torus). The geometric
interpretation of this was already well-known in 19th century. Since early
20th century, elliptic curves play a central role in (modern) number the-
ory (studied mainly over fields of finite characteristic or rational numbers).
By the end of the 20th century the group structure (over fields with finite
characteristic!) started to be intensively used in applied cryptography.



32 2. Varieties

Figure 5. A cone zy2 − x3 − xz2 = 0 over an elliptic curve, as in
Figure 4. The grey sphere represents the projective space P2

R, where we
have to identify the antipodal points. The intersection of the surface
with the sphere has three connected components. Two of them are
identified, when we identify the antipodal points. These two components
correspond to the oval – indeed cutting it out of the sphere, separates
it into two pieces, even after identifying antipodal points. The other
component corresponds to a pseudoline. It does not separate a sphere
after identifying the antipodal points. The points on the blue curve C in
Figure 4 correspond to pairs of antipodal points on the blue curve in this
picture with one exception. This curve has one more pair of antipodal
points - these are represented by a thickened blue point. Indeed, the line
through that point is parallel to the grey plane in Figure 4. This point
corresponds to the unique point of the projective curve that does not
belong to the affine chart given by z = 1. It is precisely z = 0, x = 0,

y = 1.

Example 2.29. Let us consider a cuspidal curve defined by x3 − y2. Over
R it is presented in Figure 7. How can we draw it over C? If we identify C
with R2 we obtain a surface in R4. Indeed:

(x1+ ix2)
3−(y1+ iy2)

2 = 0⇔ x31−3x1x
2
2 = y21−y22 and 3x21x2−x32 = 2y1y2.

Hence, interpreted as a surface in R4 the variety is cut out by two polyno-
mials. Although we may not make a picture in R4 we can project the given
surface to R3. The result is the surface presented in Figure 7, together with
the black line, that is the real part.
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Figure 6. Two pictures showing a real torus, that is homeomorphic to
the elliptic curve. The left picture presents the torus as R2/Z2. The right
one is the familiar figure we know from topology. The two thickened
circles, on both pictures, correspond to the real part of the curve.

Figure 7. Real part of a cuspidal curve

The surface seems more singular - this is the result of projection. The
original surface in R4 has just one singular point. In Chapter 4 methods
allowing the computation of projections of algebraic varieties are presented.

Exercises

(1) Prove that the definition of V(I) does not depend on the choice of the
generators of I.

(2) (a) Show that J ⊆ I implies V(I) ⊆ V(J).
(b) Show that for any subsets A,B ⊆ Kn if A ⊂ B then I(B) ⊆ I(A).
(c) Give counterexamples to both opposite implications.
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(3) Prove that varieties (in Kn) satisfy the axioms of closed sets.

(4) By identifying the point (pi) ∈ Kn with the prime ideal 〈x1−p1, . . . , xn−
pn〉 considerKn as a subset of SpecK[x]. Show that the Zariski topology
induced from SpecK[x] to Kn is the Zariski topology on Kn.

(5) Show that a morphism of rings f : R1 → R2 induces a map f∗ :
SpecR2 → SpecR1, by proving that a pull-back of a prime ideal is
prime. Show that the induced map is continuous with respect to the
Zariski topology.

(6) Describe the variety V(I) in the affine line K1 for I = 〈x2 + 1〉 when
K = C,R,Q. Also, describe V(I) ⊂ Spec(K[x]) for each of these three
fields.

(7) Realize the set of n× n nilpotent matrices as an affine variety. What is
its dimension?

(8) (a) Consider a polynomial f ∈ K[x] (e.g. f = x). Let D be the (open)
set Df = {p ∈ Kn : f(p) 6= 0}. Construct an affine variety V and
a polynomial map inducing a bijection V → D.

(b) Realize nondegenerate n× n matrices as an affine variety.

(9) (a) Use (or not) your favorite computer algebra system to determine
the ideal of the image of the map given by formula (2.3). What is
the meaning of the lowest degree polynomial in this ideal?

(b) Describe the ideal of the image of the map given by formula (2.2).
(c) Generalize the previous point to more (independent) variables pos-

sibly with different (but finite) number of states.

(10) Determine for which prime numbers p, the ideal I2 = 〈x2 − 2y2〉 ⊂
Fp[x, y] is prime.

(11) For a polynomial f =
∑

a cax
a we call the degree k part of f the homo-

geneous polynomial
∑

a:|a|=k cax
a.

(a) Provide an example of a homogeneous ideal generated by nonho-
mogeneous polynomials.

(b) Prove that an ideal I = 〈f1, . . . , fj〉 is homogeneous if and only if
for any fi and any k the degree k part of fi belongs to I.

(c) Propose an algorithm that, given a set of generators of I ⊂ K[x],
decides if I is a homogeneous ideal.

(12) (a) Let I ⊂ K[x] be a monomial ideal. Prove that V(I) is a union of
(some) vector subspaces of Kn spanned by basis vectors.

(b) How do you characterize the sets of basis vectors that span a sub-
space belonging to V(I)?

(13) Draw various pseudolines in P2
R, in analogy to Figure 2. Topologically,

what is the complement of a pseudoline?
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(14) Can you solve the problem of Diophantus of Alexandria in Remark 2.28?
Hint: Consider a tangent line to the elliptic curve at the point

(−1, 0).





Chapter 3

Solving and
Decomposing

Solving systems of polynomial equations is a key task in nonlinear algebra.
But, what does it mean to solve such a system? How should the solutions
be presented? The answer to this question depends on the dimension of
the variety of solutions. If the variety is zero-dimensional then it consists
of finitely many points in Kn and we aim to list each point explicitly. If
K = R or K = C then this is usually done by displaying a floating point
approximation to each of the n coordinates of a solution.

If the solution variety has positive dimension then it has infinitely many
points and we cannot list them all. In that case, the answer consists of a
description of each irreducible component. Algebraically, this leads us to
the topic of primary decomposition. If the given ideal is not radical then its
constituents are primary ideals and we distinguish between minimal primes
and embedded primes. To some readers, these objects may seem unnatural
at first. However, they become quite natural in the setting of linear partial
differential equations with constant coefficients.

3.1. Zero-dimensional Ideals

Let K be a field and consider the polynomial ring K[x] in one variable x.
Every ideal in K[x] is principal, so it has the form I = 〈f〉. The variety V(I)
consists of the zeros of f and is zero-dimensional (unless f = 0). The polyno-

mial f has a unique factorization f =
∏k
i=1 g

ai
i , where each gi is irreducible

and the ai are positive integers. The set of solutions decomposes as

V(I) = V(g1) ∪ · · · ∪ V(gk).

37
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On the level of ideals we have the following decomposition as an intersection:

I = 〈g1〉a1 ∩ · · · ∩ 〈gk〉ak .
This primary decomposition remembers the multiplicity ai of each factor gi,
so it contains more information than the irreducible decomposition of V(I).

The decomposition depends on the field K. If K is algebraically closed,
such as K = C, then each factor gi is a linear polynomial gi(x) = x − ui,
where u1, . . . , uk are the zeros of f . If K = R then each gi is either linear or
quadratic. If K = Q then gi can have arbitrarily high degree. In each case,
the quotient ring K[x]/〈gi〉 is a field. It is an algebraic extension of K.

Example 3.1. The polynomial f = x3 − 2x2 + x− 2 ∈ R[x] satisfies

〈f〉 = 〈x− 2〉 ∩ 〈x2 + 1〉.
The first ideal corresponds to the real zero 2, while the second to the pair of
complex zeros i and −i. Such factorizations are easy to find in a computer
algebra systems. What if we now replace the given polynomial by g =
x3 − 2x2 + x− 1? How does the ideal 〈g〉 decompose in R[x]? And in C[x]?

Polynomials of degree m in one variable can have up to m zeros. The
number m can be large. Often we are not interested in all the zeros, but
only in specific ones. For instance, we might only be interested in solutions
that are real and positive. This restriction is very important for many
applications, e.g. in statistics where the solutions represent probabilities.

Example 3.2. Let I = 〈xm − x − 1〉, where m ≥ 2. The variety V(I)
consists of m complex points but only one of them is real and positive.
Thus, V(I)∩R>0 is a singleton. This follows from Descartes’ Rule of Signs,
which states that the number of positive real solutions is bounded above by
the number of sign alternations in the coefficient sequence. If m is even then
there is also one negative solution.

In many applications one encounters polynomials whose coefficients de-
pend on parameters. For instance, let ε be an unknown that represents a
small positive real number. Let Q(ε) be the field of rational functions in

that unknown and K = Q(ε) its algebraic closure. Elements in K can be
expressed as series in ε with rational exponents. These are known as Puiseux
series. This is analogous to the floating point expansion of numbers in R.

Example 3.3. The polynomial f = ε2x3+x2+x−ε is irreducible in Q(ε)[x].
It factors into three linear factors f = (x−u1)(x−u2)(x−u3) in K[x], where

u1 = −ε−2 + 1 + ε2 + ε3 + 2ε4 + 3ε5 + 5ε6 + 10ε7 + · · ·
u2 = −1− ε− 3ε3 + 3ε4 − 16ε5 + 32ε6 − 121ε7 + · · ·
u3 = ε− ε2 + 2ε3 − 5ε4 + 13ε5 − 37ε6 + 111ε7 + · · ·
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Each of these three roots is an algebraic number over Q(ε). We wrote them
a Puiseux series. If we think of ε as a very small positive quantity then
u1 ∼ −ε−2, u2 ∼ −ε0 and u3 ∼ ε1. The exponents −2, 0 and 1 tell us the
asymptotic behavior. They are known as tropical solutions; cf. Chapter 7.

We have seen that solving a polynomial equation f = 0 amounts to
decomposing the principal ideal I = 〈f〉, i.e. presenting it as an intersection
of simpler ideals. The situation is analogous for systems of polynomials in
n ≥ 2 variables, i.e. ideals I ⊂ K[x], where x = (x1, . . . , xn). Suppose now
that K is algebraically closed and assume that V(I) is zero-dimensional.
This means that the quotient ring K[x]/I is a finite-dimensional vector
space over K. A basis is given by the standard monomials for a given
monomial order. The number of standard monomials is an upper bound for
the cardinality of V(I). Equality holds if and only if I is radical.

In the next subsection we will decompose our zero-dimensional ideal I as

I =
k⋂

i=1

qi,

where rad(qi) is a prime ideal. Every prime ideal of dimension 0 in K[x] is a
maximal ideal, so each rad(qi) is a maximal ideal. Since K is algebraically
closed, V(qi) is a point in Kn. These points are the solutions to our system.

Example 3.4. Let n = 2 and I = 〈xy, x2− x, y2− y〉. This ideal is radical:

I = 〈x, y〉 ∩ 〈x− 1, y〉 ∩ 〈x, y − 1〉.

The variety of this ideal consists of three points: V(I) = {(0, 0), (1, 0), (0, 1)}.

If the given ideal is not radical then we cannot express it as an intersec-
tion of maximal ideals. This should not be surprising: already in the case of
one variable, if a root had a multiplicity we needed powers of linear forms.

Example 3.5. Let I = 〈xy, y2 − y, x2y − x2〉. We have the decomposition

I = 〈y − 1, x〉 ∩ 〈y, x2〉.

The varieties of both ideals are points: (0, 1) and (0, 0) respectively. How-
ever, the second ideal remembers additional data. It is not just 〈x, y〉, but
indicates a ’multiplicity’ of the solution (0, 0). We are now equipped to
measure this multiplicity! The degree of I equals 3. The first ideal in the
decomposition contributes with degree one, while the second with degree 2.

We now discuss an example that was seen in Exercise 8 of Chapter 1.
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Example 3.6. Fix the rationals K = Q and I = 〈x3− yz, y3− xz, z3− xy〉
in K[x, y, z]. This ideal is an irredundant intersection of 11 distinct ideals:

I = Q ∩ 〈z − 1, y − 1, x− 1〉 ∩ 〈z − 1, y + 1, x+ 1〉 ∩ 〈z − 1, x+ y, y2 + 1〉
∩ 〈z + 1, y − 1, x+ 1〉 ∩ 〈z + 1, y + 1, x− 1〉 ∩ 〈z + 1, x− y, y2 + 1〉

∩ 〈y − 1, x+ z, z2 + 1〉 ∩ 〈y + 1, x− z, z2 + 1〉
∩ 〈y − z, x+ 1, z2 + 1〉 ∩ 〈x− 1, y + z, z2 + 1〉.

The first intersectand is a primary ideal with radical rad(Q) = (x, y, z):

Q =
〈
x2y, x2z, xy2, xz2, y2z, yz2, x3 − yz, y3 − xz, z3 − xy

〉
,

Each of the other 10 intersectands is a prime ideal. If we were to replace K
by the complex numbers C then six of the prime ideals decompose further:

〈x− 1, y + z, z2 + 1〉 = 〈x− 1, y − i, z + i〉 ∩ 〈x− 1, y + i, z − i〉.
We learn that V(I) consists of 17 complex points. Only five are real.

3.2. Primary Decomposition

The idea of decomposing a mathematical object into simpler pieces is im-
portant. In this section we present a theory of decomposing ideals. We shall
express them as intersections of simpler ideals. Our point of departure is the
following proposition. It shows how algebraic varieties may be decomposed.

Proposition 3.7. Any variety in Kn can be uniquely represented as a finite
union of irreducible varieties (pairwise not contained in each other).

Proof. We start by proving the existence of such a decomposition. Any
variety W is either irreducible it is a union W1 ∪ V1. We next write W1

as a union W2 ∪ V2 etc. We obtain an ascending chain of ideals, I(W1) ⊆
I(W2) ⊆ . . . . This chain stabilizes by Hilbert Basis Theorem. Thus the
decomposition procedure finishes with finitely many irreducible varieties.

Suppose we have two irreducible decompositions of the same variety:

V1 ∪ · · · ∪ Vk = W1 ∪ · · · ∪Ws.

As each Wi0 is irreducible and covered by
⋃
j(Vj∩Wi0) we have Wi0 ⊂ Vj0 for

some j0. But similarly Vj0 ⊂Wi1 for some i1. As we cannot have Wi0 (Wi1

it follows that Wi0 = Vj0 . Hence, for every component Wi0 there is a unique
component Vj0 equal to it. The uniqueness of the decomposition follows. �

In what follows we present a vast generalization of these two basic facts:

(1) Every integer n > 1 can be uniquely decomposed as a product of
powers of prime numbers:

n = pa11 · · · pakk .
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(2) Any variety can be uniquely decomposed as a union of irreducible
varieties - Proposition 3.7.

The algebraic notion of an ideal connects the first (number-theoretic)
fact and the second (geometric) fact. Indeed, any integer n can be identified
with the ideal 〈n〉 in the ring Z. The elements of 〈n〉 are the integer multiples
of n. The ideal 〈n〉 is prime in Z if and only if n is a prime number. We can
restate fact (1) in terms of intersections of powers of prime ideals as follows:

(1’) Every nonzero ideal I ⊂ Z has a unique decomposition

I = (I1)
a1 ∩ · · · ∩ (Ik)

ak ,

where the Ii are prime ideals.

Over an algebraically closed field, we have an identification of varieties with
radical ideals (cf. Chapter 6). This yields the following restatement of (2):

(2’) Every radical ideal I ⊂ C[x] has a unique decomposition as an
intersection of prime ideals, pairwise not contained in each other:

I = p1 ∩ · · · ∩ pk.
These examples suggest that our aim should be to decompose ideals I

in a ring R. Here, a decomposition of I is a presentation as an intersection
of other ideals. At this point, we need to answer the following questions:

(1) What kind of ideals should be allowed in the intersection?

(2) What restrictions should be put on the ring R?

(3) Can we expect the decomposition to be unique?

We start with the first question. The number-theoretic example suggests all
ideals might be intersections of powers of prime ideals. But this is not true.

Example 3.8. The ideal I = 〈x2, y〉 is not an intersection of powers of
prime ideals in C[x, y]. Indeed, suppose I =

⋂
i p
ai
i . For all i, we have

pi ⊃ I. Hence pi = 〈x, y〉 as this is the only prime ideal containing I. The
ideal

⋂
i〈x, y〉ai would be a power of 〈x, y〉, whereas I is no such power.

The right constituents are primary ideals. Recall that I is primary if
and only if ab ∈ I and a 6∈ I implies bn ∈ I for some n, given any a, b ∈ R.

Next consider question (2): which rings R to take? Clearly, Z and K[x]
share a lot of nice properties. But there is a larger class of rings that works.

Definition 3.9. A ring R is Noetherian if every ascending chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ . . .

stabilizes, i.e. there exists k such that Ik = Ik+1 = Ik+2 = . . . .



42 3. Solving and Decomposing

Noetherian rings are named after the German algebraist Emmy Noether.
A hint how important they are is given in Exercises 4 and 5. Note that Z and
K[x] are Noetherian rings because their ideals are finitely generated. Before
stating our main existence theorem, let us introduce a technical definition.

Definition 3.10. An ideal I in a ring R is irreducible if and only if whenever
I = J1 ∩ J2 for some ideals J1, J2 in R then I = J1 or I = J2.

Theorem 3.11. Let I be an ideal in a Noetherian ring R. Then there exist
primary ideals q1, q2, . . . , qk in R such that

I = q1 ∩ q2 ∩ · · · ∩ qk.

Proof. First we show that every ideal in R is a finite intersection of irre-
ducible ideals. Suppose not, and let I1 be an ideal that cannot be presented
in this way. In particular, it is not irreducible. Thus, I1 = J1 ∩ J2 and each
Ji strictly contains I1. If J1 and J2 are finite intersections of irreducible
ideals, then so is I1. Hence, we may assume J1 cannot be presented as such
a finite intersection. Let I2 := J1. We have I1 ( I2. We repeat the con-
struction starting with I2 and get an ideal I3 with I1 ( I2 ( I3, where I3 is
not a finite intersection of irreducible ideals. Continuing, we get a chain of
strictly ascending ideals. However, this is not possible in a Noetherian ring.

We next prove that every irreducible ideal q is primary. By replacing
the ring R with R/q, we may assume q = {0}. Suppose ab = 0 and a 6= 0.
We must prove that b is nilpotent. Consider the following ascending chain:

{x ∈ R : bx = 0} =: Ann(b) ⊆ Ann(b2) ⊆ Ann(b3) ⊆ . . .

Since R is Noetherian, ascending chains of ideals become stationary. Hence
Ann(bn) = Ann(bn+1) for some n. We claim that 〈a〉 ∩ 〈bn〉 = {0}. Indeed,
suppose λa = µbn ∈ 〈a〉 ∩ 〈bn〉 for some λ, µ ∈ R. Clearly,

0 = λab = µbn+1.

Hence, µ ∈ Ann(bn+1) = Ann(bn). Thus, µbn = 0. As {0} was assumed to
be irreducible, and 〈a〉 ) {0}, we have bn = 0. This completes the proof. �

We now pass to the third question, concerning uniqueness. We need
not assume that R is Noetherian, as long as the ideal I in question is an

intersection of finitely many primary ideals: I =
⋂k
i=1 qi. Here it is assumed

that each qi is necessary, i.e.
⋂
j 6=i0 qj 6⊂ qi0 for all 1 ≤ i0 ≤ k. The next two

lemmas suggests grouping the primary ideals qi by their radical.

Lemma 3.12. The radical of a primary ideal q is the unique smallest prime
ideal containing it.

The proof is left as Exercise 6 for the reader. A primary ideal q with
radical equal to p is called p-primary. An easy way to create a primary ideal
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is to take a power of a prime ideal. However, it is not true that the power
of a prime ideal is always a primary ideal, even in the polynomial ring C[x].

Example 3.13. Let P be the ideal generated by the nine 2 × 2 minors of
a 3 × 3 matrix X = (xij) of unknowns. This ideal is prime and it contains
none of the xij . We claim that the ideal P 2 is not primary. To see this, we
verify (using Gröbner bases) that xij · det(X) lies in P 2 for all 1 ≤ i, j ≤ 3.
However, P 2 is generated by quartics and contains no cubics. Thus, neither
det(P ) nor any power of xij is in P 2. We conclude that P 2 is not primary.

In what follows, our standing assumption is that R is a Noetherian ring.
We focus on p-primary ideals for a fixed prime ideal p.

Lemma 3.14. If q1, . . . , qk are p-primary ideals, then so is q1 ∩ · · · ∩ qk.

Proof. The following shows that the radical of I :=
⋂k
i=1 qi equals p:

a ∈ rad(I) ⇐⇒ ∃n : an ∈ I ⇐⇒ ∃n ∀i : an ∈ qi
⇐⇒ ∀i : a ∈ rad(qi) = p ⇐⇒ a ∈ p.

To see that I is primary, we assume that ab ∈ I and a 6∈ I. Then a 6∈ qi0
for some i0. Since ab ∈ qi0 and qi0 is primary, b ∈ rad(qi0) = p = rad(I).
Hence bn ∈ I for some n. �

Lemma 3.14 suggests that, given any primary decomposition I =
⋂k
i=1 qi,

we aggregate the qi’s with the same radical and replace them by their inter-
section. The result is still a primary decomposition of I. This motivates the
following definition. A minimal primary decomposition is a representation

(3.1) I = q1 ∩ q2 ∩ · · · ∩ qk.
where the qi’s are primary ideals that have pairwise distinct radicals and
the intersection is irredundant, meaning

⋂
j 6=i0 qj 6⊂ qi0 for all 1 ≤ i0 ≤ k.

To sum up, we have proved the following result for Noetherian rings R:

(1) every ideal has a (finite) primary decomposition, and

(2) every(finite) primary decomposition of an ideal can be changed to
a minimal one (apply Lemma 3.14 and remove unnecessary ideals).

We next show that minimal primary decompositions may still be not unique.

Example 3.15. The following are two minimal primary decompositions:

(3.2) 〈x2, xy〉 = 〈x〉 ∩ 〈x, y〉2 = 〈x〉 ∩ 〈x2, y〉 ⊂ C[x, y].

It turns out that, while the primary ideals qi in the decomposition (3.1)
need not be unique, their radicals are unique. Recall that the quotient of
an ideal I by a ring element a is the ideal (I : a) = {b ∈ R : ab ∈ I}.
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Theorem 3.16. For any ideal I in a ring R, the set of k prime ideals
rad(qi) arising in a minimal primary decomposition (3.1) does not depend
on the choice of that decomposition. They are precisely the prime ideals of
the form rad(I : a) for some a ∈ R. If R is Noetherian then the last radical
is not needed: they are precisely the prime ideals (I : a) for some a ∈ R.

Proof. Fix a minimal primary decomposition I =
⋂k
i=1 qi. Intersection com-

mutes with ideal quotients, so (I : a) =
⋂k
i=1(qi : a) =

⋂
a6∈qj (qj : a).

It also commutes with radicals. Hence rad(I : a) =
⋂k
i=1 rad(qi : a) =⋂

a6∈qj rad(qj : a). We next argue that a 6∈ qi implies rad(qi : a) = rad(qi).

Suppose b ∈ rad(qi : a), i.e. bna ∈ qi. As qi is primary and a 6∈ qi, we
have (bn)m ∈ qi, i.e. b ∈ rad(qi). Hence, rad(qi : a) ⊂ rad(qi) and the other
inclusion is obvious. At this point we conclude that rad(I : a) equals the
intersection of the prime ideals rad(qj) satisfying a 6∈ qj .

By Exercise 8, if rad(I : a) is prime then it equals rad(qj) for some j.
Next, consider any rad(qi0). As the primary decomposition is minimal, there
exists a ∈ ⋂j 6=i0 qj\qi0 . The conclusion above shows rad(I : a) = rad(qi0).

It remains to prove the last assertion. If (I : a) is prime, then it equals
its radical. Thus, we must consider a prime ideal of the form rad(I : a)
and show that it equals (I : a′) for some a′ ∈ I. We already know that
rad(I : a) = rad(qi0) for some i0. By Exercise 9, rad(qi0)n ⊂ qi0 for some
positive integer n. Hence, there exists n such that (

⋂
j 6=i0 qj)·(rad(qi0))n ⊆ I.

We fix the smallest n with this property. Then we pick

a′ ∈
(

(
⋂

j 6=i0
qj) · (rad(qi))

n−1
)
\ I.

(Here, if n = 1 then rad(qi)
n−1 equals the ring R.) By definition, a′·rad(qi) ⊆

I, and thus rad(qi) ⊆ (I : a′). However, a′ ∈ (
⋂
j 6=i0 qj)\I, thus a′ 6∈ qi0 . We

have the inclusions rad(qi) ⊆ (I : a′) ⊆ rad(I : a′) = rad(qi), which are in
fact equalities. The last equation follows from the previous paragraph. �

Definition 3.17. The associated primes of an ideal I are the radicals of the
primary ideals appearing in a minimal primary decomposition. Equivalently,
these are the prime ideals of the form rad(I : a) for some element a of the
ring. If the ring is Noetherian, these are the prime ideals of the form (I : a).

Before going further, let us discuss the geometric meaning of the as-

sociated primes. If I =
⋂k
i=1 qi then rad(I) =

⋂k
i=1 rad(qi). Thus, every

component in the irreducible decomposition of the variety V(I) corresponds
to one of the associated primes of I. However, the converse is not true.
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Example 3.18. Let I = 〈x2, xy〉 as in Example 3.15. We have rad(I) = 〈x〉,
i.e. the variety V(I) is irreducible - a line in a plane. However, the mini-
mal primary decompositions (3.2) reveal that I has two associated primes.
The expected prime 〈x〉 and the unexpected prime 〈x, y〉 - a point on the
line. Thus, the associated primes remember more information than just the
variety. There is a ’hidden’ - embedded - point on that line whose ideal is I.

The formal replacement of varieties (corresponding to radical ideals) by
arbitrary ideals allowed a tremendous advance of 20th century algebraic
geometry. One is now able to work with ’functions’ that are nonzero, but
their square is zero, using basic, well-understood algebra. This advance
should be compared to the introduction of complex numbers in 18th and
19th century, where (basically in the same way) instead of answering the
question ‘does there exist a square root of −1?’ one introduces imaginary
numbers and shows how to use them in an efficient way. Still, we should not
forget the classical geometry we started from. The line from Example 3.18 is
of a different nature than the point, and these two should be distinguished.

Definition 3.19. For an ideal I, let Ass(I) be the set of associated primes.
The minimal (with respect to inclusion) elements of Ass(I) are the minimal
primes of I. Associated primes that are not minimal are called embedded .

An embedded prime p of an ideal I must contain a minimal prime p′.
This means that the irreducible component V(p′) of V(I) strictly contains
the irreducible variety V(p). We do not see V(p) geometrically inside V(I):
it is embedded in V(p′). Further the minimal primes correspond exactly to
irreducible components of V(I). They are the irredundant intersectands in

rad(I) =

k⋂

i=1

rad(qi).

The next lemma offers an another explanation for the name minimal primes.

Lemma 3.20. A prime ideal is a minimal prime of I if and only if it is a
minimal element (with respect to inclusion) among the primes that contain I.

Proof. It is enough to prove that every prime p containing I contains also a
prime in Ass(I). Then p also contains a minimal prime. They are equal if p

is minimal with respect to inclusion. Thus, suppose p contains I =
⋂k
i=1 qi.

By Exercise 8, p ⊇ qi0 for some some i0. Hence, p = rad(p) ⊃ rad(qi0). �

The geometry that distinguishes embedded and minimal primes suggests
an idea how to get additional uniqueness properties in primary decomposi-
tions. Indeed, in Example 3.15 it is the ideal corresponding to the embedded
component that changes, while the minimal prime remains the same.
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Theorem 3.21. Let I =
⋂k
i=1 qi be a minimal primary decomposition. The

primary ideals qi corresponding to minimal primes are determined by I.

Proof. Let qi0 be such that rad(qi0) is a minimal prime. We claim that

qi0 =
{
a : ab ∈ I for some b 6∈ rad(qi0)

}
.

We already saw that the right hand side does not depend on the decomposi-
tion of I. Thus the equation implies the theorem. We prove both inclusions.

Let a ∈ qi0 . For every i 6= i0 we have qi 6⊂ rad(qi0). Otherwise, rad(qi) ⊂
rad(qi0), which would contradict the hypothesis that rad(qi0) is minimal.
Hence, there exists bi ∈ qi\ rad(qi0). We define b :=

∏
j 6=i0 bj . As rad(qi0)

is prime we have b 6∈ rad qi0 . However, ab ∈ qj for j 6= i0, as b ∈ qj .

Furthermore, ab ∈ qi0 , as a ∈ qi0 . This implies ab ∈ I =
⋂k
i=1 qi. This

means that a is contained in the right hand side.

Now we pick a and b 6∈ rad(qi0) such that ab ∈ I. In particular, ab ∈ qi0 .
If a 6∈ qi0 we get a contradiction to the fact that qi0 is primary. This shows
that the right hand side is contained in the left hand side. �

Primary decomposition for monomial ideals is easier than for general
polynomial ideals. The associated primes are generated by subsets of the
variables and they can be characterized combinatorially. We here just show
this for one example. For more information we refer to the textbook [40].

Example 3.22. Let n = 3 and I = 〈xy2z3, x2yz3, xy3z2, x3yz2, x2y3z, x3y2z〉.
This has seven associated primes. A minimal primary decomposition equals

I = 〈x〉 ∩ 〈y〉 ∩ 〈z〉 ∩ 〈x2, y2〉 ∩ 〈x2, z2〉 ∩ 〈y2, z2〉 ∩ 〈x3, y3, z3〉.
This example generalizes to n ≥ 4 as follows. The ideal I is generated by
the n! monomials

∏n
i=1 x

πi
i , indexed by permutations π ∈ Sn, and Ass(I)

consists of all 2n − 1 ideals generated by nonempty subsets of {x1, . . . , xn}.

There are many algorithms and implementations for computing primary
decompositions. The input is an ideal I in a polynomial ring K[x] and the
output is the set Ass(I) and primary ideals q1, . . . , qk satisfying (3.1). Tra-
ditionally, these are symbolic methods built upon Gröbner bases. In recent
years, numerical tools for decomposing ideals and varieties have received
much attention. Solving polynomial systems means running such software.

3.3. Linear PDE with Constant Coefficients

In this section we offer an alternative perspective on the problem of solving
systems of polynomial equations. This is aimed at highlighting the role of
embedded primes and primary ideals in a context of practical importance.
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Every polynomial with real or complex coefficients can be interpreted
as a linear differential operator with constant coefficients. This operator is
obtained by simply replacing xi by the differential operator ∂

∂xi
. Every ideal

I in R[x1, x2, . . . , xn] can thus be interpreted as a system of linear partial
differential equations (PDE) with constant coefficients. Suppose we are in-
terested in the solutions to these PDE within some nice class of functions,
like polynomial functions, real analytic functions Rn → R, or complex holo-
morphic functions Cn → C. Then the set of solutions to our PDE is a linear
space over R or C. We are interested in computing a basis for that solution
space. This computation rests on the primary decomposition of the ideal I.
Both minimal primes and embedded primes will play a role, and all primary
components will contribute to our basis for the solution space. But, first of
all, let us start by interpreting the usual points of V(I) in terms of PDE.

Lemma 3.23. Let I be an ideal in C[x]. A point (a1, . . . , an) ∈ Cn lies in
the variety V(I) if and only if the exponential function exp(a1x1+· · ·+anxn)
is a solution of the partial differential equations given by I.

Proof. Let f(x) = exp(a1x1+· · ·+anxn). Then ∂f
∂xi

= ai ·f for i = 1, . . . , n.

Let g be any polynomial and g
(
∂
∂x

)
the corresponding differential operator.

By induction on the degree of g, with degree one as base case, we find that the
application of the operator g

(
∂
∂x

)
to the function f(x) equals g(a1, . . . , an)

times f(x). This is zero for all g ∈ I if and only if (a1, . . . , an) ∈ V(I). �

Lemma 3.23 embeds the classical solutions of a polynomial system into
the solution space of the associated linear PDE. But, if the ideal is not radical
then there are more solutions, governed by the primary decomposition. We
shall explain this for the ideal in Example 3.6 and in Exercise 8 of Chapter 1.

Example 3.24. Let n = 3 and I = 〈x3 − yz, y3 − xz, z3 − xy〉. The
corresponding system of PDE asks for all functions f = f(x, y, z) that satisfy

(3.3)
∂3f

∂x3
=

∂2f

∂y∂z
and

∂3f

∂y3
=

∂2f

∂x∂z
and

∂3f

∂z3
=

∂2f

∂x∂y
.

To make this problem precise, we would need to specify the class of functions
f that are allowed. For instance, we might take all holomorphic functions
f : C3 → C. Or we might seek real analytic solutions f : R3 → R, or, among
these, all polynomial solutions. Let’s leave this unspecified for now.

The degree of our ideal I is 27 = 3×3×3, which comes from the degrees
of the three generators of I. The number 27 is also the dimension of the



48 3. Solving and Decomposing

space of holomorphic solutions f to (3.3). A basis of that solution space is

(3.4)

1 , x , y , z , x2 , y2 , z2 , x3+6yz , y3+6xz, z3+6xy, x4+y4+z4+24xyz,
exp(x− y − z) , exp(x+ y + z) , exp(−x− y + z) , exp(−x+ y − z) ,

exp(x−iy+iz) , exp(x+iy−iz) , exp(−x−iy−iz) , exp(−x+iy+iz) ,
exp(ix− y + iz) , exp(ix+ y − iz) , exp(ix− iy + z) , exp(ix+ iy − z) ,
exp(−ix−y−iz) , exp(−ix+y+iz) , exp(−ix−iy−z) , exp(−ix+iy+z).

The subspace of polynomial solutions has dimension 11 and is spanned by the
first row. The larger subspace of real analytic solutions has dimension 15 and
is spanned by the first two rows. All other basis functions are exponentials of
linear forms that have i =

√
−1 among its coefficients. The 16 basis solutions

in the last four rows, along with the solution 1 = exp(0x + 0y + 0z), are
explained by Lemma 3.23. They are the exponentials corresponding to the
17 distinct points in V(I) ⊂ C3.

This basis in (3.4) was derived from the minimal primary decomposition

I = Q ∩
⋂

a+b+c≡ 0
mod 4

〈
x− ia, y − ib, z − ic

〉
in C[x, y, z].

This decomposition is obtained by refining the primary decomposition over
the rational numbers Q shown in Example 3.6. The 16 ideals in the intersec-
tion on the right hand side are maximal and hence prime. They correspond
to the 16 exponential solutions in (3.4). The ideal Q is primary to the max-
imal ideal rad(Q) = 〈x, y, z〉. Since all associated primes are minimal, by
Theorem 3.21, this primary ideal is uniquely determined from I:

Q =
〈
x2y, x2z, xy2, xz2, y2z, yz2, x3 − yz, y3 − xz, z3 − xy

〉
.

This zero-dimensional primary ideal has degree 11. It contributes the 11
polynomial solutions to the three partial differential equations in (3.3).

Here is a general result explaining our observations from Example 3.24.

Theorem 3.25. Let I be a zero-dimensional ideal in C[x1, . . . , xn], inter-
preted as a system of linear PDE. The space of holomorphic solutions has
dimension equal to the degree of I. There exist non-zero polynomial solu-
tions if and only if the maximal ideal M = 〈x1, . . . , xn〉 is associated to I. In
that case, the polynomial solutions are precisely the solutions to the system
of PDE given by the M -primary component (I : (I : M∞)).

Proof. Fix a degree compatible monomial order and let in(I) be the initial
monomial ideal of I for that order. The set S of standard monomials is
finite. It consists of monomials of degree < D for some D. These form a
basis for the solution space of the PDE associated with in(I).

Now, for any d ≥ D, we have the following isomorphism of vector spaces

C[x]/I ' C[x]≤d/I≤d.
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The pairing between monomials in the ∂/∂xi and the monomials in the xj
defines a nondegenerate inner product on this vector space. If we interpret
each element of I≤d as a differential operator, then its solution space in
C[x]≤d is the orthogonal complement with respect to that inner product.

Our Gröbner basis for I translates into a triangular vector space basis
for I≤d. By solving that triangular system of linear equations, we construct
a unique solution basis whose elements have the form

(3.5) pu(x1, . . . , xn) = xu + higher order terms, where xu runs over S.
By increasing the value of d, we obtain a formal series (3.5) that solves
our PDE. This formal series terminates as a polynomial if and only if it is
annihilated by the operators (∂/∂xi)

d for i = 1, 2, . . . , n. This is equivalent
to saying that the series is a solution to any M -primary ideal containing I.
If I is M -primary then all solutions pu are polynomials. The solution space
is then spanned by polynomials and its dimension equals |S| = degree(I).

Suppose now that I is primary in C[x]. Since I is zero-dimensional,
its radical is the maximal ideal rad(I) = 〈x1 − a1, . . . , xn − an〉, where
V(I) = {(a1, . . . , an)} ⊂ Cn. By translating (a1, . . . , an) to the origin
(0, . . . , 0), we can apply the analysis in the previous paragraph. From this
and Lemma 3.23, we obtain degree(I) many polynomials pu, each with its
lowest term a standard monomial xu ∈ S, such that

(3.6) pu(x1, . . . , xn) · exp(a1x1 + · · ·+ anxn)

solves the PDE given by I. These functions form a basis for the holomorphic
solutions to I. None of them is a polynomial unless (a1, . . . , an) = (0, . . . , 0).

Next, let I be an arbitrary zero-dimensional ideal. Its minimal primary
decomposition (3.1) is unique, by Theorem 3.21. The solution space to I,
regarded as PDE, is spanned by the solution spaces of its primary compo-
nents q1, q2, . . . , qk. For each of these, we constructed a basis of holomorphic
functions (3.6). The union of these bases is a basis for the solution space of
I, and its cardinality equals degree(I).

Finally, we argue that if M ∈ Ass(I) then the M -primary component
of I is the double quotient (I : (I : M∞)). In the primary decomposition
(3.1), suppose that q1 is M -primary. Then (I : M∞) = q2 ∩ · · · ∩ qk.
Taking the ideal quotient of I by q2 ∩ · · · ∩ qk recovers the ideal q1. Hence
q1 = (I : (I : M∞)) as desired. This completes the proof. �

In the preceding discussion, we studied the solutions to zero-dimensional
polynomial systems in the guise of linear PDE with constant coefficients. We
saw that the solution space of such an ideal I is always a vector space of the
same dimension, namely the degree of I. This is different from the situation
for solving polynomial equations. The variety V(I) of classical solutions in
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Cn changes its cardinality depending on whether I is radical or not. The
solution space to the PDE, on the other hand, always has the expected
dimension deg(I), independently of whether the ideal I is radical or not.

The solution spaces to our PDE vary gracefully under parameter changes.
This underscores the utility of primary decompositions in the context of
solving equations. We demonstrate this perspective in a simple example.

Example 3.26 (n = 2). Consider the ideal I = 〈x2− δ2, y2 − ε2〉 ⊂ R[x, y],
where δ, ε are small real parameters. As before, we view I as a PDE system:

∂2f

∂x2
= δ2f and

∂2f

∂y2
= ε2f.

For δ, ε 6= 0, the solution space is spanned by the four exponential functions

fij := exp
(
(−1)iδx+ (−1)jεy

)
where i, j ∈ {0, 1}.

However these four functions become linearly dependent when δε = 0. We
therefore change the basis of our four-dimensional solution space as follows:

g00 = 1
4(f00 + f01 + f10 + f11) = 1 + δ2

2 x
2 + ε2

2 y
2 + · · ·

g01 = 1
4ε(f00 − f01 + f10 − f11) = y + δ2

2 x
2y + ε2

6 y
3 + · · ·

g10 = 1
4δ (f00 + f01 − f10 − f11) = x+ δ2

6 x
3 + ε2

2 xy
2 + · · ·

g11 = 1
4εδ (f00 − f01 − f10 + f11) = xy + δ2

6 x
3y + ε2

6 xy
3 + · · ·

This family remains linearly independent for all values of δ and ε. In par-
ticular, for δ = ε = 0, we obtain the standard basis S = {1, x, y, xy} modulo

the ideal in(I) = 〈x2, y2〉. This is a basis for the solutions to ∂2f
∂x2

= ∂2f
∂y2

= 0.

We next discuss briefly the PDE from polynomial ideals I that are not
zero-dimensional. It is still true that the primary decomposition of I reveals
the solution space of these PDE. The precise statement is an important result
in analysis known as Ehrenpreis’ Fundamental Principle or as Palamodov-
Ehrenpreis Theorem. The details of this theorem are outside our scope. For
the statement of this result see [53, §10.5] and the references given there.

We here illustrate the role of primary decomposition in one example. The
key observation is that embedded primes reveal spurious solutions spaces.

Example 3.27. Let n = 4 and consider the ideal

J = 〈xw, xz + yw, yz〉.
Somewhat surprisingly, this is not radical. Its radical is the monomial ideal

√
J = 〈x, y〉 ∩ 〈z, w〉 = 〈xw, xz, yw, yz〉.

The given ideal J has three associated primes. The primes 〈x, y〉 and 〈z, w〉
are minimal primes, and the maximal ideal 〈x, y, z, w〉 is an embedded prime.
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A minimal primary decomposition of the given ideal equals

J = 〈x, y〉 ∩ 〈z, w〉 ∩ (J + 〈x, y, z, w〉3).
The third primary ideal is not unique. If we replace the third power of the
maximal ideal by any higher power, then the intersection remains the same.

As before, we interpret the generators of J as a system of linear PDE:

∂2f

∂x∂w
=

∂2f

∂x∂z
+

∂2f

∂y∂w
=

∂2f

∂y∂z
= 0.

The linear space of solutions f(x, y, z, w) is infinite-dimensional. It is spanned
by all functions of the form g(y, z) and h(x, y), together with the one special
function xz − yw. The former correspond to the two minimal primes. The
latter spurious solution arises from the embedded primary component.

Whenever one encounters a system of polynomial equations with special
structure, and one is curious about the variety of solutions, it pays to explore
the primary decomposition and to ponder the solutions to the associated
PDE. Students who struggle with schemes in an algebraic geometry class
will find our PDE interpretation a useful way to understand their structure.

Given a system of polynomial equations, the primary decomposition
often reveals interesting structures. Most importantly, it tells us how to
break up the solutions into meaningful pieces. As an illustration, we examine
the following question from linear algebra: Let A,B,C be 2×2-matrices. In
which ways is it possible that the triple product ABC is the zero matrix?

We approach this problem as follows. We set n = 12 and we fix the poly-
nomial ring R[aij , bij , cij ] whose variables are the 12 entries of the matrices
A,B,C. Let I be the ideal in R[aij , bij , cij ] that is generated by the four
entries of the matrix product ABC. For example, one of the four generators
of I is the upper left entry of ABC. This is the trilinear form

a11b11c11 + a12b21c11 + a11b12c21 + a12b22c21.

In the back of our minds, we think of this as a partial differential equation:

(3.7)
∂3f

∂a11∂b11∂c11
+

∂3f

∂a12∂b21∂c11
+

∂3f

∂a11∂b12∂c21
+

∂3f

∂a12∂b22∂c21
= 0.

The scheme-theoretic version of our linear algebra question is this: Which
functions on matrix triples satisfy these four partial differential equations?

A computation with a computer algebra system reveals that the ideal I
is radical. It is the intersection of six prime ideals. Three of them are ideals
generated by the entries of A or B or C respectively. The next two associated
primes are generated respectively by the 2× 2 minors of the matrices

(
a11 a21 −b21 −b22
a12 a22 b11 b12

)
and

(
b11 b21 −c21 −c22
b12 b22 c11 c12

)
.
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Finally, the last associated prime of I is the ideal I + 〈det(A),det(C)〉.
Thus Ass(I) consists of six primes, and all are minimal. Using the computer
algebra system of their choice, the reader now ought to check that our ideal
I is indeed equal to the intersection of these six prime ideals.

Geometrically, we are studying a variety V(I) in the affine space C12. It
is the solution set of four cubic equations. We found that V(I) is the union
of six irreducible components. Three of them are linear spaces of dimension
8. The other three irreducible components have dimension 9 and they are
not linear spaces. Their degrees are 4, 4 and 8 respectively. In response to
the original linear algebra question, the six irreducible components of V(I)
correspond to the following six scenarios for a triple of 2× 2-matrices:

rank(A) = 0 or rank(B) = 0 or rank(C) = 0 or
rank(A) = rank(B) = 1 or rank(B) = rank(C) = 1

or rank(A) = rank(C) = 1.

Each of the six irreducible components V(I) is a rational variety, and it
admits a nice polynomial parametrization. Using Lemma 3.23, we can then
write down all exponential solutions to the four partial differential equations,
like (3.7), that are given by I. The solutions come in six families.

The solutions contributed by the first irreducible component {rank(A) =
0} are the functions f(B,C) that do not depend on the matrix A. The
solutions contributed by the last irreducible component have the form

f(A,B,C) = exp
[
r1s1a11 + r1s2a12 + r2s1a21 + r2s2a22 + (t11u2−s2t12)b11
+(s2t21−t11u1)b12 + (s1t12−t22u2)b21 + (t22u1−s1t21)b22

+ u1v1c11 + u1v2c12 + u2v1c21 + u2v2c22
]
,

where ri, sj , tij , ui, vj are arbitrary complex numbers. The functions f above
satisfy the PDE because the coefficients of a11, a22, . . . , c22 furnish a parame-
trization of the irreducible variety {ABC = 0, rank(A) = rank(C) = 1}.

Here is our conclusion for this example, valid for the entire book: taking
a fresh look at linear algebra offers a point of entry to nonlinear algebra.

Exercises

(1) Let R = C[x, y]/〈x2, xy, y2〉. Is {0} an irreducible ideal? Is it primary?

(2) Prove that an ideal I ( Z is a power of a prime ideal if and only if it is
primary.

(3) Prove that a ring is Noetherian if and only if every ideal is finitely
generated.

(4) (a) Prove that if R is Noetherian, then so is R/I for any ideal I.
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(b) Prove Hilbert Basis Theorem: If R is Noetherian, then so is R[x].

(5) Prove Lemma 3.12

(6) Check that Example 3.15 provides two distinct minimal primary decom-
positions.

(7) a) Prove that a prime ideal p cannot be equal to an intersection of
(finitely many, more than one, incomparable) ideals.

b) More generally prove that if a prime ideal contains an intersection
of finitely many ideals, then it contains one of them.

(8) Prove that in a Noetherian ring every ideal contains a power of its rad-
ical. Give a counterexample in case of a non-Noetherian ring.

(9) Find three polynomials in three unknowns, each having degree precisely
five, whose variety in C3 consists of precisely 37 complex solutions.

(10) Find all solutions (x, y) of the two equations x2 + y = ε and y2 +x = ε
over the algebraic closure of the field Q(ε). Write down series solutions.

(11) Let I be the ideal generated by the 2×2-subpermanents xiyj +xjxi of a
2× 5-matrix of unknowns. Find a minimal primary decomposition of I.
Interpret your result in terms of solving partial differential equations.

(12) Which 2× 3 matrices A and B satisfy ABT = BAT ? How about 3× 2?

(13) Let K = F2 be the field with two elements. Find an ideal I in K[x, y]
that has precisely ten associated primes, of which five are embedded.





Chapter 4

Mapping and
Projecting

A frequently encountered challenge is to compute the image of a polynomial
map. Such an image need not be an algebraic variety. However, a natural
outer approximation of the image is given by its Zariski closure. The Zariski
closure of the image is a variety, described by the polynomials that vanish
on it. In this chapter we show how this variety can be found by eliminating
variables. Gröbner bases and resultants serve as our primary tools. Further,
we provide theorems that allow us to understand the difference between the
image and its closure. The answer we obtain depends heavily on the setting,
whether we work over the complex numbers C or over the real numbers R,
and whether the given polynomials are homogeneous or nonhomogeneous.

4.1. Elimination

In this section we introduce elimination of variables for polynomial ideals.
This is our main tool for computing the closure of the image of a polynomial
map. We show how to carry it out in practise using Gröbner bases.

We fix an algebraically closed field K and the polynomial ring K[x] =
K[x1, . . . , xn]. Every ideal I ⊂ K[x] has an associated affine variety:

V(I) = {p ∈ Kn : f(p) = 0 for all f ∈ I }.
We consider the projection from Kn onto the subspace given by the first m
coordinates:

π : Kn → Km, (p1, . . . , pm, pm+1, . . . , pn) 7→ (p1, . . . , pm).

If V is a variety in Km then its image π(V ) need not be a variety.

55
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Example 4.1 (n = 2,m = 1). The image of the hyperbola V = V(xy − 1)
under the projection K2 → K1 from the plane to the x-axis equals π(V ) =
K1\{0}. This is not a variety in K1. Note that the image will be closed if,
prior to projecting, we first perform a change of coordinates. For instance if
we replace V by the hyperbola V ′ = V

(
(x+y)(x−y)− 1

)
then π(V ′) = K1.

By definition, the Zariski closure π(V ) of the image is a variety in Km. It

is the smallest variety containing π(V ). We call the variety π(V ) the closed
image of V under the map π. The next theorem characterizes its ideal.

Theorem 4.2. Let I ⊂ K[x] be an ideal and V = V(I) its variety in Kn,
where K is an algebraically closed field. Then its closed image in Km is the
variety π(V ) = V(J) defined by the elimination ideal

(4.1) J = I ∩ K[x1, . . . , xm].

If I is radical or prime then the elimination ideal J has the same property.

Proof. If J is not a prime ideal then there exist polynomials f and g in
K[x1, . . . , xm] such that fg ∈ J but f, g 6∈ J . The same polynomials show
that I is not prime. Similarly if J is not radical then there exists f in
K[x1, . . . , xm] and r ≥ 2 such that f r ∈ J but f 6∈ J . The same f shows
that J is not radical. Similar reasoning shows that all ideal I ⊂ K[x] satisfy

Rad(I) ∩ K[x1, . . . , xm] = Rad
(
I ∩ K[x1, . . . , xm]

)
.

Since passing to the radical does not change the variety of a given ideal, we
may assume that I and J are radical ideals. We shall now make a forward
reference and use the Nullstellensatz (Chapter 6). A polynomial belongs
to I if and only if it vanishes on V = V(I). This holds, in particular, for
polynomials f in the subring K[x1, . . . , xm]. Such an f belongs to J if and

only if it vanishes on π(V ) if and only if it vanishes on π(V ). The latter

condition means that f lies in the radical ideal of π(V ). We conclude that

the the radical ideal of the closed image π(V ) is precisely the elimination
ideal J . For further details we refer to [10, §2.2, Theorem 3]. �

Theorem 4.2 says that the algebraic operation of elimination corresponds
to the geometric operation of projection. This holds in many settings, not
just in algebraic geometry. For instance, Gaussian elimination in linear al-
gebra corresponds to projection of linear subspaces, and Fourier-Motzkin
elimination in convex geometry corresponds to projection of polyhedra. Al-
ternatively, from the perspective of logic, we can think of our projection as
quantifier elimination. We are eliminating the n−m existentially quantified
variables from the first-order logic statement ∃xm+1, . . . , xn : x ∈ V .
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Elimination and projection are fundamental operations in many appli-
cations. One good example is the problem of matrix completion or tensor
completion which arises frequently in data science. Here is an illustration.

Example 4.3 (Matrix Completion). Fix n = 15 and let V be the irreducible
variety of symmetric 5 × 5-matrices X = (xij) of rank ≤ 2. Its prime ideal
I = I(V ) is minimally generated by 50 homogeneous cubic polynomials,
namely the 3 × 3-minors of the matrix X. In fact, these 50 cubics from a
Gröbner basis for the degree reverse lexicographic order.

Now let m = 10 and order the variables so that the five diagonal entries
x11, x22, x33, x44, x55 come last. Then the elimination ideal is principal:

J = 〈x14x15x23x25x34 − x13x15x24x25x34 − x14x15x23x24x35
+x13x14x24x25x35 + x12x15x24x34x35 − x12x14x25x34x35
+x13x15x23x24x45 − x13x14x23x25x45 − x12x15x23x34x45
+x12x13x25x34x45 + x12x14x23x35x45 − x12x13x24x35x45 〉.

The ideal generator is known as the pentad in algebraic statistics [18, Ex-
ample 4.2.8]. The 15 terms correspond to the 15 maximal matchings in the
complete graph K5. The hypersurface V(J) equals the image π(V ) of the
determinantal variety V under the projection from K15 onto the subspace
K10 whose coordinates are the off-diagonal entries.

Our result has the following interpretation in terms of matrix completion.
If the 10 off-diagonal entries of a symmetric 5×5-matrix are given then this
can be completed to a matrix of rank ≤ 2 if and only if the pentad vanishes.
This constraint appears in the statistical theory of factor analysis [18].

Our next example shows how find algebraic relations via elimination.

Example 4.4. The first four power sums in three variables are the polyno-
mials xi+yi+zi for i = 1, 2, 3, 4. These four must be algebraically dependent
since they involve only three variables. But, what is the algebraic relation
satisfied by these four power sums?

We approach this question by setting n = 7,m = 4 and fixing the ideal

I = 〈x+y+ z−p1, x2 +y2 + z2−p2, x3 +y3 + z3−p3, x4 +y4 + z4−p4 〉.
This ideal lives in a polynomial ring in seven variables. We wish to eliminate
the three original variables x, y, z. Thus, we ask for the elimination ideal

J = I ∩ K[p1, p2, p3, p4].

This is a principal prime ideal. Its generator is a polynomial of degree four:

J = 〈 p41 − 6p21p2 + 3p22 + 8p1p3 − 6p4 〉.
This is the desired relation. Please check by plugging in the power sums.
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The computations in our two examples were carried out using Gröbner
bases. Here is how this works. We first fix the lexicographic monomial order
≺ on K[x] with x1 ≺ x2 ≺ · · · ≺ xn. We then compute the reduced Gröbner
basis for the ideal generated by the given polynomials. And, finally, we
select those polynomials from the output that use only the first m variables.

Theorem 4.5. If G is a lexicographic Gröbner basis for an ideal I in
K[x] then its elimination ideal J in (4.1) has the Gröbner basis G′ =
G ∩ K[x1, . . . , xm]. If G is the reduced Gröbner basis of I then G′ is the
reduced Gröbner basis of J .

Proof. Clearly, the set G′ is contained in J = I ∩ K[x1, . . . , xm]. Consider
any nonzero polynomial f ∈ J . The initial monomial in≺(f) is divisible
by in≺(g) for some g ∈ G. None of the variables xm+1, . . . , xn appears in
the monomial in≺(g). Every trailing term of g is lexicographically smaller,
so it cannot use any of the last n − m variables. Hence g lies in G′. We
have shown that some initial monomial from G′ divides in≺(f). Since f was
chosen arbitrarily from J\{0}, this means that G′ is a Gröbner basis for
J . If the given Gröbner basis G is reduced then G′ also satisfies the two
requirements for being a reduced Gröbner basis. �

This result shows that the lexicographic Gröbner basis G solves the elim-
ination problem simultaneously for all m. Thus computing G means trian-
gularizing a given system of polynomial equations. We saw in Chapter 1
that it can be quite costly to compute a lexicographic Gröbner basis. One
therefore often uses different strategies to carry out the elimination process.
But Theorem 4.5 represents the main idea that underlies these strategies.
Lexicographic elimination is a key tool for solving systems of polynomial
equations. The Gröbner basis in Theorem 4.5 triangularizes the given sys-
tem. It is instructive to try this for some zero-dimensional varieties.

Example 4.6. Here is a simple question: can you find three real num-
bers x, y, z whose i-th power sum equals i for i = 1, 2, 3 ? To answer this
question, we compute the lexicographic Gröbner basis of the following ideal:

I = 〈x+ y + z − 1, x2 + y2 + z2 − 2, x3 + y3 + z3 − 3 〉.

This Gröbner basis equals

G = { 6z3 − 6z2 − 3z − 1, 2y2 + 2yz − 2y + 2z2 − 2z − 1, x+ y + z − 1 }.

Theorem 4.2 says that we can solve our equations by back-substitution.
Indeed, the equations have six complex zeros. We first compute the three
roots of the cubic in z, we substitute them into the second equation and
solve for y, and then we set x = 1− y − z. The cubic has one real root and
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two complex conjugate roots:

z ∈
{

1.4308,−0.21542− 0.26471i,−0.21542 + 0.26471i
}
.

By symmetry, the zeros of I are precisely the six points in C3 whose coor-
dinates are permutations of the three complex numbers above. Hence the
answer to our question is “no”. The variety V(I) has no real points.

4.2. Implicitization

Implicitization is a special instance of elimination. Here, the problem is to
compute the image of a polynomial map between two affine spaces. This
can be done by forming the graph of the map and then projecting onto the
image coordinates. To be precise, we consider a map of the form

(4.2) f : Km → Kn, p = (p1, . . . , pm) 7→
(
f1(p), . . . , fn(p)

)
,

where f1, . . . , fn are polynomials in K[z1, . . . , zm], and K is an algebraically
closed field. We write image(f) for the image of Km under this map. This
need not be a variety, as the following example shows:

Example 4.7. Let m = 2, n = 3 and consider the map f = (z1, z1z2, z1z
2
2).

The Zariski closure of the image is the surface V = V(x1x3 − x22) in K3.
The point (0, 0, 1) is in the surface but not in image(f). For K = C we can
approximate (0, 0, 1) by a sequence of points in the image, e.g. by taking
z1 = ε2 and z2 = ε−1 for ε→ 0.

The closed image of the map f : Km → Kn is the Zariski closure of the
set-theoretic image image(f). The closed image is denoted image(f) ⊂ Kn.

Corollary 4.8. Given the map f in (4.2), let I be the ideal in the polynomial
ring K[x, z] in n+m variables which is generated by fi(z1, . . . , zm)−xi for
i = 1, 2, . . . , n. The closed image of f : Km → Kn is the variety defined the
elimination ideal J = I ∩ K[x]. In symbols, image(f) = V(J).

Proof. The graph of f is Zariski closed in Kn+m, and I is the ideal that
defines it. The image of f is the projection of the graph onto Kn. With
this, the claim follows from Theorem 4.2. �

Example 4.9 (Plücker relations). What are the algebraic relations among
the 2 × 2-minors of a 2 × 5-matrix? We answer this question by setting
m = n = 10 and considering the map f : K10 → K10 that takes a

matrix

(
z11 z12 z13 z14 z15
z21 z22 z23 z24 z25

)
to the vector (x12, x13, . . . , x45) where

xij = z1iz2j − z1jz2i for 1 ≤ i < j ≤ 5. The graph of f is described by
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an ideal I in the polynomial ring K[x, z] in 20 variables. Note that I is
generated by 10 polynomials. The desired elimination ideal equals

I ∩ K[x] = 〈 x12x34 − x13x24 + x14x23 , x12x35 − x13x25 + x15x23 ,
x12x45 − x14x25 + x15x24 , x13x45 − x14x35 + x15x34 ,

x23x45 − x24x35 + x25x34 〉.
These five quadrics are the Plücker relations among the maximal minors.
They play a key role in our study of Grassmannians in Chapter 5. The ten
variables in K[x] can be written as the entries of a skew-symmetric matrix

X =




0 x12 x13 x14 x15
−x12 0 x23 x24 x25
−x13 −x23 0 x34 x35
−x14 −x24 −x34 0 x45
−x15 −x25 −x35 −x45 0



.

The Plücker relations are the pfaffians of size 4×4, that is, the square roots
of the principal 4× 4 minors of X. Thus V(I ∩K[x]) is the variety of skew-
symmetric 5 × 5 matrices of rank ≤ 2. We shall see that, as a projective
variety in P9, this is the Grassmannian of lines in P4. Each such line is
written in Plücker coordinates as the image of the rank 2 matrix X.

The notion of the determinant is central to linear algebra. In nonlinear
algebra, there is an analogous notion of a hyperdeterminant for tensors.

Example 4.10 (Hyperdeterminant). Let X = (xijk) be a tensor of format
2×2×2, where the n = 8 tensor entries are variables. The tensor represents
an affine-trilinear polynomial in m = 3 variables:

f = x000+x100z1+x010z2+x001z3+x110z1z2+x101z1z3+x011z2z3+x111z1z2z3.

For any fixed X, this polynomial defines a surface V(f) in K3. We are
interested in the condition under which this surface is singular. It is singular
at the point z if and only if the pair (X, z) ∈ K11 lies in the variety of

I =
〈
f,

∂f

∂z1
,
∂f

∂z2
,
∂f

∂z3

〉
.

The elimination ideal I ∩ K[x] is principal. We find that its generator is

x2110x
2
001 + x2100x

2
011 + x2010x

2
101 + x2000x

2
111 + 4x000x110x011x101 + 4x010x100x001x111

−2x100x110x001x011 − 2x010x110x001x101 − 2x010x100x011x101
−2x000x110x001x111 − 2x000x100x011x111 − 2x000x010x101x111.

This quartic is the 2×2×2 hyperdeterminant. It vanishes whenever the sur-
face V (f) fails to be smooth in K3. Hyperdeterminants exist for tensors of
many larger formats. Their study is a fascinating topic in nonlinear algebra.
A standard reference is the book by Gel’fand, Kapranov and Zelevinsky [24]
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The most basic scenario in elimination arises when m variables are elim-
inated from a system of m + 1 equations. One expects the result to be a
single equation in the coefficients of that system. We saw this for m = 3
in Examples 4.4 and 4.10. The theory of resultants is custom-taylored to
predict the eliminant in such cases. We set this up over the field Q as follows.

Let i ∈ {1, 2, . . . ,m+ 1} and fix a general inhomogeneous polynomial fi
of degree di in z1, . . . , zm. This polynomial has

(
di+m
m

)
unknown coefficients

xi,u, one for each monomial zu of degree ≤ di. The total number of unknown

coefficients equals n =
∑m+1

i=1

(
di+m
m

)
. We write Q[x, z] for the resulting

polynomial ring in n+m variables. Inside this ring we consider the ideal

I = 〈 f1, f2, . . . , fm, fm+1 〉 ⊂ Q[x, z].

We are interested in the ideal in Q[x] found by eliminating the m variables zi.

Theorem 4.11. The elimination ideal I ∩Q[x] is principal. Its generator is
an irreducible polynomial in the entries of the coefficient vector x. This is de-
noted Res(f1, . . . , fm+1) and called the resultant. The degree of the resultant
in the coefficients of fi equals d1 · · · di−1di+1 · · · dm+1 for i = 1, 2, . . . ,m+1.

Proof. We refer to [11, Chapter 3] for the proof. In that source, and
many others, the fi are taken to be homogeneous polynomials in m + 1
variables. We here prefer the inhomogeneous case, which allows for a simpler
formulation as an elimination ideal. The two versions are equivalent. �

Example 4.12 (Determinants). Let d1 = · · · = dm+1 = 1. The m+ 1 poly-
nomials fi are affine-linear. They can be written as a matrix-vector product




f1
f2
...
fm
fm+1




=




x1,1 x1,2 · · · x1,m x1,m+1

x2,1 x2,2 · · · x2,m x2,m+1
...

...
. . .

...
...

xm,1 xm,2 · · · xm,m xm,m+1

xm+1,1 xm+1,2 · · · xm+1,m xm+1,m+1







z1
z2
...
zm
1



.

The resultant det(f1, . . . , fm+1) is the determinant of the coefficient matrix
(xi,j). This is a homogeneous polynomial of degree m + 1 in n = (m + 1)2

unknowns with (m+1)! terms. It has degree one in the coefficients of each fi.

Example 4.13 (Eliminating one variable from two quadratic polynomials).
Let m = 1 and d1 = d2 = 2 and abbreviate z = z1. Our system consists of
two univariate polynomials of degree two with six unspecified coefficients:

f1 = x11z
2 + x12z + x13 and f2 = x21z

2 + x22z + x23.
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The generator of the elimination ideal 〈f1, f2〉∩Q[x] is the Sylvester resultant

(4.3) Res(f1, f2) = det




x11 x12 x13 0
0 x11 x12 x13
x21 x22 x23 0
0 x21 x22 x23


 .

This is a bihomogeneous polynomial of bidegree (d1, d2) = (2, 2). Its expan-
sion has 7 terms. It vanishes if the two quadrics have a common zero.

The formula (4.3) generalizes to two polynomials in z of arbitrary degrees
d1, d2. The following is the Sylvester matrix of format (d2+d1)× (d2+d1):

Syld1,d2 =




x11 x12 · · · x1,d1+1 0 · · · 0 0

0 x11 x12
. . . x1,d1+1 0 · · · 0

...
. . .

. . .
. . . · · · . . .

. . .
...

0 · · · 0 x11 x12 · · · x1,d1+1 0
0 0 · · · 0 x11 x12 · · · x1,d1+1

x21 x22 · · · x2,d2+1 0 · · · 0 0

0 x21 x22
. . . x2,d2+1 0 · · · 0

...
. . .

. . .
. . . · · · . . .

. . .
...

0 · · · 0 x21 x22 · · · x2,d2+1 0
0 0 · · · 0 x21 x22 · · · x2,d2+1




For d1 = d2 = 2 this is the 4× 4 matrix seen in (4.3).

Theorem 4.14. The determinant of the Sylvester matrix Syld1,d2 is equal
to the resultant Res(f1, f2) of the two univariate polynomials

f1(z) = x11z
d1 + · · ·+ x1,d1z + x1,d1+1

and f2(z) = x21z
d2 + · · ·+ x2,d2z + x2,d2+1.

Proof. We first note that det(Syld1,d2) is a non-zero polynomial. We can

see this by specializing f1 = zd1 and f2 = 1. Here the Sylvester matrix
Syld1,d2 specializes to the identity matrix, so its determinant is non-zero.

Let Z denote the column vector with entries zd1+d2−1, zd1+d2−2, . . . , z2, z, 1,
and F the column vector with entries zd2−1f1, . . . , zf1, f1, zd1−1f2, . . . , zf2, f2.
Both vectors have length d1 + d2. They are related by the Sylvester matrix:

Syld1,d2 · Z = F.

Multiplying on the left by the adjoint of the Sylvester matrix, we obtain

det(Syld1,d2) · Z = adj(Syld1,d2) · F.
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The last coordinate of the column vector Z equals 1. Hence the last coordi-
nate in this equation shows that det(Syld1,d2) is a polynomial linear combina-
tion of the entries of F , and hence it lies in the ideal 〈f1, f2〉. The Sylvester
determinant is a non-zero homogeneous polynomial of degree d1 + d2 that
lies in the ideal 〈f1, f2〉 ∩ Q[x]. We know from Theorem 4.11 that this
ideal is principal, and its generator Res(f1, f2) also has degree d1 + d2. This
implies that the resultant Res(f1, f2) is equal to the Sylvester determinant
det(Syld1,d2), up to a non-zero multiplicative constant. �

Example 4.15. Let f1(z) and f2(z) be univariate polynomials of degree
d1 and d2 in Q[z]. This defines a map f : C → C2 whose closed image is
an algebraic curve in the plane C2 with coordinates x1, x2. The implicit
equation of this curve is the resultant Resz

(
x1−f(z), x2−g(z)

)
, taken with

respect to the variable z. For a concrete example consider the plane cubic
curve given parametrically by f = (z3 + 4z, z2 − 3). Its equation equals

det




−1 0 −4 x1 0

0 −1 0 −4 x1

−1 0 x2 + 3 0 0

0 −1 0 x2 + 3 0

0 0 −1 0 x2 + 3




= x32 − x21 + 17x22 + 91x2 + 147.

If m ≥ 2 then the resultant Res(f1, f2, . . . , fm+1) is more difficult to
compute, and there does not always exists a formula as the determinant
whose entries are linear expressions in the coefficients of f1, f2, . . . , fm+1.
In some cases, however, such formulas are available in the literature. For
instance, Sylvester already gave such a formula for m = 2 and d1 = d2 = d3.
A considerable body of information on matrix formulas for resultants can
be found in the excellent book by Gel’fand, Kapranov and Zelevinsky [24]

4.3. The Image of a Polynomial Map

We discussed methods for computing the Zariski closure of the image of a
polynomial map. Can we say something about the image itself? The answer
is ’yes’, but the situation very much depends on the field K and whether we
are in the projective case or the affine case. In this section we discuss tools
for computing such images. We begin by highlighting the difference between
the real numbers and complex numbers with regard to this problem.

We start with a real, affine variety X ⊂ Rm. We would like to under-
stand the image of X under a polynomial map:

f = (f1, . . . , fn) : Rm → Rn.
Easy examples show that the Zariski closure of the image and the image
itself can differ a lot. For instance, this happens for n = m = 1, X = R
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and f(z) = z2. Is there a chance in general of describe the image using
polynomials? The following theorem provides a positive answer.

Theorem 4.16 (Tarski-Seidenberg). Over the field of real numbers the im-
age of a variety is a semi-algebraic set (recall Definition 2.12).

Proof. See [5, Section 1.4]. �

Thus to provide a description of the image over R we need two ingredi-
ents: polynomial equations and polynomial inequalities, suitably combined.

Example 4.17. Let m = 9, n = 6 and f the map that multiplies a 3 × 2-
matrix A with its transpose to get a symmetric 3× 3 matrix Z = (zij):

Z =

[
z11 z12
z21 z22
z31 z32

]
7→ X =

[
z211 + z212 z11z21 + z12z22 z11z31 + z12z32

z11z21 + z12z22 z221 + z222 z21z31 + z22z32
z11z31 + z12z32 z21z31 + z22z32 z231 + z232

]

The image of f is the set of positive semidefinite symmetric 3× 3 matrices
of rank ≤ 2. This is a 5-dimensional semialgebraic set in R6. Its polynomial
description consists of one equation det(X) = 0 and six inequalities

x11 ≥ 0, x22 ≥ 0, x33 ≥ 0, x11x22 ≥ x12x21, x11x33 ≥ x13x31, x22x33 ≥ x22x31.

If we pass to an algebraically closed field, the situation is much simpler.
In Example 4.17 the image of f : C9 → C6 is closed: it is precisely the
hypersurface {det(Z) = 0}. In general, we have the following result.

Theorem 4.18 (Chevalley). If K is algebraically closed, then the image of
a variety under a polynomial map is a constructible set. Hence, if K = C
then the Euclidean closure and the Zariski closure of the image coincide.

Proof sketch. The image is a projection of the graph of the map. One can
apply the Nullstellensatz - see Chapter 6 - to turn the problem into one from
linear algebra. Resultants and their matrices play a central role. Details can
be found in e.g. [59, Sections 7.4.6–7.4.8]. �

Suppose we want to check if a random (in a reasonable sense) point
belongs to the image and we work over C. It is enough to check polynomial
equations, which can be obtained as described in previous two subsection.

Obtaining the whole description of the image is slightly more compli-
cated. We may proceed as follows:

• Compute the closed image X0.

• Subtract from it a proper subvariety X1.

• Add back X2 - a proper subvariety of X1, etc.
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This procedure must finish in a finite number of steps, by Hilbert’s Basis
Theorem. For a recent algorithm and its implementation we refer to [26].

Example 4.19. Let m = n = 3 and consider the map

f : C3 → C3, (z1, z2, z3) 7→ (z1z2, z1z3, z2z3).

Its image is Zariski dense in C3. It equals

image(f) = (C3\V(x1x2x2)) ∪ V(x1x2, x1x3, x2x3).

Over the real numbers, we would also need the inquality x1x2x3 ≥ 0.

The images are nicest when we work with projective varieties over a field
like C. The following theorem may be regarded as an algebraic analog of
the fact that images of compact sets under continuous maps are compact.

Theorem 4.20. Let X be a projective variety over an algebraically closed
field. Then the image of X under a regular map is (Zariski) closed.

Proof. See [46, Section 5.2] �

This is a very powerful theorem. For instance, it implies the following.
Consider a map f = (f1, . . . , fn) given by homogeneous polynomials of the
same degree. Assume that the affine variety V(f1, . . . , fn) equals {0}. Then
the image of f is Zariski closed - we can compute it using elimination. For
an application see Exercise 18. In general, the following theorem holds.

Theorem 4.21. Consider a map f = (f1, . . . , fn) : Cm+1 → Cn given by
homogeneous polynomials of the same degree in C[z0, z1, . . . , zm]. Suppose
that dimV(f1, . . . , fn) = b+1 and the closed image of f has affine dimension
d+1, i.e. projective dimension d. If d+b < m then the image of f is closed.

Proof. We consider f as a map from Pm\V(f1, . . . , fn). Let Pd ⊂ Pm be
a generic linear subspace. It is disjoint from V(f1, . . . , fn). Thus we may
assume that f is well-defined on Pd. The image of Pd under f is closed by
Theorem 4.20. It is contained in the image of Pm under f . Both have the
same dimension. So, the images coincide, and the image of f is closed. �
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Exercises

(1) Eliminate the variable z from the equations x3y3z3 − x− y− z = 1 and
x5 + y5 + z5 = 2.

(2) Prove: If an ideal I is prime then so are its elimination ideals, and same
for radical. Give the examples when the coverse does not hold. What is
the geometric meaning of these statements?

(3) Compute the determinants of the Sylvester matrices Syl1,5, Syl2,4 and
Syl3,3. Each of them is a polynomial of degree 6 in 8 unknowns. Which
of them has the most terms?

(4) A plane curve has the parametrization z 7→
(
f(z), g(z)

)
where f and g

are polynomials of degree 10. At most how many terms do you expect
the implicit equation to have?

(5) Can you find an invertible 5× 5-matrix that is skewsymmetric?

(6) You are given all entries of a skewsymmetric 5 × 5 matrix X = (xij)
except for x12 and x45. Under which condition on the 8 visible entries
can you complete with rank(X) ≤ 2?

(7) Let π be the linear map from C3 to C2 given by the matrix

(
1 2 3
3 2 1

)
.

Given an algebraic curve V in C3, explain how one can compute the
plane curve π(V ) ⊂ C2.

(8) Consider the Fermat curve V = V(x3 + y3 + z3) in the projective plane
P2. Compute the ideal in 6 variables whose variety is the image of V
under the Veronese map

P2 → P5, (x : y : z) 7→ (x2 : xy : xz : y2 : yz : z2).

(9) Determine the prime ideal of relations among the 3 × 3-minors of a
3× 6-matrix.

(10) Let V1 and V2 be curves in C3 and V1 + V2 their pointwise sum. The
Zariski closure V1 + V2 is an algebraic variety in C3. Explain how one
can compute its ideal I(V1 + V2).

(11) Compute the hyperdeterminant of a 2 × 2 × 3 tensor whose 12 entries
are unknowns.

(12) Apply the resultant method in Example 4.15 to compute the implicit
equation of the plane cubic curve that has the parametrization

z 7→
(

2z3 + 3z2 + 5z + 7, 11z3 + 13z2 + 17z + 19
)
.
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(13) Let m = 2, d1 = 1, d2 = d3 = 2. The total number of coefficients is
n = 15 = 3+6+6. Compute the resultant Res(f1, f2, f3) explicitly, as a
polynomial in all 15 unknowns.

(14) Which constraints hold for off-diagonal entries of a rank one 3×3-matrix?

(15) Which constraints hold for the off-diagonal entries of a nilpotent 3× 3-
matrix? Answer this question over the complex numbers C.

(16) Which constraints hold for the off-diagonal entries of an orthogonal 3×3-
matrix? Answer this question over the complex numbers R.

(17) Let m = 2 and d1 = d2 = d3 = 2. Then Res(f1, f2, f3) is the resultant
of three quadrics in the plane. This is a polynomial in 18 = 6+6+6
variables of degree 12 = 4+4+4. How many terms does it have? Find
an explicit matrix formula for Res(f1, f2, f3).

(18) Let V be the complex vector space of homogeneous polynomials in n
variables of degree d. The d-th powers of linear forms form a subset of
V . Is it Zariski closed for any n and d? What happens if we change the
field to the real numbers?

(19) Consider a degree two polynomial ax2+bx+c, where a, b, c are unknown.
When does it have a double root and how is this related to resultants?
What happens for higher degree polynomials?





Chapter 5

Linear Spaces and
Grassmannians

In previous chapters we saw the construction of projective space. We ar-
gued that in many applications projective varieties are preferable to affine
varieties. Points in a projective space correspond to lines through the ori-
gin in the underlying vector space. In this chapter we replace lines with
higher-dimensional linear subspaces. The role of the projective space is
now played by a Grassmannian. This is a smooth projective variety whose
points correspond to linear subspaces of a fixed dimension. For instance,
the Grassmannian of lines in projective 3-space is 4-dimensional variety. Its
subvarieties represent families of lines. Counting lines that satisfy a certain
property (e.g. lying on a cubic surface) leads us to enumerative algebraic
geometry, a subject in which Grassmannians play a fundamental role.

5.1. Coordinates for Linear Spaces

Let V be a vector space of dimension n over a field K. In Chapter 2 we
constructed the projective space P(V ). Its points are the 1-dimensional sub-
spaces of V . We note that P(V ) is the key example of a compact algebraic
variety when K = C. Our aim is to generalize this construction from lines to
subspaces of arbitrary dimension k. We will construct a projective variety
G(k, V ) whose points correspond bijectively to k-dimensional subspaces of
V . This variety is called the Grassmannian, after the 19th century mathe-
matician Hermann Grassmann. If V = Kn then we use the notations Pn−1
for the projective space P(V ), and G(k, n) for the Grassmannian G(k, V ).

69



70 5. Linear Spaces and Grassmannians

We start with an explicit construction in coordinates, by fixing a basis
e1, . . . , en of V . Consider any k linearly independent vectors v1, . . . , vk ∈ V .
We represent them in a form of a k × n matrix MW of rank k. To these
vectors, or equivalently to a full rank matrix, we associate the linear subspace
〈v1, . . . , vk〉 in V . This association is surjective, but not injective, as we
may replace the vi’s by linear combinations. In other words, the group
GL(k) of invertible k × k matrices acts on the set of k × n matrices by left
multiplication, and this does not change the linear span of the rows.

We know some polynomial functions that do not change (up to scaling)
under taking linear combinations of the rows: these are the k × k minors
of the k × n matrix. Suppose that W is a k-dimensional subspace of V .
Pick any basis and express W as the row space of a k × n-matrix. We then
write i(W ) for the vector of all k×k-minor of that matrix, up to scale. This
construction defines a map

i : {k-dimensional subspaces of V } → P(K(nk)).

This map is well-defined since i(W ) does not depend on chosen basis of W .

Lemma 5.1. The map i is injective.

Proof. Consider two k-dimensional subspacesW1,W2 ⊂ V . Assume i(W1) =
i(W2). The matrices MW1 and MW2 that represent W1 and W2 have rank k.
Without loss of generality we may assume that the first k columns are lin-
early independent. By performing linear operations on the rows of both ma-
trices, we transform MWi to a matrix M̃Wi whose left-most k× k submatrix

is the identity. We observe that any entry of M̃Wi not in the first k columns,
is equal to some maximal minor or its negation. Thus, if i(W1) = i(W2) then

the two matrices M̃W1 and M̃W2 must be equal. This implies W1 = W2. �

The image of i is the Grassmannian G(k, n). Its inclusion in P(K(nk))
is the Plücker embedding. For readers familiar with the exterior power of a
vector space, here is a more invariant description of the Grassmannian:

G(k, n) = {[v1∧· · ·∧vk] ∈ P(
k∧
V ) : v1, . . . , vk ∈ V are linearly independent}.

Indeed, first we may identify P(K(nk)) with P(
∧k V ) by fixing a basis of

V and an induced basis of
∧k V . Expanding v1 ∧ · · · ∧ vk in that basis,

we indeed obtain the k × k minors of the n × k matrix [v1, . . . , vk]. The
group GL(V ) acts naturally on V , taking subspaces to subspaces. This

induces an action on P(
∧k V ) which restricts to the Grassmannian. A matrix

g ∈ GL(V ) transforms v1 ∧ · · · ∧ vk to g(v1) ∧ · · · ∧ g(vk). We note that the
action is transitive: for any p1, p2 ∈ G(k, V ) there exists a (non-unique)
automorphism g ∈ GL(V ) such that g(p1) = p2. This holds because any set
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of k linearly independent vectors may be transformed by an invertible linear
map to any other such set. Hence, G(k, V ) is an orbit under the action of

GL(V ) on P(
∧k V ). In fact, G(k, V ) is the unique closed orbit in this space.

Projective algebraic varieties that are orbits of linear algebraic groups
are called homogeneous, the Grassmannians being prominent examples. Ho-
mogeneous varieties are always smooth. Indeed, any algebraic variety always
contains a smooth point and an action of a group must take a smooth point
to a smooth point - a version of this statement is given in Exercise 2.

5.2. Plücker Relations

Our aim is now to demonstrate that the Grassmannian is a projective variety.
Equivalently, we need to express the fact that

(
n
k

)
numbers are minors of a

matrix, by vanishing of (homogeneous) polynomials.

Theorem 5.2. The Grassmannian G(k, n) ⊂ P(K(nk)) is Zariski closed and
irreducible.

Proof. Lemma 5.1 gives us an idea how to proceed. Namely, first let us
assume that the matrix MW representing W is of the form:

(5.1)




1 0 . . . 0
0 1 . . . 0
...

. . .
...

0 . . . 0 1
A


 ,

where A is a k × (n − k) matrix. Each maximal minor of MW is now, up
to sign, a minor of A of some size. Further, by Laplace expansion, a q × q
minor of A for q > 1 may be expressed, as a quadratic polynomial, in terms

of smaller minors. This provides with
∑min(k,n−k)

q=2

(
k
q

)(
n−k
q

)
inhomogeneous

quadratic equations in the entries of the k× (n− k)-matrix A. These equa-
tions define the part of the image of our map i that lies in the affine open set

K(nk)−1 ⊂ P(K(nk)) given by the nonvanishing of the first Plücker coordinate.

If i(W ) has its first coordinate zero then some other coordinate will be
nonzero. In other words, the matrix MW must have some invertible k × k
submatrix. If we multiply MW on the left by the inverse of that matrix then
we obtain a matrix that looks like (5.1) but with its columns permuted. The

same construction as before gives us a system of
∑min(k,n−k)

q=2

(
k
q

)(
n−k
q

)
inho-

mogeneous quadratic equations in the k(n− k) entries of the new matrix A.

Each of the quadratic equations in k(n − k) variables obtained above

can be written as a homogeneous quadric in the
(
n
k

)
coordinates on P(K(nk)).

Namely, a minor of A is replaced by the corresponding maximal minor of
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MW , and then the quadric is homogenized by the special minor that corre-
sponds to the identity matrix in (5.1). The collection of all these homoge-
neous quadratic equations gives a full polynomial description of G(k, n).

The Grassmannian G(k, n) is an irreducible subvariety of P(K(nk)) be-
cause it is the image of a polynomial map i, namely the image of the space
Kk×n of all k × n matrices under taking all maximal minors. �

We have proved that the set G(k, n) is cut out by quadratic equations.
In fact, with slightly more effort one can show that I(G(k, n)) may be gen-
erated by quadratic polynomials. These are known as Plücker relations [38,
Chapter 3]. Further below we will discuss the Plücker relations for k = 2.
From a more algebraic perspective the equations vanishing on G(k, n) are
exactly the polynomial relations among maximal minors. We point out that
finding the ideal of polynomial relations among the nonmaximal minors of
a fixed size is an open problem in commutative algebra.

Another fact that follows from the proof, is that the intersectionG(k, n)∩
K(nk)−1 of the Grassmannian with the open affine is the affine spaceKk×(n−k).

Corollary 5.3. The dimension of the Grassmannian G(k, n) equals k(n−k).

Remark 5.4. The Grassmannian G(k, n) parametrizes k-dimensional vec-
tor subspaces of an n-dimensional vector space, or equivalently k−1 dimen-
sional projective subspaces of an n− 1 dimensional projective space.

Example 5.5 (k=2, n=4). The GrassmannianG(2, 4) is the image of the map
[
a b c d
e f g h

]
7→ (af−be : ag−ce : ah−de : bg−cf : bh−df : ch−dg) ∈ P5.

Alternatively, fixing a basis (v1, v2, v3, v4) of V ' K4, we may write:

(av1 + bv2 + cv3 + dv4) ∧ (ev1 + fv2 + gv3 + hv4) =

(af − be)v1 ∧ v2 + (ag − ce)v1 ∧ v3 + (ah− de)v1 ∧ v4
+(bg − cf)v2 ∧ v3 + (bh− df)v2 ∧ v4 + (ch− dg)v3 ∧ v4.

This Grassmannian has dimension 4, i.e. it is a hypersurface in P5. We write
the coordinates on P5 as (p12 : p13 : p14 : p23 : p24 : p34). The indices refer to
the minors of a 2 × 4-matrix. Following the proof of Theorem 5.2, we look
at matrices (5.1). They take the form

[
1 0 c d
0 1 g h

]
.

The expansion of the rightmost 2× 2-minor yields the inhomogeneous qua-
dratic equation p34 = ch−dg = (−p23)p14− (−p24)p13. We homogenize this
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equation with the extra variable p12. We conclude that the Grassmannian
G(2, 4) is the hypersurface in P5 that is defined by the Plücker quadric

(5.2) p23p14 − p13p24 + p12p34.

We now discuss the homogeneous prime ideal I(G(k, n)) of the Grass-
mannian G(k, n). A complete description is known, in terms of certain qua-
dratic relations that form a Gröbner basis. These are known as straightening
relations. For a derivation and explanation see e.g. [51, Chapter 3].

We here present the answer in the special case k = 2. The corresponding
Grassmannian G(2, n) is the space of lines in Pn−1. It is convenient to write
the

(
n
2

)
Plücker coordinates as the entries of a skew-symmetric n×n-matrix

P = (pij). We are interested in the principal submatrices of P having size
4 × 4. One such submatrix is given by taking the first four rows and first
four columns. The determinant of that matrix is the square of the Plücker
quadric (5.2). One refers to the square root of the determinant of a skew-
symmetric matrix of even order as its pfaffian. Thus the 4 × 4 pfaffians of
our matrix P are the

(
n
4

)
quadrics

(5.3) pilpjk − pikpjl + pijpkl for 1 ≤ i < j < k < l ≤ n.

Theorem 5.6. The
(
n
4

)
quadrics in (5.3) form the reduced Gröbner basis of

the Plücker ideal I(G(2, n)), for any monomial ordering on the polynomial
ring in the

(
n
2

)
variables pij that selects the underlined leading terms.

Proof. The argument in the proof of Theorem 5.2 shows that the quadrics

(5.3) cut out G(2, n) as a subset in P(n2)−1. In other words, our Grass-
mannian is given as the set of skew-symmetric n × n-matrices whose 4 × 4
pfaffians vanish. These are skew-symmetric matrices of rank 2.

By Hilbert’s Nullstellensatz (proved in the next chapter), we can con-
clude that the radical of the ideal I(G(2, n)) is generated by (5.3). We need
to argue that this ideal is radical. However, this follows from the assertion
that (5.3) form a Gröbner basis. Indeed, the leading monomials pilpjk are
square-free, so they generate a radical monomial ideal. However, if the ini-
tial ideal in(J) of some ideal J is radical then also J itself is radical. So, all
we need to do is to verify the Gröbner basis property for our quadrics. That
Gröbner basis is then automatically a reduced Gröbner basis because none
of the two trailing terms in (5.3) is a multiple of some other leading term.

To verify the Gröbner basis property, we reason as follows. For n = 4, it
is trivial because there is only one generator. For n = 5, 6, 7, this is a direct
computation, e.g. using Macaulay2. One checks that the S-polynomial of
any two quadrics in (5.3) reduces to zero. Suppose that n ≥ 8 and consider
two Plücker quadrics. These involve at most 8 distinct indices. If the num-
ber of distinct indices is 7 or less then we are done by the aforementioned
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computation, which verified the claim for n ≤ 7. Hence we may assume
that all eight indices occurring in the two Plücker quadrics are distinct. In
that case, the two underlined leading monomials are relatively prime. Here,
Buchberger’s Second Criterion applies, and we can conclude that the S-
polynomial automatically reduces to zero. In conclusion, all S-polynomials
formed by pairs from (5.3) reduce to zero. This completes the proof. �

The Plücker relations for arbitrary Grassmannians are hard-wired in
the computer algebra system Macaulay2. One finds generators for the ideal
I(G(k, n)) with the convenient command Grassmannian(k-1,n-1). Here,
the parameters k and n are decreased by one because Macaulay2 refers to the
projective geometry interpretation: points in G(k, n) correspond to linear
spaces of dimension k−1 in an ambient projective space of dimension n−1.
Another thing that is tricky about using the command Grassmannian is the
ordering of the Plücker coordinates in Macaulay2. Here is how it works.

Example 5.7 (k = 3, n = 6). The following two command lines yield equa-
tions defining the Grassmannian of 3-dimensional vector subspaces in K6.

R = QQ[p123,p124,p134,p234,p125,p135,p235,p145,p245,

p345,p126,p136,p236,p146,p246,p346,p156,p256,p356,p456];

I = Grassmannian(2,5,R)

This produces 35 quadratic relations. Note that G(3, 6) is a smooth projec-
tive variety of dimension 9 and degree 42 in P19, as is seen by also typing

dim I, degree I, betti mingens I

Among the 35 minimal generators of I(G(3, 6)), there are 30 trinomials,
like p134p125 − p124p135 + p123p145, plus five additional relations that involve
all six indices, like p345p126 − p125p346 + p124p356 − p123p456. What is the
combinatorial pattern? Can you generalize it to larger values of k and n?

5.3. Schubert Calculus

In this section we show how Grassmannians can help us answer enumera-
tive questions. We would like to know how many lines or planes in space
satisfy some properties. This general subject area is known as enumera-
tive geometry, and the specific answers we provide are based on Schubert
calculus. Thus, we introduce an intersection theory for subvarieties of a
Grassmannian.

We shall illustrate the concepts and questions for the special case of
G(2, 4). Here is the simplest question of Schubert calculus. How many
lines L intersect four general lines L1, L2, L3, L4 in P3? The answer to this
question is: two. To see this, we represent the line L by its corresponding
point p = (p12 : p13 : · · · : p34) in G(2, 4) in P3. The condition that L
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intersects a fixed Li is a linear condition in p. We must solve four such linear
equations, and these have general coefficients since L1, L2, L3, L4 are general
lines. In addition, there is the quadratic equation p12p34−p13p24+p14p23 = 0.
Thus, we are solving five equations in P5 of degrees 1, 1, 1, 1, 2. By Bézout’s
Theorem, this system has two solutions p, representing the two lines L.

To study such intersection problems more systematically, one introduces
some special subvarieties of Grassmannians. We continue with the example
of G(2, 4), the manifold of all lines in P3. We fix a complete flag in P3,
consisting of a point in a line in a plane: f0 = P0 ⊂ f1 = P1 ⊂ f2 = P2 ⊂
P3. Our aim is to group families of projective lines according to how they
intersect that flag. These will be subvarieties Xi of dimension i in G(2, 4).

First, the flag distinguishes a point in G(2, 4), namely X0 := f1 ∈
G(2, 4). There is also a distinguished curve X1 in G(2, 4). The points of X1

are the lines l such that f0 ∈ l ⊂ f2. The most interesting is the case of
surfaces in our family. There are two types of those in G(2, 4):

(1) the surface X2 consisting of all lines l such that f0 ∈ l and

(2) the surface X2′ consisting of all lines l such that l ⊂ f2.
Finally, there is also one three-dimensional variety X3, consisting of all lines
that intersect the given line f1. The varieties X1, X2, X2′ and X3 we de-
scribed are called the Schubert varieties in G(2, 4). In Exercise 1 you will
generalize the construction of Schubert varieties to larger Grassmannians.

Let us now fix a basis v1, v2, v3, v4 for K4 and take fi to be the linear
subspace in P3 spanned by v1, . . . , vi+1. The point f1 ∈ G(2, 4) is given in P5

by the vanishing of all coordinates pij apart from p12. We have f0 ∈ l ⊂ f2
if and only if the line l is spanned by the rows of a matrix of the form

[
1 0 0 0
0 f g 0

]
.

Hence, the curve X1 is a line P1 in G(2, 4) ⊂ P5, defined by the vanishing
of all pij apart from p12 and p13. Similarly, X2 is the P2 with coordinates
p12, p13, p14, and X2′ is a different P2 with coordinates p12, p13, p23. The
common span of these two planes is the 3-dimensional variety X3 = V(p34).

The relationship between X2, X2′ and X1 inside G(2, 4) can also be un-
derstood as follows. For any integer k ≤ 1, let Q be a nonsingular quadratic
hypersurface in P2k+1 and consider a linear subspace L = Pk−1 that is con-
tained in Q. Then there exist precisely two k-dimensional subspaces that
contain L and are contained in Q. For k = 2 and Q = G(2, 4) containing
the line L = X1 in P5, the two subspaces are the planes X2 and X2′ in P5.

For k = 1, our statement is a classical fact of projective geometry. A
quadratic surface in P3 is isomorphic to P1 × P1. For point p = L in the
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Figure 1. Every (red) point on a smooth quadratic surface lies on two
(green) lines that are contained in the surface. This picture illustrates
the relationship among the Schubert subvarieties X1, X2, X2′ of G(2, 4).

quadric, there are precisely two lines that contain p and lie on the quadric.
In Figure 1, the blue quadric contains the red point p, and the two lines
are green. This 3-dimensional picture arises by intersecting G(2, 4) with the
subspace H = P3 that is defined by p12 = p34 = 0 inside P5. The red point
p equals H ∩X1. The quadric is simply H ∩ G(2, 4) = V(p23p14 − p13p24),
and the two green lines are the intersections X2 ∩H and X2′ ∩H.

The Schubert subvarieties of a Grassmannian represent a basis for the
cohomology ring of the Grassmannian when the underlying field is K = C.
One learns in algebraic topology that the multiplication in a cohomology
ring corresponds to intersections of submanifolds. This can then be used to
answer enumerative questions, namely for counting the number of points in
an intersection that turns out to be 0-dimensional. Schubert calculus is the
art of making this precise when the ambient manifold is a Grassmannian.

When intersecting Schubert varieties Xi as cohomology classes [Xi], one
should consider them coming from different, general flags. For instance, con-
sider the two surfaces X2 and X2′ . They intersect in the line X1. However,
when thinking of the classes, the former represents all lines through some
arbitrary point in P3 and the latter represents all lines contained in some
entirely unrelated plane in P3. There are no lines satisfying both condition,
so the intersection of the [X2] and [X2′ ] is the class of the empty set. We
write this as [X2] · [X2′ ] = 0. On the other hand, if we ask for lines going
through two distinct points, or for lines contained in two distinct planes,
then there is one solution. The selfintersections of the classes [X2] and [X2′ ]
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give one point. That one point is represented by the element 1 in the coho-
mology ring. Our discussion is summarized by the following relations that
hold in the cohomology ring of the Grassmannian G(2, 4) of lines in P3:

[X3][X3] = [X2]+[X2′ ], [X2][X2] = [X2′ ][X2′ ] = [X3][X1] = 1, [X2][X2′ ] = 0.

Recall that multiplication represents intersection and sum represents union.
The fact that the Schubert classes [Xi] form a basis for the cohomology ring
means that the class [Z] of any subvariety Z is an N-linear combination of the
[Xi]. Finding that linear combination for a given Z is similar to computing
the degree of a subvariety in Pn, as discussed at the end of Chapter 1.

We now have a conceptual framework for studying enumerative questions
like How many lines pass through four general lines in P3? The set of such
lines is a finite subset in G(2, 4). It is the intersection of four hypersurfaces,
all of the form X3. Since intersections are represented by multiplication in
the cohomology ring, the following formal computation reveals the answer:

[X3]
4 = ([X3][X3])

2 = ([X2] + [X2′ ])
2 =

[X2]
2 + 2[X2][X2′ ] + [X2′ ]

2 = 1 + 2 · 0 + 1 = 2.

Here is another question that can be answered by Schubert calculus: How
many lines are simultaneously tangent to four general quadratic surfaces in
P3? Suppose a given quadric Q in P3 is represented as a symmetric 4 × 4-
matrix. Let ∧2Q be the symmetric 6 × 6 matrix with entries given by the
2 × 2 minors of the matrix representing Q. The condition for a line to be
tangent to Q is expressed by the vanishing of the quadratic form P (∧2Q)P T

in the Plücker coordinates P = (p12, p13, . . . , p34) of that line. This defines
a threefold in G(2, 4) and the cohomology class of that threefold is 2[X3].

We conclude that the number of lines that are tangent to four given
general quadrics in P3 is equal to

(2[X3])
4 = 16[X3]

4 = 16 · 2 = 32.

In order to actually compute the 32 lines over C, given four concrete quadrics
in P3, we would need to carry out some serious Gröbner basis computations.

Remark 5.8. Grassmannians are named after Hermann Grassmann. How-
ever, it was Julius Plücker who first noted that lines in 3-space may be
studied as a four-dimensional object [43]. Yet, Grassmann’s earlier discov-
eries were fundamental: he was the one to realize that the algebraic setting of
geometry allows to consider objects not only in 3-dimensional space, but in
any dimension. Can you imagine data science without Grassmann’s insight?
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Exercises

(1) Fix a complete flag in Pn. Construct a bijection between:
• subvarieties of G(k, n) that consist of l ∈ G(k, n) that intersect each

element of the flag in at most the given dimension, and
• Young diagrams contained in a k × (n− k) rectangle.

Either the codimension or the dimension of the subvariety in G(k, n)
should equal the number of boxes in the corresponding Young diagram.

(2) Let G be a subgroup of the general linear group GL(V ), and let X ⊂ V
be a variety such that the action of G on V restricts to X. Prove that
if x is a smooth point of X and g ∈ G, then gx is also a smooth point.

(3) Consider the inclusion G(2, 4)×G(2, 4) ⊂ P5×P5. Using Plücker coordi-
nates, describe the locus of pairs of lines (l1, l2) ∈ G(2, 4)×G(2, 4) such
that l1 intersects l2 in P3. Hint: Present both lines as 2 × 4 matrices.
Note that two lines in P3 intersect if and only if they do not span the
whole ambient space. Apply Laplace expansion of the determinant.

(4) For a variety X ⊂ Pn, one considers a subset of G(k + 1, n + 1) of
Pk ⊂ X. This is known as the Fano variety of k-dimensional subspaces
of X. Fix a nondegenerate quadric Q ⊂ P3. Describe the Fano variety
of lines in it. Hint: One may solve this exercise either theoretically or
using algebra software. Also Figure 1 gives a hint about the answer.

(5) How many real lines in 3-space can be simultaneously tangent to four
given spheres?

(6) The two lines incident to four given real lines in P3 can be either real or
complex. In the latter case they form a complex conjugate pair. Write
down a polynomial in the 24 = 4 · 6 Plücker coordinates of four given
lines whose sign distinguishes the two cases.

(7) How many lines in P3 are simultaneously incident to two given lines and
tangent to two given quadratic surfaces?

(8) Consider the set of all lines in P3 that are tangent to the cubic Fermat
surface {x31 + x32 + x33 + x34 = 0}. This set is an irreducible hypersurface
in the Grassmannian G(2, 4). Compute a polynomial in p12, p13, . . . , p34
that defines this hypersurface.

(9) Find a minimal generating set for the ideal of the Grassmannian G(3, 7).

(10) Prove that the determinant of a skew-symmetric n× n-matrix is zero if
n is odd, and it is the square of a polynomial when n is even.
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(11) Examine the monomial ideal that is generated by the underlined initial
monomials in (5.3). Express this ideal as the intersection of prime ideals.
How many primes occur?

(12) Fix six general planes P2 in P4. How many lines in P4 intersect all six
planes? Embark towards Schubert calculus in the GrassmannianG(2, 5).

(13) Let n = 2k and suppose that the n × n-matrix A = (aij) in (5.1)
is symmetric, i.e. its entries satisfy the equations aij = aji. Express

these equations in terms of the
(
2n
n

)
Plücker coordinates. The resulting

subvariety of G(n, 2n) is known as the Lagrangian Grassmannian.





Chapter 6

Nullstellensätze

The German noun Nullstellensatz refers to a theorem that characterizes the
existence of a zero (= Nullstelle) for a system of polynomials. The classical
version, due to Hilbert, works over algebraically closed fields. It says that the
nonexistence of zeros is equivalent to the existence of a partition of unity
for the given polynomials. A more general version furnishes a bijection
between varieties and radical ideals. In this chapter we also discuss the
analogous results over the field of real numbers. Here the main results are
the real Nullstellensatz and the Positivstellensatz. These furnish criteria for
polynomial equations and inequalities to have no real solutions. This leads
us to real radical ideals and their characterization via sums of squares.

6.1. Certificates for Infeasibility

In Chapter 3 we discussed how to find and represent solutions to a system
of polynomial equations. But what if such a solution does not exist? In this
chapter we present methods to prove that a given system has no solution.

Throughout this section, we fix an algebraically closed field K, such as
the complex numbers K = C. We write K[x] = K[x1, . . . , xn] for its poly-
nomial ring in n variables. For an ideal I ⊂ K[x] we denote the associated
variety in Kn by V(I), as in Chapter 2. We begin with the following weak
version of the Nullstellensatz. This result appears as Theorem 1 in [10,
§4.1].

Theorem 6.1. If I is a proper ideal in K[x], i.e. 1 6∈ I, then its variety
V(I) in Kn is non-empty.

81
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Proof. Our proof follows [10, §4.1]. We use induction on n. For n = 1, the
statement of the theorem holds because every non-constant polynomial in
one variable has a zero in the algebraically closed field K.

Let now n ≥ 2. For a ∈ K, we write Ixn=a for the ideal inK[x1, . . . , xn−1]
that is obtained by setting xn = a in each element of I. One easily checks
that this is indeed an ideal. We claim that there exists a scalar a ∈ K such
that 1 6∈ Ixn=a. In such a case, by induction, there is a point (a1, . . . , an−1)
in V(Ixn=a). This implies that (a1, . . . , an−1, a) is a point in the variety V(I).

Consider the elimination ideal I ∩K[xn]. To prove the claim, we distin-
guish two cases. First suppose that this ideal is not the zero ideal. Since
1 6∈ I, the principal ideal I∩K[xn] is generated by a nonconstant polynomial

f(xn) =
r∏

i=1

(xn − bi)mi .

Suppose that 1 ∈ Ixn=bi for i = 1, 2, . . . , r. If this is not the case then we are
done. Hence there exist B1, . . . , Br ∈ I such that Bi(x1, . . . , xn−1, bi) = 1
for all i. Note that Bi is congruent to 1 modulo 〈xi − bi〉 in K[x]. This
implies that the product

∏r
i=1(Bi − 1)mi belongs to the ideal 〈f〉. Since

f ∈ I and Bi ∈ I, the following identify holds modulo the ideal I:

0 =
r∏

i=1

(Bi − 1)mi =
r∏

i=1

(−1)mi = ±1, i.e. 1 ∈ I.

Next suppose I ∩ K[xn] = {0}. Let {g1, . . . , gt} be a Gröbner basis
for I with respect to the lexicographic order with x1 > · · · > xn. Write
gi = ci(xn)xαi+ lower order terms, where xαi is a monomial in x1, . . . , xn−1.
Since the field K is infinite, we can choose a ∈ K such that ci(a) 6= 0 for
all i. The polynomials gi = gi(x1, . . . , xn−1, a) form a Gröbner basis for
Ixn=a, for the lexicographic monomial order, with leading monomials xαi

for i = 1, . . . , r. None of these monomials is 1, since I ∩K[xn] = {0}. This
implies that 1 is not in the ideal Ixn=a. �

Theorem 6.1 gives a certificate for the non-existence of solutions to a sys-
tem of polynomial equations, namely the partition of unity we had promised.

Corollary 6.2. A collection of polynomials f1, . . . , fr ∈ K[x] either has a
common zero in Kn or there exists an identity g1f1 + · · ·+ grfr = 1 with
polynomial multipliers g1, . . . , gr ∈ K[x]. This is the desired certificate.

Proof. Let I = 〈f1, . . . , fr〉. The either V(I) 6= ∅ or V(I) = ∅. In the latter
case, 1 ∈ I, meaning that 1 is a polynomial linear combination of the fi. �

Example 6.3. Let n = 2 and consider the following three polynomials

f1 = (x+y−1)(x+y−2), f2 = (x−y+3)(x+2y−5), f3 = (2x−y)(3x+y−4).
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These do not have a common zero. This is proved by the certificate

(6.1) g1f1 + g2f2 + g3f3 = 1,

where g1 = 895
756x

2 − 6263
2160x− 2617

2520y + 4327
1008 ,

g2 = 5191
3780x

2 + 358
945xy − 6907

3024x− 2123
15120y + 3823

7560 ,

and g3 = −179
420x

2 − 716
945xy + 1453

1080x− 716
945y + 13771

7560 .

The reader is invited to verify the identity (6.1). The multipliers g1, g2, g3 do
not look so pretty, or? But, remember: beauty is in the eye of the beholder.

There are two possible methods for computing the multipliers (g1, . . . , gr)
for the Nulllstellensatz certification, as in Corollary 6.2. The first method
is to use the Extended Buchberger Algorithm. This is analogous to the Ex-
tended Euclidean Algorithm for the ring of integers or the ring of polyno-
mials in one variable. For instance, given any collection of relatively prime
integers, this method writes 1 as a Z-linear combination of these integers.

In the Extended Buchberger Algorithm one keeps track of the polynomial
multipliers that are used to generate new S-polynomials from current basis
polynomials. In the end, each element in the final Gröbner basis is written
explicitly as a polynomial linear combination of the input polynomials. If
V(I) = ∅ then that final Gröbner basis is the singleton {1}.

The second method for computing Nullestellensatz certificates is to use
degree bounds plus linear algebra. Let d be any integer that exceeds the de-
gree of each fi. Let gi be a polynomial of degree d−deg(fi) with coefficients
that are unknowns, for i = 1, 2, . . . , r. The desired identity

∑r
i=1 gifi = 1

translates into a system of linear equations in all of these unknowns. We
solve this system. If a solution is found then this gives a certificate. If not
then there is no certificate in degree d, and we try a higher degree.

The two methods, in complete generality, can be very complicated to
carry out in practice. The computation of Gröbner bases does not run
in polynomial time. Worst-case complexity bounds for Gröbner bases are
quite horrible. Furthermore, the degree of the multipliers gi above are not
polynomial in the input degrees either. Many mathematicians and computer
scientists believe that there is no polynomial-time algorithm to decide if a
given polynomial system has a complex solution. The situation is even worse
if we want solutions with coordinates in R or Q or Z. In the last case, it
is known there exists no algorithm at all – irrespective of complexity – to
decide if a system has an integral solution. This was Hilbert’s 10-th problem.

6.2. Hilbert’s Nullstellensatz

Hilbert’s Nullstellensatz offers a characterization of the set of all polynomials
that vanish on a given variety. This classical result from 1890 works over
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any algebraically closed field K, such as the complex numbers K = C. In
this section we present this theorem and we discuss some of its ramifications.

Recall that the radical of an ideal I in K[x] is the (possibly larger) ideal
√
I =

{
f ∈ K[x] : fm ∈ I for some m ∈ N

}
.

This is a radical ideal, hence it is an intersection of prime ideals.

Example 6.4. Consider the ideal I = 〈x1x3, x1x4 + x2x3, x2x4 〉 in the
polynomial ring in four variables. This is not radical. To see this, note that
the monomial f = x1x4 is not in I but f2 is in I. The radical of I equals

√
I = 〈x1x3, x1x4, x2x3, x2x4 〉 = 〈x1, x2〉 ∩ 〈x3, x4〉.

How many associated primes does the ideal I have? Do Gröbner bases of I
give any hints? We refer to Example 3.27 for the answer.

We now show that
√
I comprises all polynomials that vanish on V(I).

Theorem 6.5 (Hilbert’s Nullstellensatz). For any ideal I in the polynomial
ring K[x] in n variables over an algebraically closed field K, we have

(6.2) I
(
V(I)

)
=
√
I.

Proof. The radical
√
I is contained in the vanishing ideal I

(
V(I)

)
, because

fm(a) = 0 implies f(a) = 0 for all a ∈ Kn. We must show the left hand side
is a subset of the right hand side in (6.2). Let I = 〈f1, . . . , fr〉 and suppose
that f is a polynomial which vanishes on V(I). Let y be a new variable
and consider the ideal J = 〈f1, . . . , fr, yf − 1〉 in the enlarged polynomial
ring K[x, y] = K[x1, . . . , xn, y]. The variety V(J) in Kn+1 is the empty set
because f = 0 on every zero of f1, . . . , fr and f 6= 0 on every zero of yf − 1.
By Theorem 6.1, there exist multipliers g1, . . . , gr, h in K[x, y] such that

r∑

i=1

gi(x, y) · fi(x) + h(x, y) · (yf(x)− 1) = 1.

We now substitute y = 1/f(x) into this identity. This yields the following
identify of rational functions in n variables:

r∑

i=1

gi
(
x,

1

f(x)

)
· fi(x) = 1.

The common denominator is f(x)m for some m ∈ N. Multiplying both sides
with this common denominator, we obtain a polynomial identity of the form

r∑

i=1

pi(x) · fi(x) = f(x)m.

This shows that fm lies in I, and hence f lies in the radical
√
I. �
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Example 6.6. Which polynomial functions vanish on all nilpotent 3 × 3-
matrices? We set n = 9 and take I to be ideal generated by the entries of
X3, where X = (xij) is a 3 × 3-matrix with variables as entries. These are
nine homogeneous cubic polynomials in nine unknowns xij . One of them is

x311+2x11x12x21+x12x21x22+2x11x13x31+x12x23x31+x13x21x32+x13x31x33.

But what are all polynomials that vanish on nilpotent matrices? Can they
all be written as linear combinations of these nine cubics? The answer is no.
The ideal I

(
V(I)

)
=
√
I is much larger than I. The radical of I equals

〈
x11+x22+x33 , x11x22+x11x33−x12x21−x13x31+x22x33−x23x32 , det(X)

〉
.

In words, the ideal
√
I is generated by the three trailing coefficients of the

characteristic polynomial of X. This reflects the familiar fact that a square
matrix is nilpotent if and only if it has no eigenvalues other than zero.
Theorem 6.5 implies that every polynomial that vanishes on nilpotent 3×3-
matrices is a polynomial linear combination of the three generators above.

The Nullstellensatz implies a one-to-one correspondence between vari-
eties in affine n-space and radical ideals in the polynomial ring in n variables.

Corollary 6.7. The map V 7→ I(V ) defines a bijection between varieties in
Kn and radical ideals in K[x]. The inverse map that takes radical ideals to
varieties is given by I 7→ V(I).

Proof. A variety V is Zariski closed and hence satisfies V = V(I(V )). The
Nullstellensatz yields I = I(V(I)). These identities implies that both maps
are one-to-one and onto, and that they are the inverses of each other. �

Corollary 6.8. The map V 7→ I(V ) defines a bijection between irreducible
varieties in the affine space Kn and prime ideals in the polynomial ring
K[x]. As before, the inverse map is given by I 7→ V(I).

Proof. By Proposition 2.3, a variety V is irreducible if and only if its asso-
ciated radical ideal I(V ) is prime. �

Example 6.9 (n = 2). There are only two kinds of proper irreducible subva-
rieties in the affine plane K2. First, we have the points (a, b), corresponding
to maximal ideals I = 〈x − a, y − b〉. Second, there are irreducible curves,
one for each principal ideal I = 〈f〉 where f is an irreducible polynomial in
K[x, y]. Arbitrary varieties are unions of these. For instance, consider

J = 〈x4 + 2x2 + y2 + 1〉 ∩ 〈y3 − 4, 2x− y2〉 in C[x, y].

This ideal is radical. Its variety V(J) in C2 has five irreducible components,
namely two quadratic curves and three points. Check that I(V(J)) = J .
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In many applications one is interested in solving polynomial equations
over the real numbers, and one cares less about non-real complex solutions.
This raises the following important question: Does there exist an analog
of Hilbert’s Nullstellensatz over an ordered field, such as the real numbers
K = R? We shall see that the answer is affirmative. In the next section we
discuss the real Nullstellensatz and the Positivstellensatz. These concern
systems of polynomial equations and inequalities over the real numbers.
They generalize Linear Programming Duality, for systems of linear equations
and linear inequalities over R. Moreover, as we shall see in Chapter 12, the
Positivstellensatz plays an important role in Nonlinear Optimization.

The theorems above are false when K = R is the field of real numbers.
To see this, let n = 2 and consider varieties in the plane R2. Theorem 6.1
fails for I = 〈x2 + y2 + 1〉. This is a proper ideal in R[x, y] but VR(I) = ∅.
Theorem 6.5 is false also for I = 〈x2 + y2〉. This is a radical ideal, but

I
(
VR(I)

)
= 〈x, y〉 strictly contains

√
I = I.

We ask these two questions about ideals I in R[x] and their varieties in Rn:

• How to best certify that the real variety VR(I) is empty?

• How to compute the ideal I
(
VR(I)

)
from generators of I ?

The goal of the next section is to give affirmative answers to these questions.

6.3. Let’s Get Real

We here present the real Nullstellensatz. Our point of departure is the fact
that polynomial f in R[x] that is a sum of squares must be nonnegative,
i.e. the inequality f(u) ≥ 0 holds for all u ∈ Rn. A natural question is
whether the converse holds: can every nonnegative polynomial be written
as a sum of squares? The answer depends on the nature of the summands.

Hilbert showed in 1893 that the answer is no if one asks for squares of
polynomials. However, it is yes if one allows squares of rational functions.
This was the 17th problem in Hilbert’s famous list from the International
Congress of Mathematicians in 1900. It was solved by Emil Artin in 1927.

Theorem 6.10 (Artin’s Theorem). If f ∈ R[x] is nonnegative on Rn then
there exist polynomials p1, p2, . . . , pr, q1, q2, . . . , qr ∈ R[x] such that

f =

(
p1
q1

)2
+

(
p2
q2

)2
+ · · · +

(
pr
qr

)2
.

Example 6.11 (n = 2). The Motzkin polynomial M(x, y) equals

x4y2 + x2y4 + 1− 3x2y2 =
[x2+y2+1] · x2y2(x2 + y2 − 2)2 + (x2 − y2)2

(x2 + y2)2
.
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Distributing the three terms of the factor [x2 + y2 + 1], we see that the
right hand side is a sum of four squares of rational functions. This shows
that M(x, y) is nonnegative. However, it is not a sum of squares in R[x, y].
Suppose it were equal to

∑
i f

2
i where fi are polynomials. None of the

fi’s may contain a monomial xd or yd for d > 0 — otherwise the largest
such d contributes positively to the coefficient of x2d in M(x, y). We have

fi = αi + βixy + f̃i, where f̃i have all terms of degree ≥ 3 and αi, βi ∈ R.
The coefficient −3 of x2y2 in M(x, y) would then be equal to

∑
i β

2
i ≥ 0.

We shall derive Artin’s Theorem 6.10 as a special case from the following
more general statement. Theorem 6.12 is the real number analogue to the
weak form of the Nullstellensatz which was established in Theorem 6.1.

Theorem 6.12. Let I be an ideal in R[x] whose variety VR(I) is empty.
Then −1 is a sum of squares of polynomials modulo I, i.e. we have

(6.3) 1 + p21 + p22 + · · ·+ p2r ∈ I for some p1, p2, . . . , pr ∈ R[x].

For the proof of Theorem 6.12 see Murray Marshall’s book [39, §2.3].

Proof of Theorem 6.10. Let y be a new variable. Consider the polyno-
mial g = f(x)y2+1 in R[x, y]. Since f is nonnegative, the real variety VR(g)
is empty in Rn+1. By Theorem 6.12, there exists a polynomial identity

(6.4) 1 + p1(x, y)2 + p2(x, y)2 + · · ·+ pr(x, y)2 + h(x, y)g(x, y) = 0.

We substitute y = ± 1√
−f(x)

into (6.4), which makes the last term cancel

in both substitutions. Thereafter we multiply the two resulting expressions.
The result no longer contains any radicals. We obtain an identity

1 +
1

(−f(x))d
·
(
g1(x)2 + g2(x)2 + · · ·+ gr(x)2

)
= 0,

where g1, g2, . . . , gr are polynomials, and d is a positive integer, necessarily
odd. We subtract the constant 1 on both sides of this identity, and we
multiply by −f(x) to obtain a representation of f(x) as a sum of squares of
rational functions. This gives Artin’s Theorem 6.10. �

For systems involving both equations and inequalities, there is the Posi-
tivstellensatz. To motivate this, we review the corresponding result for linear
polynomials. Known as Farkas’ Lemma, this is at the heart of Linear Pro-
gramming Duality. Informally, Farkas’ Lemma states that a system of linear
equations and inequalities either has a solution in Rn, or it has a dual so-
lution which certifies that the original system has no solution. The precise
statement can be stated in many equivalent versions. Here is one of them,
selected to make the extension to higher-degree polynomials transparent.
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Let f1, . . . , fr, g1, . . . , gs be polynomials of degree 1 in R[x], and consider

(6.5) f1(u) = 0, . . . , fr(u) = 0, g1(u) ≥ 0, . . . , gs(u) ≥ 0.

In the dual problem, we seek numbers a1, . . . , ar, b1, . . . , bs ∈ R such that

(6.6) a1 · f1 + · · · + ar · fr + b21 · g1 + · · · + b2s · fs = −1 in R[x].

At most one of these two can have a solution. Indeed, since b21, . . . , b
2
s ≥ 0,

the left hand side of (6.6) is nonnegative for every vector x that solves (6.5).

Theorem 6.13 (Farkas’ Lemma). Given any choice of polynomials f1, . . . , fr
and g1, . . . , gs in R[x], exactly one of the following two statements is true:

(P) There exists a point u ∈ Rn such that (6.5) holds.

(D) There exist real numbers a1, . . . , ar, b1, . . . , bs such that (6.6) holds.

Consider the system (6.5) where the fi and gj are now arbitrary polyno-
mials. In the dual problem, we seek polynomials ai and bjν in R[x] such that

(6.7) a1 · f1 + · · · + ar · fr +
∑

ν∈{0,1}s

(∑

j

bjν
)2 · gν11 · · · gνss = −1.

In the double sum on the right, we see linear combinations of squarefree
monomials in g1, . . . , gs whose coefficients are sums of squares. The set of
polynomials that admit such a representation is the quadratic module gener-
ated by g1, . . . , gs. Quadratic modules associated with inequality constraints
are fundamental in the study of semi-algebraic sets [39, §2.1].

Theorem 6.14 (Positivstellensatz). Given any polynomials f1, . . . , fr and
g1, . . . , gs in R[x], exactly one of the following two statements is true:

(P) There exists a point u ∈ Rn such that (6.5) holds.

(D) There exist polynomials ai and bjν in R[x] such that (6.7) holds.

Proof. See [39, §2.3]. �

The dual solution (D) in Theorem 6.14 is similar to that in Farkas’ Lemma.
One extra complication is that we now need products of the gi. The result
can be rephrased as follows: if a system of polynomial equations and inequal-
ities is infeasible then −1 lies in the sum of the ideal of equations and the
quadratic module of inequalities. There is a more general version of the Pos-
itivstellensatz which also incorporates strict inequalities h1 > 0, . . . , ht > 0.
This is stated in [53, Theorem 7.5] and it is also proved in [39, §2.3].

The radical
√
I of a polynomial ideal I was the main player in the

strong form of Hilbert’s Nullstellensatz (Theorem 6.5). It offers an algebraic
representation for polynomials that vanish on a given complex variety. We
now come to the analogous result for varieties over the real numbers.
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Given an ideal I in R[x], we define its real radical R√I to be the set

{
f ∈ R[x] : f2m+g21+· · ·+g2s ∈ I for some m ∈ N and g1, . . . , gs ∈ R[x]

}
.

One checks that R√I is an ideal in R[x]. Here is the analogue to Theorem 6.5:

Theorem 6.15 (Real Nullstellensatz). For any ideal in R[x], we have

(6.8) I
(
VR(I)

)
=

R√
I.

Proof. The argument is similar to the proof of Theorem 6.5. Clearly, R√I
is contained in I

(
VR(I)

)
. We need to show the reverse inclusion. Suppose

that f vanishes on the real variety of I = 〈f1, . . . , fr〉 ⊂ R[x]. We introduce
a new variable y and consider ideal J = 〈f1, . . . , fr, yf − 1〉 in R[x, y]. It
satisfies VR(J) = ∅. By Theorem 6.12, there exists an identity of the form
(6.3) for the ideal J . Substituting y = 1/f(x) into that identity and clearing
denominators, we find that some even power of f plus a sum of squares lies
in I. This means that the polynomial f is in the real radical R√I. �

Example 6.16. Fix the ideal generated by the Motzkin polynomial

I = 〈M(x, y) 〉 = 〈x4y2 + x2y4 + 1− 3x2y2 〉.

Building on Example 6.11, we wish to compute the real radical R√I. It must
contain the numerators of the four summands in the rational sum of squares
representation of M . This leads us to consider the ideal

J =
〈
M,xy(x2 + y2 − 2) , x2 − y2 〉.

We find that the radical of J is the Jacobian ideal of the Motzkin polynomial:

√
J =

〈
M,

∂M

∂x
,
∂M

∂y

〉
.

Furthermore, this radical ideal is precisely the real radical we are looking for:

R√
I =

√
J = 〈x− 1, y− 1〉 ∩ 〈x− 1, y+ 1〉 ∩ 〈x+ 1, y− 1〉 ∩ 〈x+ 1, y+ 1〉.

The real variety VR(M) defined by the Motzkin polynomial consists of the
four points (1, 1), (1,−1), (−1, 1) and (−1,−1) in R2. Since M is nonneg-
ative, these zeros are singular points of the complex curve V(M) ⊂ C2.
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Exercises

(1) Find univariate polynomials g1, g2, g3, g4 in Q[x] such that

g1(x− 2)(x− 3)(x− 4) + g2(x− 1)(x− 3)(x− 4)
+ g3(x− 1)(x− 2)(x− 4) + g4(x− 1)(x− 2)(x− 3) = 1.

(2) An ideal I in C[x] contains a monomial if and only if each point in
its variety V(I) has at least one zero coordinate. Prove this fact, and
describe an algorithm for testing whether an ideal contains a monomial.

(3) Let M be an ideal generated by monomials in K[x]. How to compute

the radical
√
M? How to compute the real radical R√M?

(4) Let I be the ideal generated by the two cubics x21x2−x23x4 and x1x
3
2−x34.

Describe the projective variety V(I) in P3. Find the radical ideal
√
I.

How many minimal generators does
√
I have and what are their degrees?

(5) Let V ⊂ R7 be the variety of orthogonal Hankel matrices of format 4×4.
Describe the ideal I(V ). What are the irreducible components of V ?

(6) Let I be the ideal generated by the two quartics x41−x21x22 and x42−x43 in

R[x1, x2, x3]. Determine the radical
√
I and the real radical R√I. Write

each of these two radical ideals as an intersection of prime ideals.

(7) Let f1, . . . , fr and f be polynomials in Q[x]. Explain how Gröbner bases
can be used to test whether f lies in the radical of I = 〈f1, . . . , fr〉.

(8) The circle given by f = x2+y2−4 does not intersect the hyperbola given
by g = xy−10 in the plane R2. Find a real Nullstellensatz certificate for
this, i.e. write −1 as a sum of squares modulo the ideal 〈f, g〉 in R[x, y].

(9) For d ∈ N, exhibit a polynomial f and an ideal I in K[x] with fd 6∈ I
but fd+1 ∈ I. How small can the degrees of the generators of I be?

(10) Let I be the ideal in R[x, y, z] generated by the Robinson polynomial

x6 + y6 + z6 + 3x2y2z2 − x4y2 − x4z2 − x2y4 − x2z4 − y4z2 − y2z4.
Determine the real radical R√I and the real variety VR(I) in P2

R.

(11) Show that Theorem 6.15 implies Theorem 6.10.

(12) What is the Effective Nullstellensatz?

(13) Find the radical and the real radical of the ideal I = 〈x7− y7, x8− z8〉
in R[x, y, z]. Explain the difference between these two radical ideals.



Chapter 7

Tropical Algebra

The operations of addition and multiplication are familiar from primary
school. We here redefine them we introducing tropical arithmetic. This new
arithmetic may at first seem unnatural to the reader, we justified it with
several applications, e.g. in the design of dynamic programming algorithms.
A big part this chapter is dedicated to tropical linear algebra. The point is
that the piecewise linear structures of tropical mathematics offer yet another
transition point between linear and nonlinear algebra. On the fully nonlinear
side lies tropical algebraic geometry [37]. We offer a welcome to this subject
with a brief discussion of tropical varieties and their geometric properties.

7.1. Arithmetic and Valuations

The tropical semiring (R ∪ {∞},⊕,�) consists of the real numbers R, to-
gether with an extra element∞ that represents plus-infinity. The arithmetic
operations of addition and multiplication are

x ⊕ y := min(x, y) and x � y := x+ y.

The tropical sum of two numbers is their minimum, and the tropical product
of two numbers is their usual sum. It takes some practise to carry out
arithmetic in the tropical world. Here is an example with numbers:

3 ⊕ 7 = 3 and 3 � 7 = 10.

Tropical addition and tropical multiplication are both commutative:

x ⊕ y = y ⊕ x and x � y = y � x.

These two arithmetic operations are also associative, and the times operator
� takes precedence when plus ⊕ and times � occur in the same expression.

91
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The distributive law holds:

x � (y ⊕ z) = x � y ⊕ x� z.

Here is a numerical example to show distributivity:

3 � (7 ⊕ 11) = 3� 7 = 10,

3 � 7 ⊕ 3 � 11 = 10 ⊕ 14 = 10.

Both arithmetic operations have an identity element. Infinity is the identity
element for addition and zero is the identity element for multiplication:

x ⊕ ∞ = x and x � 0 = x.

We also note the following identities involving the two identity elements:

x � ∞ = ∞ and x ⊕ 0 =

{
0 if x ≥ 0,

x if x < 0.

There is no subtraction in tropical arithmetic. There is no real number x
to be called “17 minus 8” because the equation 8⊕ x = 17 has no solution
x. Tropical division is defined to be classical subtraction, so (R∪{∞},⊕,�)
satisfies all ring axioms except for the existence of an additive inverse.

Such algebraic structures without division are called semirings, whence
the name tropical semiring. It is essential to remember that “0” is the mul-
tiplicative identity element. If we write a term without explicit coefficient
then that coefficient is zero. For instance, x⊕ y means 0� x ⊕ 0� y.

Example 7.1 (Binomial Theorem). We consider the third tropical power of
a tropical sum. The following identities hold for all real numbers x, y ∈ R:

(x⊕ y)3 = (x⊕ y)� (x⊕ y)� (x⊕ y)

= 0� x3 ⊕ 0� x2y ⊕ 0� xy2 ⊕ 0� y3.
Of course, the zero coefficients can here be dropped:

(x⊕ y)3 = x3 ⊕ x2y ⊕ xy2 ⊕ y3 = x3 ⊕ y3.

What is the relationship between classical arithmetic and tropical arith-
metic? An informal answer is that the latter is the image of the former
under taking logarithms. Indeed, if u and v are positive real numbers then
log(u ·v) equals log(u)� log(v), and log(u+v) is approximately the same as
log(u) ⊕ log(v). Thus tropical geometry arises naturally when one draws a
log-log-plot of figures in R2

>0. We refer to [37, Chapter 1] for a discussion. A
more formal way of understanding this is to introduce fields with valuations.

Definition 7.2. A valuation on a field K is a function val : K → R ∪ {∞}
that satisfies the following three axioms for all a, b ∈ K:

(1) val(ab) = val(a) + val(b),
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(2) val(a+ b) ≥ min{val(a), val(b)}, and

(3) val(a) =∞ if and only if a = 0.

We often identify a valution with its restriction K∗ → R to K∗ = K\{0}.
The image of val is an additive subgroup of R, known as the value group.

A field K with valuation is a metric space. Namely, the valuation induces
a norm | · | : K → R by setting |a| = exp(−val(a)) for a ∈ K∗ and |0| = 0.
The field K is a metric space with distance |a−b| between two elements a, b ∈
K. In fact, the metric is an ultrametric since |a+b| ≤ max(|a|, |b|) ≤ |a|+|b|.
This allows the use of analytical and topological method for studying K.

An important example is the field of Puiseux series in a variable t with
complex coefficients. This field is denoted K = C{{t}}. It contains the field

C(t) of rational functions and its algebraic closure C(t). Indeed, every ele-

ment in C(t) can be expanded into a Puiseux series with integer exponents.

The valuation of a scalar c in K is the smallest exponent a of any term
cat

a with ca 6= 0 that appears in the series expansion of c. We write a =
val(c). This is an element in the value group (Q,+) of K. Here are two
examples of scalars in the Puiseux series field K and their valuations:

c =
1

t2 + 2t3 + t5
= t−2−2t−1+4−9t+20t2−44t3+97t4−214t5+472t6−· · ·

has val(c) = −2, while the following scalar has val(c′) = 2
7 :

c′ = t2/7
√

1− t2/3 = t2/7 − 1

2
t20/21 − 1

8
t34/21 − 1

16
t16/7 − 5

128
t62/21 − · · ·

It is known that the field K is algebraically closed [37, Theorem 2.1.5].
So, every polynomial of degree d in K[x] has d roots, counting multiplicities.

Example 7.3 (Puiseux series). Every cubic polynomial in K[x] has three
roots. For instance, the three roots of f(x) = tx3 − x2 + 3tx− 2t5 are

t−1 − 3t− 9t3 − 54t5 + 2t6 − 405t7 + 18t8 − 3402t9 + 180t10 − 30618t11 + · · ·
3t+ 9t3 − 2

3 t
4 + 54t5 − 2t6 + 10931

27 t7 − 18t8 + 3402t9 − 43756
243 t10 + 30618t11 + · · ·

2
3 t

4 + 4
27 t

7 + 16
243 t

10 − 8
81 t

12 + 80
2187 t

13 − 80
729 t

15 + 448
19683 t

16 − 224
2187 t

18 + · · ·
Such Puiseux series can be computed in a computer algebra system. The
valuations of the three roots are −1, 1 and 4. These characterize the as-
ymptotic behavior of the roots when t is a real number that is close to zero.

We define the tropicalization trop(f) of a polynomial f ∈ K[x] to be the
polynomial over the tropical semiring obtained by replacing each coefficient
in f by its valuation. For instance, if f is the cubic in Example 7.3 then

(7.1) trop(f) = 1� x�3 ⊕ 0� x�2 ⊕ 1� x ⊕ 5.
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To evaluate a tropical polynomial, one takes the minimum of its tropical
monomials. And, tropical monomials are linear functions. In the example,

trop(f)(u) = min
{

1 + 3u, 0 + 2u, 1 + u, 5
}

for allu ∈ R.
If u = val(c) for some c ∈ K then we have val(f(c)) = (trop(f))(u).

In the following lemma we are claiming that two functions R→ R agree.

Lemma 7.4. If f, g ∈ K[x] then trop(fg) = trop(f)� trop(g).

Proof. By enlarging the field K, we may assume that the value group equals
R. Let a ∈ R and choose any c ∈ K with val(c) = a. A computation shows

trop(fg)(a) = val((fg)(u)) = val(f(u))+val(g(u)) = trop(f)(a)�trop(g)(a).

Hence the two functions agree on every argument a ∈ R. �

Definition 7.5. Let g(x) be a tropical polynomial, i.e. a function that is
the minimum of finitely many linear functions. A number u ∈ R is called a
tropical root of g if that minimum is attained at least twice.

The following facts relate classical root finding and tropical root finding.

Theorem 7.6. Let f ∈ K[x] and g = trop(f) its tropicalization. If c ∈ K
satisfies f(c) = 0 then u = val(c) is a tropical root of g. Conversely, if K is
algebraically closed then every tropical root u of g arises from a zero c of f .

Proof. Let f(x) =
∑d

i=0 bix
i and suppose f(c) =

∑d
i=0 bic

i is zero. Then
∞ = val(f(c)) but val(bic

i) <∞ for i = 1, . . . , d. Using [37, Lemma 2.1.1],
this implies val(bic

i) = val(bjc
j) ≤ val(bkc

k) for some i 6= j and all k 6= i, j.
This means that u = val(c) is a tropical zero of the g = trop(f).

Our proof of the second statement follows that of [37, Proposition 3.1.5].
We assume that u is a tropical root. Since K is algebraically closed, we can

factor f(x) =
∏d
j=1(ajx−bj). Since u is a tropical root of trop(f), it is also a

tropical root of one of the tropicalized factors, by Lemma 7.4. Hence there is
an index j such that val(aj)�u = val(bj). This implies u = val(bj)−val(ak).
We now simply set c = bj/aj in K. Then f(c) = 0 and u = val(c). �

Example 7.7 (d = 3). Let f be as in Example 7.3 and g = trop(f) its
tropicalization (7.1). The tropical roots of g are the rational numbers u
such that of 1 + 3u, 0 + 2u, 1 + u and 5 is attained twice. The solutions
are u = −1, u = 1, u = 4. These are the valuations of the three roots of f .

Fields with valuations provide a systematic way of speaking algebraically
about logarithms. This explains the connection between classical arithmetic
and tropical arithmetic. We shall return to this point in our exploration of
varieties in Subsection 7.3. First, however, let us develop some more purely
tropical machinery, in the familiar setting of matrices and linear algebra.
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7.2. Linear Algebra

Vectors and matrices make sense over the tropical semiring. For instance,
the tropical scalar product in R3 of a row vector with a column vector equals

(u1, u2, u3)� (v1, v2, v3)
T = u1 � v1 ⊕ u2 � v2 ⊕ u3 � v3

= min
{
u1 + v1, u2 + v2, u3 + v3

}
.

Here is the product of a column vector and a row vector of length three:

(7.2)

(u1, u2, u3)
T � (v1, v2, v3)

=

(
u1 � v1 u1 � v2 u1 � v3
u2 � v1 u2 � v2 u2 � v3
u3 � v1 u3 � v2 u3 � v3

)
=

(
u1 + v1 u1 + v2 u1 + v3
u2 + v1 u2 + v2 u2 + v3
u3 + v1 u3 + v2 u3 + v3

)
.

Any matrix which can be expressed as such a product has tropical rank one.

Fix a d× n-matrix A. We may wish to find its image {A� x : x ∈ Rn}
and to solve linear systems A�x = b for various right hand sides b. For an
introduction to tropical linear systems see the books on Max-linear Systems
by Butkovič [6] and Essentials of Tropical Combinatorics by Joswig [29].

For a first application of tropical linear algebra, consider the problem
of finding shortest paths in a weighted directed graph G with n nodes.
Every directed edge (i, j) in G has an associated length dij which is a non-
negative real number. If (i, j) is not an edge of G then we set dij = +∞.
We represent G by its n×n adjacency matrix DG =

(
dij
)

with zeros on the
diagonal. The off-diagonal entries are the edge lengths dij . The matrix DG

need not be symmetric; we allow dij 6= dji for some i, j. If G is an undirected
graph, then we represent it as a directed graph with two directed edges (i, j)
and (j, i) for each undirected edge {i, j}. In that case, DG is a symmetric
matrix, where dij = dji is the distance between node i and node j.

Consider the n×n-matrix with entries in R≥0 ∪ {∞} that results from
tropically multiplying the given adjacency matrix DG with itself n−1 times:

(7.3) D
�(n−1)
G = DG �DG � · · · �DG.

Proposition 7.8. Let G be a weighted directed graph on n nodes with adja-

cency matrix DG. The entry of the matrix D
�(n−1)
G in row i and column j

equals the length of a shortest path from node i to node j in the graph G.

Proof. Let d
(r)
ij denote the minimum length of any path from node i to node

j using at most r edges in G. We have d
(1)
ij = dij for any two nodes i and

j. Since the edge weights dij were assumed to be non-negative, for each two
nodes i, j there exists a shortest path from i to j that visits each node of G

at most once. Hence the length of a shortest path from i to j equals d
(n−1)
ij .
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For r ≥ 2 we have a recursive formula for the length of a shortest path:

(7.4) d
(r)
ij = min

{
d
(r−1)
ik + dkj : k = 1, 2, . . . , n

}
.

Using tropical arithmetic, this formula can be rewritten as follows:

d
(r)
ij = d

(r−1)
i1 � d1j ⊕ d

(r−1)
i2 � d2j ⊕ · · · ⊕ d

(r−1)
in � dnj .

= (d
(r−1)
i1 , d

(r−1)
i2 , . . . , d

(r−1)
in )� (d1j , d2j , . . . , dnj)

T .

From this it follows, by induction on r, that d
(r)
ij equals the entry in row i

and column j of the n× n matrix D�rG . Indeed, the right hand side of the

recursive formula is the tropical product of row i of D
�(r−1)
G and column j

of DG, which is the (i, j) entry of D�rG . In particular, d
(n−1)
ij is the entry in

row i and column j of D
�(n−1)
G . This proves the claim. �

The above algorithm belongs to what is known as Dynamic Programming
in Computer Science. For us, it means performing the matrix multiplication

D�rG = D
�(r−1)
G �DG for r = 2, . . . , n− 1.

We next consider the notion of the tropical determinant. Fix an n × n
matrix X = (xij). As there is no negation in tropical arithmetic, we define
this determinant as the tropical sum over the tropical diagonal products
obtained by taking all n! permutations π of {1, 2, . . . , n}:
(7.5) tropdet(X) :=

⊕

π∈Sn
x1π(1) � x2π(2) � · · · � xnπ(n).

Here Sn is the symmetric group of permutations of {1, 2, . . . , n}. Evaluating
the tropical determinant means solving the classical assignment problem
of combinatorial optimization. Imagine a company that has n jobs and n
workers, and each job needs to be assigned to exactly one of the workers.
Let xij be the cost of assigning job i to worker j. The company wishes to
find the cheapest assignment π ∈ Sn. The optimal total cost equals

(7.6) min
{
x1π(1) + x2π(2) + · · ·+ xnπ(n) : π ∈ Sn

}
.

That minimum is the tropical determinant (7.5) of the matrix X = (xij):

Proposition 7.9. The tropical determinant solves the assignment problem.

In the assignment problem we seek the minimum over n! quantities.
This appears to require exponentially many operations. However, there is
a polynomial-time method, with run time O(n3), known as the Hungarian
Algorithm. This algorithm maintains a price for each job and a partial
assignment of workers and jobs. At each iteration, an unassigned worker is
chosen and a shortest augmenting path from him to the set of jobs is chosen.
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In classical arithmetic, the complexity of evaluating determinants and
permanents differs greatly. The determinant of an n×n matrix can be com-
puted in O(n3) steps, namely by Gaussian elimination, while computing the
permanent of an n×n matrix is a hard problem. Leslie Valiant proved that
computing permanents is #P -complete. In tropical arithmetic, computing
the permanent is easier, thanks to the Hungarian Algorithm. We can think
of this algorithm as a certain tropicalization of Gaussian Elimination.

Eigenvectors and eigenvalues of square matrices are central to linear
algebra. The same is true in tropical linear algebra. We fix an n×n-matrix
A = (aij) over R = R∪{∞}. An eigenvalue of A is a real number λ such that

(7.7) A� v = λ� v for some v ∈ Rn.

We say that v is an eigenvector of the matrix A. The arithmetic operations
in (7.7) are tropical. For instance, for n = 2, the left hand side of (7.7) is
(
a11 a12
a21 a22

)
�
(
v1
v2

)
=

(
a11 � v1 ⊕ a12 � v2
a21 � v1 ⊕ a22 � v2

)
=

(
min{a11 + v1, a12 + v2}
min{a21 + v1, a22 + v2}

)
.

The right hand side of (7.7) equals

λ�
(
v1
v2

)
=

(
λ� v1
λ� v2

)
=

(
λ+ v1
λ+ v2

)
.

Let G(A) denote the directed graph with adjacency matrix A. Its nodes
are labeled by [n] = {1, 2, . . . , n}. There is an edge from node i to node j if
and only if aij <∞. The edge has length aij . In particular, aii 6=∞ if and
only if there is a loop at vertex i. The normalized length of a directed path
i0, i1, . . . , ik in G(A) is (ai0i1 + ai1i2 + · · ·+ aik−1ik)/k, computed in classical
arithmetic. If ik = i0 then the path is a directed cycle, and this quantity is
the normalized length of the cycle. Recall that a directed graph is strongly
connected if there is a directed path from any node to any other node.

Theorem 7.10. Let A be an n× n-matrix such that G(A) is strongly con-
nected. Then A has precisely one eigenvalue λ(A). It equals the minimum
normalized length of a directed cycle.

Proof. Let λ = λ(A) be the minimum of the normalized lengths over all
directed cycles in G(A). We first prove that λ(A) is the only possibility for
an eigenvalue. Suppose that z ∈ Rn is any eigenvector of A, and let γ be the
corresponding eigenvalue. For any cycle (i1, i2, . . . , ik, i1) in G(A) we have

ai1i2 + zi2 ≥ γ + zi1 , ai2i3 + zi3 ≥ γ + zi2 ,

ai3i4 + zi4 ≥ γ + zi3 , . . . , aiki1 + zi1 ≥ γ + zik .

Adding the left-hand sides and the right-hand sides, we find that the normal-
ized length of the cycle is greater than or equal to γ. In particular, we have
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λ(A) ≥ γ. For the reverse inequality, start with any index i1. Since z is an
eigenvector with eigenvalue γ, there exists i2 such that ai1i2 + zi2 = γ + zi1 .
Likewise, there exists i3 such that ai2i3 + zi3 = γ + zi2 . We continue in this
manner until we reach an index il which was already in the sequence, say,
ik = il for k < l. By adding the equations along this cycle, we find that

(aikik+1
+ zik+1

) + (aik+1ik+2
+ zik+2

) + · · ·+ (ail−1il + zil)

= (γ + zik) + (γ + zik+1
) + · · · + (γ + zil−1

).

We conclude that the normalized length of the cycle (ik, ik+1, . . . , il = ik) in
G(A) is equal to γ. In particular, γ ≥ λ(A). This proves that γ = λ(A).

It remains to prove the existence of an eigenvector. Let B be the matrix
obtained from A by (classically) subtracting λ(A) from every entry in A. All
cycles in G(B) have non-negative length, and there exists a cycle of length
zero. Using tropical matrix operations we define

B+ = B ⊕B⊗2 ⊕B⊗3 ⊕ · · · ⊕B⊗n.
This matrix is known as the Kleene plus of the matrix B. The entry B+

ij

in row i and column j of B+ is the length of a shortest path from node i
to node j in the weighted directed graph G(B). Here, we assume that a
path contains some edges, thus the shortest path from i to i may be strictly
positive. Since G(B) is strongly connected, we have B+

ij <∞ for all i and j.

Fix any node j that lies on a zero length cycle of G(B). Let x = B+
·j

denote the jth column vector of the matrix B+. We have xj = B+
jj = 0,

as there is a path from j to itself of length zero, and there are no negative
weight cycles. This implies B+ � x ≤ B+

·j = x. Next note that (B � x)i =

minl(Bil + xl) = minl(Bil +B+
lj ) ≥ B+

ij = xi, since lengths of shortest paths

obey the triangle inequality. In vector notation this states B�x ≥ x. Since
tropical linear maps preserve coordinatewise inequalities among vectors, we
have B2 � x ≥ B � x, and B3 � x ≥ B2 � x, etc. Therefore, B+ � x =
B�x⊕B2�x⊕· · ·⊕Bn�x = B�x. This yields x ≤ B�x = B+�x ≤ x.
This means that B � x = x, so x is an eigenvector of B with eigenvalue 0.
We conclude that x is an eigenvector with eigenvalue λ of our matrix A:

A� x = (λ�B)� x = λ� (B � x) = λ� x.

This completes the proof of Theorem 7.10. �

The eigenvalue λ of a tropical n×n-matrix A = (aij) can be computed
efficiently, using a linear program with n+ 1 decision variables v1, . . . , vn, λ:

(7.8) Maximize γ subject to aij + vj ≥ γ + vi for all 1 ≤ i, j ≤ n.
Proposition 7.11. The unique eigenvalue λ(A) of the given n × n-matrix
A = (aij) coincides with the optimal value γ∗ of the linear program (7.8).
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Proof. See [37, Proposition 5.1.2]. �

We next determine the eigenspace of the matrix A, which is the set

Eig(A) =
{

x ∈ Rn : A� x = λ(A)� x
}
.

The set Eig(A) is closed under tropical scalar multiplication: if x ∈ Eig(A)
and c ∈ R then c � x is also in Eig(A). We can thus identify Eig(A) with
its image in the quotient space Rn/R1 ' Rn−1. Here 1 = (1, 1, . . . , 1). This
space is called the tropical projective torus; cf. [29, Section 1.4]. We saw
that every eigenvector of the matrix A is also an eigenvector of the matrix
B = (−λ(A))�A and vice versa. Hence the eigenspace Eig(A) is equal to

Eig(B) =
{

x ∈ Rn : B � x = x
}
.

Theorem 7.12. Let B+
0 be the submatrix of the Kleene plus B+ given by

the columns whose diagonal entry B+
jj is zero. The image of this matrix, in

tropical arithmetic, equals the eigenspace: Eig(A) = Eig(B) = Image(B+
0 ).

Proof. See [37, Theorem 5.1.3]. �

Example 7.13. We demonstrate the computation of eigenvectors for n = 3.
In our first example, the minimal cycle lengths are attained by the loops:

A =




3 4 4
4 3 4
4 4 3


 ⇒ λ(A) = 3 ⇒ B = B+ = B+

0 =




0 1 1
1 0 1
1 1 0


 .

The eigenspace is the image of the column vectors of B. Its image in R3/R1
is the hexagon with vertices (0, 1, 1), (0, 0, 1), (1, 0, 1), (1, 0, 0), (1, 1, 0) and
(0, 1, 0). In our second example, the winner is the cycle 1→ 2→ 1:

A =




3 1 4
1 3 2
4 4 3


 ⇒ λ(A) = 1 ⇒ B =




2 0 3
0 2 1
3 3 2


 ⇒ B+ =




0 0 1
0 0 1
3 3 2


 .

The eigenspace of A is the tropical linear span of the first column of B+:

Eig(A) = Eig(B) =
{
c� (0, 0, 3)T : c ∈ R

}
=
{

(c, c, c+ 3)T : c ∈ R
}

So, here Eig(A) is just a single point in the tropical projective 2-torus R3/R1.

We computed the eigenspace of a square matrix as the image of another
matrix. This motivates the study of images of tropical linear maps Rm →
Rn. Such images are not tropical linear spaces. They are known as tropical
polytopes. Indeed, one defines tropical convexity in Rn/R1 by taking tropical
linear combinations. Tropical convexity is a rich and beautiful theory with
many applications. For introductions see [29, Chapter 5] and [37, §5.2].

We give a brief illustration for m=n=3. The image of a 3 × 3-matrix
A is the set of all tropical linear combinations of three vectors in R3. We
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represent this by its image in the plane R3/R1. That image is a tropical
triangle, because it is the tropical convex hull of three points in the plane.
This triangle is degenerate if the three points are tropically collinear in
R3/R1. This happens when the minimum in the tropical determinant (7.5)
is attained twice. In that case, the matrix A is called tropically singular.

Example 7.14. Consider the tropical triangle in R3/R1 given by the matrix

A =




0 0 2
0 3 1
1 0 0


 or A′ =



−1 0 2
−1 3 1
0 0 0


 .

Each point in R3/R1 is represented uniquely by a column vector (u, v, 0).
This tropical triangle consists of the segment between (−1,−1, 0) and (0, 0, 0),
the segment between (0, 3, 0) and (0, 1, 0), the segment between (2, 1, 0) and
(1, 1, 0), and the classical triangle with vertices (0, 0, 0), (0, 1, 0) and (1, 1, 0).

There are five combinatorial types of tropical triangles. Similarly, there
are 35 types of tropical quadrilaterals. They are shown in [37, Figure 5.2.4].

7.3. Tropical Varieties

The previous section explored tropical counterparts of concepts from linear
algebra. In what follows we move on to nonlinear algebra. Our aim is
to introduce the tropical counterparts of algebraic varieties. Our point of
departure is discussion of fields with valuation at the end of Section 7.1.

Example 7.15 (The p-adic valuation). For every prime number p, the field
K = Q of rational numbers has a valuation valp with value group Z. Indeed,
every rational number c can be written uniquely as c = pu · qr where q and
r are relatively prime integers not divisible by p and u ∈ Z. We have
valp(c) = u. The completion of Q with respect to the norm induced by valp
is the field of p-adic numbers. This field is important in number theory.

In what follows we assume that K is an algebraically closed field with
a valuation whose value group is Q. The Puiseux series field K = C{{t}} is
the primary example. Consider any polynomial in n variables over K:

(7.9) f = c1x
a1 + c2x

a2 + · · · + csx
as .

The tropicalization of f is the following expression in tropical arithmetic:

trop(f) = val(c1)� x�a1 ⊕ val(c2)� x�a2 ⊕ · · · ⊕ val(cs)� x�as .

To evaluate the tropical polynomial trop(f) at a point u = (u1, . . . , un), we
take the minimum of the s expressions

val(ci)�u�ai = val(ci)�u�ai11 �· · ·�u�ainn = val(ci)+ai1u1+ · · ·+ainun,
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where the index i runs over {1, . . . , s}. If this minimum is attained at least
twice then u is a tropical zero of trop(f). The special case n = 1 appeared in
Section 7.1. The following result generalizes the first part of Theorem 7.6.

Proposition 7.16. If z = (z1, . . . , zn) ∈ Kn is a zero of a polynomial f in
K[x] then its coordinatewise valuation val(z) =

(
val(z1), . . . , val(zn)

)
∈ Qn

is a tropical zero of trop(f).

Proof. Note that the valuation of ciz
a
i equals val(ci) � u�ai . The sum of

these r scalars is zero in K, so the terms of lowest valuation must cancel.
This implies that the minimum valuation is attained by two or more of the
expressions val(ci)�u�ai . By definition, this means that the vector u ∈ Qn

is a tropical zero of trop(f). �

A celebrated result due to Kapranov states that the converse holds too.
Namely, if f ∈ K[x] and u ∈ Qn is a tropical zero of trop(f) then there is a
point z ∈ Kn such that f(z) = 0 and val(z) = u. We refer to [37, Theorem
3.1.3] for the proof and further details. For the n = 1 case see Theorem 7.6.

The element ∞ in the tropical semiring arises naturally from the arith-
metic in the field K because val(0) = ∞. Sometimes it is preferable to
restrict tropical algebra to R, or to Q, thus excluding ∞. This is done by
disallowing zero coordinates among the solutions of a polynomial system.
For this, we set K∗ = K\{0} and we introduce the algebraic torus (K∗)n.
The ring of polynomial functions on (K∗)n is the Laurent polynomial ring

K[x±] := K[x±11 , x±12 , . . . , x±1n ].

Its elements are polynomials as in (7.9) but we now allow negative integers
among the coordinates of the exponent vectors ai.

In what follows we fix K = C{{t}}, the field of Puiseux series. The
extension to other fields is found in [37, §2.4]. Given any vector u ∈ Rn, the
initial form inu(f) is the subsum of terms cix

ai in (7.9) for which val(ci)�
u�ai is minimal. Here ci is the term of lowest order in the Puiseux series ci.
For instance, if c = 3t+ 9t3 − 2

3 t
4 + . . . ∈ K is the second scalar displayed

in Example 7.3 then c = 3t. A monomial in the Laurent polynomial ring is
a scalar times a product of variables with possibly negative coefficients.

Lemma 7.17. For any Laurent polynomial f ∈ K[x±] and any point u ∈
Rn, the following three conditions are equivalent:

• The initial form inu(f) is not a unit in K[x±].

• The initial form inu(f) is not a monomial.

• The point u is a tropical zero of trop(f).
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Proof. Every monomial is invertible in the Laurent polynomial ring. To
show the converse, we fix a lexicographic order on monomials. If hg = 1
then the product of the smallest monomials in the support of h and g must
equal the product of the two largest. In particular, the smallest and the
largest monomial appearing in h must be the same, i.e. h is a monomial.

The equivalence of the last two points in Lemma 7.17 follows from Kapra-
nov’s Theorem. By this we mean the converse to Proposition 7.16 what was
mentioned above. For the precise statement see [37, Theorem 3.1.3]. �

Fix any ideal I in K[x±] and let V(I) be its variety in the algebraic torus
(K∗)n. We define the tropical variety of I to be the following subset of Rn:

trop(V(I)) =
{

u ∈ Rn : u is a tropical zero of trop(f) for all f ∈ I
}
.

We also refer to this set as the tropicalization of the variety V(I).

The study of tropical varieties is the subject of tropical algebraic ge-
ometry. Two important results are the Fundamental Theorem ([37, Theo-
rem 3.2.3]) and the Structure Theorem ([37, Theorem 3.3.5]). The former
extends Kapranov’s Theorem. It states that the set of rational points in
trop(V(I)) is the image of the classical variety V(I) ⊂ (K∗)n under the
coordinatewise valuation map. The latter states that the tropical variety
trop(V(I)) is a balanced polyhedral complex. Furthermore, its dimension
agrees with the dimension of V(I). Numerous concrete examples of such
balanced polyhedral complexes are found in the textbooks [29] and [37].

Example 7.18. Fix n = 9 and let x = (xij) be a 3×3-matrix whose entries
are unknowns. Let I be the ideal in K[x±] that is generated by the nine
2× 2-minors of x. Then V(I) is the 5-dimensional variety of 3× 3-matrices
of rank 1 in (K∗)3×3. The tropical variety trop(V(I)) is the set of 3 × 3-
matrices in (7.2), that is, matrices u of tropical rank one. This is the linear
subspace of dimension 5 in R3×3 defined by the tropical 2× 2-determinants
uij � ukl ⊕ uik � ukj . Of course, this minimum is attained twice if and only
if uij +ukl−uik−ukj = 0. Every matrix u = (uij) that satisfies these linear
equations, and has its entries in Q, arises as the valuation u = val(z) of a
rank one matrix z = (zij) with entries in K∗. For instance, z = (tuij ).

Consider the assignment problem in Proposition 7.9. The tropical vari-
ety trop(V(I)) represents scenarios where all six assignments for n = 3 have
the same cost. The situation becomes more interesting when we pass from
rank 1 to rank 2. Now only the two best assignments have the same cost.

To model this, let J ⊂ K[x±] be the principal ideal generated by the
determinant of x. Then V(J) is a hypersurface of degree three in (K∗)3×3.
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The tropical hypersurface trop(V(J)) is defined by the tropical determinant

tropdet(x) = x11 � x22 � x33 ⊕ x11 � x23 � x32 ⊕ x12 � x21 � x33
⊕ x12 � x23 � x31 ⊕ x13 � x21 � x32 ⊕ x13 � x22 � x31.

Thus trop(V(J)) is set of all 3×3-matrices u = (uij) such that this minimum
is attained twice. For such a matrix, there is more than one optimal assign-
ment of the three workers to the three jobs in (7.5). The set trop(V(J)) is a
polyhedral fan of dimension 8. It is a cone with apex trop(V(I)) ' R5 over
the 2-dimensional polyhedral complex shown in Figure 1.

114 L. Pachter and B. Sturmfels

Fig. 3.5. The tropical 3 × 3 determinant.

basis from given generators of an ideal I and computing the polyhedra that

make up its tropical variety is an active topic of research in tropical geometry.

Example 3.40 We consider the tropicalization of DiaNA’s model in Example

1.16. The 3 × 3-minors of a 4 × 4-matrix of unknowns form a tropical basis

for the ideal they generate. This follows from results in [Develin et al., 2003].

The tropical variety T (I) consists of all 4×4-matrices of tropical rank at most

two. The positive tropical variety T +(I) is discussed in Example 3.43.

Let f : Cd → Cm be a polynomial map with coordinates f1, . . . , fm ∈
Q[θ1, . . . , θd]. We say that the map f is positive if each coefficient of each

polynomial fi is a positive real number. If this holds then f maps positive

vectors in Rd to positive vectors in Rm. We say that the map f is surjectively

positive if f is positive and, in addition, f maps the positive orthant surjectively

onto the positive points in the image; in symbols:

f
(
Rd

>0

)
= image(f) ∩ Rm

>0. (3.36)

Example 3.41 Let d = 1,m = 2 and f : R1 %→ R2, θ %→ ( θ + 2, 2θ + 1 ). The

map f is positive. But f is not surjectively positive: for instance, the point

(7/4, 1/2) is in image(f) ∩ R2
>0 but not in f(R1

>0).

On the other hand, if we take f ′ : R1 %→ R2, θ %→ ( 1
2θ + 3

2 , θ ) then f ′ is

surjectively positive. Both maps have the same image, namely, image(f) =

image(f ′) is the line V (If ) ⊂ R2 which is specified by the ideal

If = If ′ = ⟨ 2p1 − p2 − 3 ⟩.

The tropical variety T (If ) is the curve defined by the tropical linear form

trop(2p1 − p2 − 3) = q1 ⊕ q2 ⊕ 0.

Figure 1. Combinatorial structure of the tropical hypersurface that is
defined by the tropical 3 × 3-determinant.

The six triangles represent matrices u where the minimum of the six
terms in tropdet(u) is attained by two permutations in S3 with the same
sign. The nine squares on the right in Figure 1 are glued to form a torus.
These represent matrices u′ where the minimum is attained by two permu-
tations in S3 with opposite signs. Concrete examples for the two cases are

u =




0 0 1
1 0 0
0 1 0


 and u′ =




0 0 1
0 0 1
1 1 0


 .

Here are rank 2 matrices over K that map to u and u′ under tropicalization:

z =



t+ 1 −1 + t 2t
t 1 1 + t
1 t 1 + t


 and z′ =




1 2 t
2 4 5t
3t 6t 7



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The supports of the matrices u = trop(z) and u′ = trop(z′) match the
labels of the corresponding 2-cells in Figure 1. The matrix u has support
13, 21, 32, which labels the bottom triangle on the left. The matrix u has
support 13, 23, 31, 32, which labels the middle left square on the right.

We close with a remark on lifting Proposition 7.8 from tropical algebra
to algebra over the field K = C{{t}}. Given a directed graph G with rational
edge weights dij , we now define a new adjacency matrix AG. The entry of

AG in row i and column j equals tdij if (i, j) is an edge of G, and 0 otherwise.

By construction, the valuation of the matrix AG is the adjacency matrix
DG seen earlier in Section 7.1. Moreover, the tropical matrix power in (7.3)
is the valuation of the corresponding power of the classical matrix AG:

(7.10) D
�(n−1)
G = (val(AG))�(n−1) = val

(
An−1G

)
.

Indeed, the (i, j) entry of An−1G is the generating function for all paths. To

be precise, this entry is the Puiseux polynomial
∑

` c`t
`, where c` is the

number of paths from node i to node j in the graph G that have length ≤ `.

Exercises

(1) Let u, v, w be real numbers and let x, y, z be variables. What are the
coefficients in the expansion of the expression (u�x ⊕ v�y ⊕w�z)�n
in tropical arithmetic?

(2) Prove that the tropical matrix multiplication is an associative operation.

(3) Draw the graph of the following function on the real plane: R→ R, x 7→
1 ⊕ 2�x ⊕ 3�x�2 ⊕ 6�x�3 ⊕ 10�x�4. What are the tropical zeros
of this tropical polynomial?

(4) How would you define the tropical characteristic polynomial of a square
matrix? Compute your polynomial for the 3×3-matrices in Example 7.13.

(5) Draw the graph of the function

R2 → R, (x, y) 7→ 1 ⊕ 2� x ⊕ 3� y ⊕ 6� xy ⊕ 10� xy�2.
What are the tropical zeros of this tropical polynomial?

(6) Let G be the directed graph on n nodes with edge weights dij = i · j
for i, j ∈ {1, 2, . . . , n}. Compute the tropical powers D�iG of the matrix
DG for i = 1, 2, . . . , n− 1. What are their tropical ranks? Interpret the
entries of these matrices in terms of paths.

(7) Take the graph G from above with n = 5. Compute the powers AiG of
the matrix AG for i < n. What are their ranks? Interpret the entries in
terms of paths. Verify equation (7.10).
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(8) Take the graph G from above with n = 3. Find the eigenvalues and
eigenspaces of the classical matrix AG. Find the tropical eigenvalue and
the tropical eigenspace of the matrix DG. Do you see a relationship?

(9) Take the graph G from above with n = 10. Compute the determinant
of AG and the tropical determinant of DG. Do you see a relationship?

(10) Take the graph G from above. The matrix DG defines a tropical linear
map from Rn to itself. Determine the image of this map for n = 2, 3, 4.
Draw pictures in Rn/R1 ' Rn−1. These are tropical polytopes.

(11) Consider the quartic polynomial f(x) = t + t2x + t3x2 + t6x3 + t10x4

in K[x], where K = C{{t}}. Identity its four roots. Write the first 10
terms of these Puiseux series. What are their valuations?

(12) Let J be the ideal generated by the determinant of a symmetric 3× 3-
matrix. This lives in a Laurent polynomial ring with six variables. De-
termine the tropical hypersurface trop(V(J)). Write a discussion similar
to Example 7.18. Draw the analog to Figure 1 for symmetric matrices.

(13) Analyze the complexity of the algorithm described in Proposition 7.8.

Can you improve the computation of D
�(n−1)
G ? What happens if some

edge weights of G are negative? What happens if G contains cycles of
negative total weight? How can you detect if such a cycle exists?

(14) The Wikipedia site for Tropical Geometry shows a tropical cubic curve.
Find a tropical polynomial in two unknowns that defines this curve.





Chapter 8

Toric Varieties

Toric varieties are the simplest and most accessible varieties. They often
appear in applications, both within mathematics and across the sciences.
A toric variety is an irreducible variety that is parametrized by a vector of
monomials. The relations among these monomials are binomials, i.e. poly-
nomials with only two terms. Thus, an irreducible variety is toric if and only
if its prime ideal is generated by binomials. Monomials and binomials cor-
respond to points in an integer lattice, and we think of these as the vertices
of a lattice polytope. Toric varieties appear prominently in optimization
and statistics, thanks to the purely combinatorial description given above.
This description also makes them a perfect “model organism” for algebraic
geometers. They use toric varieties to test conjectures, teach geometric con-
cepts, and compute invariants. For instance, the dimension and degree of a
toric variety are the dimension and volume of the associated lattice polytope.

8.1. The Affine Story

The adjective toric derives from the noun torus. We begin by introducing
tori from an algebraic perspective. We fix an algebraically closed field K
and the Laurent polynomial ring K[x±] = K[x±11 , . . . , x±1n ]. The associated
variety (K∗)n = SpecK[x±] is the algebraic torus of dimension n over K.

The algebraic torus (K∗)n is a group under coordinatewise multiplica-
tion. The name torus comes from the special case when n = 2 and K = C
is the complex numbers. Here, we have (C∗)2 ' (R+× S1)2, where S1 is the
unit circle. Thus usual topological torus S1×S1 is equal to the 2-dimensional
algebraic torus after multiplication with the contractible factor R+ × R+.

107
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We recall from Section 7.3 that subvarieties of the algebraic torus (K∗)n are
the objects one starts from when developing tropical algebraic geometry.

Definition 8.1 (Character of a torus). A character of the algebraic torus
T = (K∗)n is an algebraic map χ : T → K∗ that is also a group morphism.

In Exercise 1 we shall see that characters are given by Laurent monomials

xb = xb11 x
b2
2 · · ·xbnn , where b ∈ Zn.

The characters of T are hence the elements of Zn. Under this correspon-
dence, multiplication of characters becomes addition in the group (Zn,+):

(χ1 + χ2)(x) = χ1(x)χ2(x).

A group isomorphic to Zk, for some k, is called a lattice. The lattice of
characters of T will be denoted by MT or simply M . As a subgroup of a free
abelian group is free, any set of characters generates a sublattice M̃ ⊂M .

Let a1, . . . ,ap be characters in MT ' Zn. We write A for the n×p matrix

whose columns are the vectors ai. The lattice M̃ generated by the characters
ai is the image of Zp under the right multiplication by the matrix A.

Proposition 8.2. The image of T in (K∗)p under the map f : x → xA =

(xa1 , . . . ,xap) is also a torus T̃ . The character lattice of T̃ is equal to M̃ .

Proof. The monomial map f : T 7→ (K∗)p induces the ring homomorphism

f∗ : K[y±11 , . . . , y±1p ] → K[x±11 , . . . , x
±1
n ] , yi 7→ xai .

The spectrum of the image of the ring map f∗ is the image T̃ we are inter-
ested in. Note that this image is the group algebra K[M̃ ]. By definition, this

is the vector space over K with basis given by elements of M̃ and multiplica-
tion induced from addition in MT . The lattice M̃ is isomorphic to the group
Zd for some integer d ≤ min(n, p). We have T̃ = SpecK[M̃ ] = (K∗)d. �

The d-dimensional torus T̃ lives in (K∗)p. We are interested in its Zariski
closure in the affine space Kp. Such an affine variety is a toric variety.

Definition 8.3. An affine toric variety is the closed image of a monomial
map (K∗)n → Kp, x 7→

(
xa1 , . . . ,xap

)
, where ai ∈ Zn and K∗ = K\{0}.

We specify a toric variety by an integer matrix A ∈ Zn×p. The p columns
of A represent characters of the torus T = (K∗)n. Toric geometry relates the
combinatorics of these lattice points with the geometry of the toric variety.

Example 8.4. Any affine space is a toric variety. The corresponding matrix
A is the identity matrix. The cuspidal cubic curve x3−y2 is a toric variety. It
is the image of the map z 7→ (z2, z3) that is given by the matrix A =

(
2 3
)
.
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Proposition 8.5. The dimension of the affine toric variety in Definition 8.3
is equal to the rank of the lattice M̃ that is spanned by a1, . . . ,ap in Zn.

Proof. We saw in the proof of Proposition 8.2 that the torus T̃ has dimen-
sion d = rank(M̃). The toric variety is the Zariski closure of T̃ . Its has
dimension d, since passing to the Zariski closure preserves dimension. �

We defined toric varieties as closures in Kp of subtori of the torus (K∗)p.
In the notation of Proposition 8.2, the toric variety equals SpecK[S], where
S is the monoid in MT generated by the distinguished characters, i.e. the
smallest set containing 0, the chosen characters and closed under addition.

Example 8.6. (1) The cuspidal curve defined by the equation x3−y2
equals SpecK[z2, z3]. The underlying monoid equals {0, 2, 3, 4, . . . }.

(2) The affine line is the closure of the image of the map

K∗ 3 x→ x ∈ K.
Here the character lattice is M = Z, the distinguished character
corresponds to 1 ∈M and the monoid equals {0, 1, 2, . . . }.

Figure 1. The cuspidal cubic curve

There is a fundamental difference between the cuspidal curve and affine
line. The monoid for the cuspidal curve has a ’hole’, namely the character 1.

Definition 8.7. A submonoid S in a lattice M is called saturated if and
only if for any x ∈M and k ∈ Z+ the following implication holds:

kx ∈ S ⇒ x ∈ S.

An affine toric varieties X = SpecK[S] for which S is saturated (in

the lattice M̃ it generates) is called normal. For the algebraic definition
of normality see [1, Chapter 5]. Nonnormal varieties are always singular.
For curves, the two notions coincide. Example 8.6 displays one normal
(i.e. smooth) curve and one nonnormal (i.e. singular) curve, seen in Figure 1.
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We next discuss the prime ideal of the toric variety X. This is computed
from the characters that define X. In general, given a variety defined as a
Zariski closure of the image of a map, finding the defining equations is a hard
problem, known as implicitization. We discussed this in Chapter 4. The im-
plicitization problem greatly simplifies when the variety is toric. The prime
ideal IX of the toric variety X lives in the polynomial ring K[y1, . . . , yp].
This toric ideal is the kernel of the restriction of f∗ to this polynomial ring.

Lemma 8.8. Let X be the toric variety defined by A = (a1, . . . ,ap). Then:

(1) any relation
∑

i biai =
∑

j cjaj, with positive integral coefficients

bi, cj ∈ Z+ provides a binomial
∏
ybii −

∏
y
cj
j in the toric ideal IX ;

(2) every binomial in the ideal IX is of the form described in point 1;

(3) the toric ideal IX is generated by these binomials.

Recall that a binomial is a polynomial with only two terms. Statement
(2) is understood up to scaling: we can multiply the binomial by a constant.

Proof: Properties (1) and (2) follow from the fact that a polynomial van-
ishes on the toric variety X if and only if we obtain zero after substituting
yi by xai . However, such a substitution turns monomials (in variables y)
to monomials (in variables x). The fact that the monomials in x cancel is
precisely encoded by the integral relations in point (1). Property (3) follows
similarly, by induction on number of terms of a polynomial in the ideal of X.
For a similar argument using a monomial ordering see [52, Lemma 4.1]. �

Example 8.9. Fix n = 3, p = 7. To specify a toric variety, we must choose
characters a1, . . . ,a7 ∈ Z3. Let us take the column vectors of the matrix

A =




2 2 1 0 0 1 1
1 0 0 1 2 2 1
0 1 2 2 1 0 1


 .

The associated toric variety X is a threefold in K7. The toric ideal IX equals

(8.1)
〈 y1y3 − y2y7 , y1y4 − y27 , y1y5 − y6y7 , y2y4 − y3y7 , y2y5 − y27 ,

y2y6 − y1y7 , y3y5 − y4y7 , y3y6 − y27 , y4y6 − y5y7 〉.
Each of these nine binomials vanishes under the substitution yi 7→ xai . Using
the methods in Section 4.2, we can check that IX is the desired prime ideal.
The toric variety X has dimension 3 and it lives in the affine space K7.

The ideal IX is homogeneous. Each of the nine binomials in (8.1) is
homogeneous. This comes from the fact that the matrix A has column sums
(3, 3, 3, 3, 3, 3, 3). Geometrically speaking, the threefold X is a cone in K7.
We can therefore also regard X as a surface in the projective space P6. That
surface is nonsingular and it has degree six. This passage from appropriate
matrices A to projective toric varieties will be our theme in Section 8.2.
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Theorem 8.10. The toric ideals IX are precisely the prime ideals generated
by binomials yb − yc. Every such ideal defines a toric variety X as above.

Proof. Let I be a prime ideal generated by a set of binomials ybi − yci in
p variables y1, . . . , yp. By Hilbert’s Basis Theorem, there is a finite subset
of minimal generators. For each such generator, the nonnegative integer
vectors bi and ci have disjoint support, since I is prime. We write the
difference vectors bi − ci as the columns of a matrix B that has p rows.

Let A be any integer matrix of format n× p whose rows span the kernel
of B under left multiplication. Here, the kernel is understood as a Z-module
(a.k.a. abelian group), so it is computed using integer linear algebra (e.g. the
Hermite normal form algorithm). We claim that the columns of B span the
kernel A under right multiplication. This is clear over Q, but it also holds
over Z by our hypothesis that I is a prime ideal. Otherwise, there would
exist a vector b − c that is not in the column space of B but some integer
multiple kb− kc is in that column span. Then the binomial ykb− ykc is in
the ideal I but none of its factors is, which is impossible for a prime ideal.

We now take X to be the toric variety X in Kp defined by the matrix
A. The argument above shows that I = IX , which gives the assertion in the
theorem. For further details on this proof see [12, Proposition 1.1.11]. �

Definition 8.11. A convex polyhedral cone C in Rn is a subset of elements
of the form λ1v1 + · · ·+λkvk where v1, . . . ,vk ∈ Rn are fixed and λ1, . . . , λk
range over R≥0. We call C rational if the vectors vi can be chosen in Qn. In
what follows we refer to rational convex polyhedral cones simply as cones.

Definition 8.12. A face F of a cone C ⊂ Rn is a subset of the form

F =
{
c ∈ C : `(c) = 0

}
,

where ` is a linear form that is nonnegative on C, i.e. `(c) ≥ 0 for all c ∈ C.
If dimC = n = dimF + 1, then ` is uniquely determined, up to scalar. In
this case, F is called a facet and the hyperplane defined by ` is a supporting
hyperplane of C. We point out that ` = 0 gives F = C. Furthermore, any
face of a cone is also a cone, and the relation “is a face of” is transitive.

Example 8.13. The orthant C = Rn≥0 is a cone. It has 2n faces, ranging

from the apex {0} to the full cone C. There are
(
n
i

)
faces of dimension i.

Each of the n facets F arises by setting one coordinate to zero, so F ' Rn−1≥0 .

By Proposition 8.2, the toric variety X is the closure in Kp of the torus
T̃ ⊂ (K∗)p. The group T̃ acts both on itself and on Kn, and it hence also
acts on its closure X. The torus orbits on X are the orbits of that action by
T̃ . We next provide a combinatorial and geometric description of the torus
orbits. We assume that X is defined by an integer n× p-matrix A as above.
We write C ⊂ Rn for the cone that is generated by the p columns ai of A.
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Theorem 8.14. The torus orbits in X are in bijection with the faces of the
cone C. The orbit corresponding to a face F is {y ∈ X : yi 6=0 ⇐⇒ ai∈F}.
The closure of this orbit is the toric variety SpecK[F∩A] whose parametriza-
tion is (xai : ai ∈ F ). The dimension of this orbit equals dim(F ). Moreover,
the inclusion of orbit closures in X corresponds to inclusion of faces of C.

Proof. For normal toric varieties, this appears in [12, Section 3.2]. How-
ever, normality is not needed. A direct argument shows that, if F is a face
of C, then {y ∈ X : yi 6= 0 ⇐⇒ ai ∈ F} is a torus orbit. Furthermore, the
binomials in IX ensure that each point of X lies in one of these orbits. �

Example 8.15. Let X be the toric threefold in K7 given in Example 8.9.
The cone C is spanned in R3 by the columns of the 3×7 matrix A. It is the
cone over a hexagon, so it has 14 = 1 + 6 + 6 + 1 faces. The variety X is the
disjoint union of 14 torus orbits, as follows. The face F = {0} corresponds
to the origin in K7. The 1-dimensional face F = R≥0{a1} corresponds to
the curve {(t, 0, 0, 0, 0, 0, 0) ∈ X : t ∈ K∗}. The 2-dimensional face F =
R≥0{a1,a2} corresponds to the surface {(t, u, 0, 0, 0, 0, 0) ∈ X : t, u ∈ K∗}.
And, F = C corresponds to the 3-dimensional torus T̃ = X ∩ (K∗)7.

In conclusion, the geometry of X is read off from the cone C representing it.

8.2. Varieties from Polytopes

Projective toric varieties are obtained from affine toric varieties that are
cones. They can be defined as follows. Let A = (a1,a2, . . . ,ap) be an integer
n× p-matrix of rank n that has the vector (1, 1, . . . , 1) in its row span. Let
IA ⊂ K[y1, y2, . . . , yp] be the prime ideal of polynomial relations among
the Laurent monomials xa

1 ,x
a
2 , . . . ,x

a
p . This is a toric ideal. According to

Lemma 8.8, IA is generated by the homogeneous binomials yb − yc, where
b − c is in the kernel of A. We write P = conv(A) for the convex hull of
the column vectors ai in Rn. By construction, P is a polytope of dimension
n − 1 with ≤ p vertices. For instance, in Example 8.9, the polytope P is a
regular hexagon, and the surface XA is the blow-up of P2 at three points.

Definition 8.16. A projective toric variety is any projective variety in Pp−1
of the form XA = V(IA), where IA is a homogeneous toric ideal as above.

Definition 8.17. A polytope in Rn is the convex hull of a finite set of points.
A polytope is a lattice polytope if it is the convex hull of points in Zn.

Given a projective toric variety XA, we associate to it the polytope
P = conv(A). Conversely, any lattice polytope can be coordinatized so that
it spans the affine hyperplane {y1 + y2 + · · ·+ yn = k} for some k, n ∈ Z+.
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We then take A = P ∩ Zn, and we associate the projective toric variety
XP := XA with the polytope P . This variety lives in Pp−1 where p = |A|.

The class of varieties XA is strictly larger than the class of varieties XP .
The reason is that A can be a proper subset of conv(A) ∩ Zn, However, the
projective toric varieties of most interest to us are XP for some polytope P .

Example 8.18. The Veronese variety and the Segre variety from classical
algebraic geometry are two prominent examples of projective toric varieties.

We write ∆n−1 for the standard (n− 1)-simplex, whose vertices are the
unit vectors e1, . . . , en. Fix k ∈ Z>0 and P = k∆n−1. Then A = P ∩ Zn
consists of the nonnegative integer vectors with coordinate sum k. Hence
p = |A| =

(
n+k−1

k

)
. The toric variety XP is the k-th Veronese embedding of

Pn−1. It has dimension n − 1 and degree kn−1 in Pp−1. Its toric ideal IA
consists of the polynomial relations among all monomials of degree k in n
variables. For instance, if n = k = 3 then there are ten such monomials:

A =




3 2 2 1 1 1 0 0 0 0
0 1 0 2 1 0 3 2 1 0
0 0 1 0 1 2 0 1 2 3


 .

The ideal defining this Veronese surface in P9 is generated by 27 quadrics:

IA = 〈y1y4−y22, y1y5−y2y3, y1y6−y23, y1y7−y2y4, . . . , y7y10−y8y9, y8y10−y29〉.

Next, fix n1, n2 ∈ Z>0 and set n = n1+n2 and p = n1n2. Let P = ∆n1×
∆n2 and write ei and e′j for the unit vectors in Rn1 and Rn2 respectively.

Then A = P ∩Zn =
{
ei + e′j : 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2

}
. The variety XP

is the Segre embedding of the product Pn1−1×Pn2−1 into Pp−1. The points
on XP are n1× n2 matrices of rank one, up to scaling. The associated toric
ideal IA is generated by the 2× 2 minors of an n1×n2 matrix of unknowns.
We here deviate slightly from our hypothesis, as the rank of A is n−1, not n.

In the algebraic geometry literature, it is often assumed that toric vari-
eties are normal. This is motivated by the fact that normal toric varieties
admit a nice intrinsic characterization, in terms of fans. In our setting, this
hypothesis is generally not needed. Still, we present the relevant definition.

Definition 8.19. A lattice polytope P in Rn is called normal if, for any
integer k and any point u ∈ kP ∩ Zn, there exist u1, . . . ,uk ∈ P ∩ Zn such

that u =
∑k

i=1 ui. In this case, the toric variety XP is projectively normal.

The simplices and products of simplices in Example 8.18 are normal.
Hence the Veronese variety and the Segre variety are projectively normal.
Exercise 6 gives an example of a 3-dimensional lattice polytope that is not
normal. All lattice polytopes of dimension 1 and 2 are normal. If P is normal
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then the polyhedral fan that characterizes its toric variety XP intrinsically
is the normal fan of P . We refer to [12, Section 3.1] for the basic theory.

We now return to the setting where IA is any homogeneous toric ideal,
XA ⊂ Pp−1 its toric variety, and P = conv(A) not necessarily normal. Let T
denote the subset of XA consisting of all points with non-zero coordinates.
This is a torus of dimension n−1. That torus acts on XA with finitely many
orbits. Theorem 8.14 extends essentially verbatim to the projective case.

Corollary 8.20. The torus orbits in XA are in bijection with the faces
of the polytope P . The orbit corresponding to a face F is {y ∈ XA : yi 6=
0 ⇐⇒ ai ∈ F}. The closure of this orbit is the projective toric variety with
parametrization (xai : ai ∈ F ). The dimension of this orbit equals dim(F ).
The inclusion of orbit closures in XA corresponds to inclusion of faces of P .

Proof. We apply Theorem 8.14 to the affine toric variety defined by IA
in Kp. This is the affine cone over XA ⊂ Pp−1. Its orbits correspond to
the faces of the cone C over the polytope P . Note that dim(C) = n =
dim(P ) + 1. Each i-dimensional face F of P corresponds to an (i + 1)-
dimensional face of C, namely the cone over F . Likewise, each i-dimensional
orbit in XA corresponds to an (i+1)-dimensional orbit of the affine cone over
XA. These bijections, for i = 0, 1, . . . , n − 1, establish the desired bijection
for P and XA. The only face of C that is missing in P is the origin {0}.
Likewise, the cone point of the affine cone over XA disappears in XA. �

Example 8.21. Consider the Segre threefold XA = P1×P2 in P5, given by
n1 = 2 and n2 = 3 in Example 8.18. The toric ideal IA is generated by the
2×2-minors of a 2×3-matrix of unknowns, and the polytope P = ∆1×∆2 is
a triangular prism. This 3-dimensional polytope has 21 = 6+9+5+1 faces,
one for each of the torus orbits on XA. For instance, the five 2-dimensional
orbits are given by setting one row or column of the 2×3-matrix to zero, and
the 0-dimensional orbits in XA are the matrices with one non-zero entry.

Corollary 8.20 establishes a combinatorial link between projective toric
varieties and their lattice polytopes. In what follows we tighten this to a
geometric link. We now fix K = C, the complex numbers. We seek to argue
that the geometry of the polytope coincides with the geometry of the toric
variety. The key to this identification is the moment map from XA onto P .

We work in the complex projective space Pp−1C with its homogeneous
coordinates y = (y1 : y2 : · · · : yp). The following map onto P = conv(A) is
defined via the usual Euclidean norm | · | on the complex plane C ' R2:

(8.2) Pp−1C → Rn , y 7→ 1∑p
i=1 |yi|

p∑

i=1

|yi| · ai.
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This map is well-defined because the image is invariant under scaling the
vector y, and

∑p
i=1 |yi| is always positive. Its image is precisely the polytope

P , since we are taking arbitrary convex combinations of the points ai in Rn.

Definition 8.22. The algebraic moment map µA : XA → Rn is defined as
the restriction of (8.2) from the ambient space Pp−1C to the toric variety XA.
We write XA,R for the subset of real points in XA. Its subset of nonnegative
resp. positive points is denoted by XA,≥0 resp. XA,>0. These are semialge-

braic sets in the real projective space Pp−1R . To be precise, the positive toric
variety XA,>0 consists of all positive solutions, up to scale, of the binomial
equations in IA, and similarly for the nonnegative toric variety XA,≥0.

The complex projective toric variety XA maps naturally onto its non-
negative part XA,≥0 under the coordinatewise absolute value map

(8.3) (y1 : y2 : · · · : yp) 7→ (|y1| : |y2| : · · · : |yp|).
The fibers of this map are real tori. Specifically, the fiber over each point in
XA,>0 is homeomorphic to the torus (S1)n−1. This torus is a subgroup the
complex torus T ' (C∗)n−1, and we can think of (8.3) as the quotient map

XA −→ XA/(S1)n−1 = XA,≥0.

See [12, Proposition 12.2.3] for a formal statement for normal toric varieties.
The algebraic moment map µA factors through the quotient map (8.3).

Theorem 8.23. The restriction of the algebraic moment map µA to the
nonnegative toric variety XA,≥0 is a homeomorphism onto the polytope P .

Proof. This is found in many sources. One of them is [49, Theorem 8.4]. �

Corollary 8.24. If the linear system of equations Ay = b has a nonnegative
solution y ∈ Rp≥0 then it has unique solution ŷ in the toric variety XA.

Proof. Here we identify XA with the affine cone over the projective toric
variety defined by the n× p matrix A. The algebraic moment map µA lifts
uniquely, by scaling, to a homeomorphism from this affine cone to the cone
C over the polytope P . The system Ay = b has a nonnegative solution if
and only if b lies in C. In this case, the point b has a unique preimage ŷ =
µ−1A (b) under the moment map. This preimage is the desired solution. �

Example 8.25. Let A be the (n1+n2)×(n1n2) matrix for the polytope P =
∆n1−1×∆n2−1 as in Examples 8.18 and 8.21. This matrix A represents the
linear map that takes an n1×n2 matrix y to its vector b of row and column
sums. The polytopes

{
y ∈ Rn1×n2

≥0 : Ay = b
}

are known as transportation
polytopes. The points in the Segre variety XA are the n1 × n2 matrices y
of rank one. In this case, Corollary 8.24 has the following interpretation:
Every transportation polytopes contains a unique rank one matrix ŷ.
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Example 8.25 has important consequences in statistics. We saw this
already for n1 = n2 = m in Example 2.5. Suppose the nonnegative matrix
y has entries that sum to 1. Then y is a joint distribution for two random
variables that have n1 and n2 states respectively. The nonnegative variety
XA,≥0 is the independence model for these two random variables. The map
A computes the sufficient statistics b = Ay, i.e. the column vector of row
sums and the row vector of column sums. The product of these vectors is
the rank one matrix ŷ = µ−1A (b). This is the maximum likelihood estimate
for the empirical distribution y with respect to the independence model.

Example 8.26 (n1 = n2 = 2). The independence model for two binary ran-
dom variables is a quadratic surface in P3

≥0 = ∆3. This is the nonnegative

part XA,≥0 of the Segre quadric XA = P1 × P1 ⊂ P3. That surface meets
the boundary of the ambient tetrahedron in four edges that form a 4-cycle.
The moment map µA projects the tetrahedron onto a square. The 4-cycle
is mapped onto the boundary of the square. The surface XA,>0 is mapped
bijectively onto the interior of the square. Figure 2 illustrates this scenario.

Figure 2. The moment map identifies the Segre quadric with a square.

Example 8.26 is an instance of a general construction in algebraic statis-
tics. Projective toric varieties XA correspond to a class of statistical models,
referred to as toric models in [42] and as log-linear models in [50]. The in-
verse moment map µ−1A is the maximum likelihood estimator for the model
XA,≥0. Given a point b in the model polytope P = conv(A), the estimate

µ−1A (b) is the Birch point in XA,≥0. This distribution best explains the data
with sufficient statistic b. See [42, Proposition 1.9] and [50, Corollary 7.3.9].

Toric varieties are ubiquitous in applications. One explanation for this
is the following observation which connects this chapter to the previous one.
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Proposition 8.27. Let X be an irreducible variety over a field K as in
Section 7.3. If X is toric then its tropicalization Trop(X) is a linear space.

Proof. If X = V(IA) then every point in X has the form (xa1 , . . . ,xap).
The images of these points under coordinatewise valuation are uA where
u=val(x) runs over Qn. This implies that Trop(X) is the row space of A. �

In fact, the converse to this proposition also holds, with a slightly more
inclusive definition of toric variety. Informally speaking, toric varieties are
precisely those varieties that become linear spaces under taking logarithms.

8.3. The World is Toric

The occurrence of toric structures in an application can be either obvious or
hidden. A typical example for the former is log-linear models in statistics.
These are obviously toric, as seen around Example 8.26. In this section we
discuss some scenarios where the toric structure is hidden, and it needs to
be unearthed, often by a non-trivial chance of coordinates. Our style in this
section is extremely informal. We briefly visit four fields where toric varieties
arise. Under each header we focus on one concrete instance of a toric variety
XA ⊂ Pp−1. The broader context is discussed alongside that example.

Chemical Reactions. Three chemical species σ1, σ2, σ3 can form four
chemical complexes 3σ1, 3σ2, 3σ3, σ1+σ2+σ3. Each complex can react so
as to transform into any other complex. We introduce unknowns c1, c2, c3
for the species concentrations and K1,K2,K3,K4 to encode rate constants.

This chemical reaction system is modeled by the toric balancing ideal

IA =

(〈
2× 2 minors of

(
K1 K2 K3 K4

c31 c32 c33 c1c2c3

)〉
: (c1c2c3)

∞
)
.

This toric ideal has ten minimal generators, namely the six minors plus

c21K2K3 − c2c3K2
4 , c

2
2K1K3 − c1c3K2

4 , c
2
3K1K2 − c1c2K2

4 , K1K2K3 −K3
4 .

The variety XA = V(IA) is a threefold of degree 13 in P6. The underlying
4× 7 matrix A is found with the integer linear algebra method in the proof
of Theorem 8.10. The polytope P = conv(A) is a triangular prism. One
triangle face is ∆2 with vertices labeled by c1, c2, c3. The other triangle
face is 3∆2 with vertices K1,K2,K3 and centroid K4. The underlined cubic
generates the moduli ideal, which identifies the toric dynamical systems.

The mathematical theory of chemical reaction network systems with
mass action kinetics is an important domain of application for nonlinear
algebra. For an introduction we refer to the text book by Dickenstein and
Feliu [17]. The term “toric dynamical systems” was coined in the article
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[13]. In the chemical literature, these are known as complex balancing mass
action systems. The toric ideals above where introduced in [13, Section 2].

Gaussian MLE. Let n = 5, p = 10 and consider the integer matrix

(8.4) A =




1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1


 .

The columns of A are labeled y01, y02, . . . , y34. These are our coordinates for
P9. The polytope P = conv(A) is the second hypersimplex of dimension 4.
It has f-vector (10, 30, 30, 10) but it is not self-dual. Its toric ideal IA has 10
quadratic generators yijykl− yikyjl, and XA is a fourfold of degree 11 in P9.

This toric variety of the second hypersimplex of dimension m arises when
studying Gaussian distributions on Rm with structured covariance matrix Σ.
Consider the model given by prescribing all off-diagonal entries to be equal.
Thus, for m = 4, we are interested in the linear space of symmetric matrices

(8.5) Σ =



σ1 σ0 σ0 σ0
σ0 σ2 σ0 σ0
σ0 σ0 σ3 σ0
σ0 σ0 σ0 σ4


 .

Given a sample covariance matrix S, one seeks to maximize the log-likelihood

`(Σ) = −log det(Σ)− trace(SΣ−1) = log det(K)− trace(SK).

This function is convex in the concentration matrix K = Σ−1. For that
reason, we study the variety of matrices K whose inverse has structure (8.5).

This is a non-linear projective variety of dimension m in P(m2 ). Defining
polynomials are obtained by equating off-diagonal entries in the adjoint of
K. These are complicated expressions with many terms of degree m− 1.

We find that this is a toric variety, after the linear change of coordinates

K =



y01+y12+y13+y14 −y12 −y13 −y14

−y12 y02+y12+y23+y24 −y23 −y24
−y13 −y23 y03+y13+y23+y34 −y34
−y14 −y24 −y34 y04+y14+y24+y34


.

For any m, this is the reduced Laplacian matrix of the complete graph on
m+ 1 nodes. It follows from [56, Theorem 1.2] that the variety of matrices
K whose inverse is constant outside the diagonal equals the toric variety
of the second hypersimplex. Using the coordinates yij , the inverse of the
matrix Σ in (8.5) satisfies the ten quadratic binomials in IA. The article [56]
establishes this toric structure for a larger class of Gaussian models, one for
each rooted tree, thus contributing to likelihood inference for such models.
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Phylogenetics. Group-based models in phylogenetics are varieties that
become toric after a linear change of coordinates. The nonlinear algebra of
this transformation was pioneered in [54]. For the relevant background from
molecular biology we refer to [42, Chapter 4]. The following case study is
taken from [54, Example 3]. The Jukes-Cantor model for the claw tree K1,3

is a model for three binary random variables. Its eight joint probabilities are

p000 = π0α0β0γ0 + π1α1β1γ1, p001 = π0α0β0γ1 + π1α1β1γ0 ,
p010 = π0α0β1γ0 + π1α1β0γ1, p011 = π0α0β1γ1 + π1α1β0γ0 ,
p100 = π0α1β0γ0 + π1α0β1γ1, p101 = π0α1β0γ1 + π1α0β1γ0 ,
p110 = π0α1β1γ0 + π1α0β0γ1, p111 = π0α1β1γ1 + π1α0β0γ0.

Here π0 and π1 = 1−π0 give the root distribution. The other model param-
eters α0 = 1−α1, β0 = 1−β1 and γ0 = 1−γ1 are the transition probabilities
from the root to the three leaves. Since all parameters are nonnegative, the
model is a 4-dimensional semialgebraic subset of the probability simplex ∆7.
The Fourier transform gives a change of coordinates in the parameter space,

π0 = 1
2(r0 + r1), π1 = 1

2(r0 − r1), α0 = 1
2(a0 + a1), α1 = 1

2(a0 − a1),
β0 = 1

2(b0 + b1), β1 = 1
2(b0 − b1), γ0 = 1

2(c0 + c1), γ1 = 1
2(c0 − c1),

and it also gives a linear change of coordinates in the probability space:

pijk =
1∑

r=0

1∑

s=0

1∑

t=0

(−1)ir+js+kt · yrst.

After these coordinate changes, the parametrization is now toric:

y000 = r0a0b0c0, y001 = r1a0b0c1, y010 = r1a0b1c0, y011 = r0a0b1c1,
y100 = r1a1b0c0, y101 = r0a1b0c1, y110 = r0a1b1c0, y111 = r1a1b1c1.

This corresponds to a matrix A ∈ {0, 1}8×8 of rank 5. The toric ideal equals

IA = 〈y001y110 − y000y111, y010y101 − y000y111, y100y011 − y000y111〉.
Hence XA is a complete intersection of codimension 3 and degree 8 in P7.
The study of such phylogenetics models is an active area of research.

Paths and Signatures. Let n = 6, p = 19 and consider the monomial map

yijk = aiajak for 1 ≤ i ≤ j ≤ k ≤ 3,
zk;ij = akbij for k = 1, 2, 3 and 1 ≤ i < j ≤ 3.

This defines a toric variety XA of dimension 5 and degree 24 in P18. The
matrix A ∈ {0, 1}6×19 has rows indexed by a1, a2, a3, b12, b13, b23 and 19 =
10 + 9 columns indexed by y111, y112, . . . , y333 and z1;12, z1;13, . . . , z3;23. The
toric ideal IA is generated by 81 binomial quadrics, namely the 2×2-minors of

(8.6)



y111 y112 y113 y122 y123 y133 z1;12 z1;13 z1;23
y112 y122 y123 y222 y223 y233 z2;12 z2;13 z2;23
y113 y123 y133 y223 y233 y333 z3;12 z3;13 z3;23


 .
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Let X̃A be the join of XA with P7. This is a 13-dimensional toric variety
of degree 24 in P26. It is defined by the same ideal IA but now in 27 variables.
We replace these by the entries of a 3× 3× 3 tensor σ = (σijk) as follows:

(8.7)
yijk = σkij + σikj + σijk + σkji + σjki + σjik,
zk;ij = 1

2(σkij + σikj + σijk) − 1
2(σkji + σjki + σjik).

The resulting variety U3,3 is the universal variety of third-order signature
tensors of arbitrary paths in R3. Such tensors play an important role in
stochastic analysis, especially in the Hairer-Lyons theory of rough paths.

A natural generalization of the universal variety is the rough Veronese
variety which was studied and shown to be toric by Colmenarejo et al. in [9].
This variety is a variant of the classical Veronese variety, but adapted to the
study of rough paths. For an introduction to this theory we see [9, Section 1]
and the references therein. Returning to the example above, in the notation
of [9, Section 2], we have U3,3 = R3,3,3 = X̃A ⊂ P26 and R3,3,2 = XA ⊂ P18.
The equations defining these varieties are obtained by substituting (8.7) into
(8.6). This 3× 10 matrix has rank ≤ 1 for the signatures of all paths in R3.

Exercises

(1) Prove that every character χ of the torus T = (K∗)n is given by a

Laurent monomial xb = xb11 x
b2
2 · · ·xbnn , for some integer vector b in Zn.

(2) Show that every polynomial in the ideal IA of an affine toric variety is a
K-linear combination of binomials. This gives item (3) in Lemma 8.8.

(3) Describe the ideal of the Segre variety Pa1−1×· · ·×Pas−1 inside Pa1···as−1.
What is the degree of this toric variety? Describe its lattice polytope P .

(4) There is a natural bijection between (convex, rational, polyhedral) cones
in Rd and finitely generated saturated monoids in Zd. Prove this fact.

(5) Determine the toric ideal IA and the toric variety XA for the matrix

A =




0 0 1 1 1
0 1 0 1 1
0 0 0 2 3
1 1 1 1 1


 .

(6) Show that the 3-dimensional lattice polytope P = conv(A) is not nor-
mal. Draw this polytope and determine its f-vector.

(7) Prove that every 2-dimensional lattice polytope is normal.

(8) Prove the following fact which generalizes the previous exercise: for any
k-dimensional lattice polytope P , the scaled polytope (k−1)P is normal.
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(9) Determine the number of lattice points in kP where P is the polytope
in Exercises (5)-(6). Show that this number is a cubic polynomial in k.

(10) Prove the following theorem due to Mumford in the case of toric vari-
eties; Let X be a projective toric variety. For r large enough the r-th
Veronese reembeding vr(X) of X is defined by quadratic equations.

(11) Compute an explicit Gröbner basis for the toric ideal IA, where A is the
matrix in Example 8.4. Is your initial monomial ideal in(IA) radical?

(12) Compute the inverse of the matrix Σ in 8.5, and verify that its entries
satisfy the ten quadratic binomials given by the second hypersimplex.

(13) Let A be the 3 × 7-matrix in Example 8.9. Can you give a formula for
the inverse moment map µ−1A ? Is there an expression in radicals?

(14) (a) Compute the number of points of a projective toric variety XP over
a finite field, in terms of the f -vector of the associated polytope P .

(b) * Assuming that XP is smooth and K = C, use the Weil conjectures
(which are theorems, thanks to Grothendieck and Deligne), to give
a formula for Betti numbers of XP , again in terms of the f -vector.

(15) Give an example of a toric threefold XA in P6 that has degree 11. Draw
the polytope P = conv(A). Can you arrange for XA to be smooth?





Chapter 9

Tensors

Tensors are ubiquitous in many different branches of modern mathematics.
They are higher dimensional analogs of matrices. Just as matrices are basic
objects in linear algebra, tensors are fundamental for nonlinear algebra. One
reason they appear so late in this book is that we already saw them in
disguise: homogeneous polynomials are symmetric tensors. In this chapter
we show that basic attributes of matrices, like eigenvectors and rank, can be
defined also for tensors. HowAnnever, their behavior is far more interesting
now. We also discuss applications of tensors, with focus on a a central open
algorithmic problem: how fast can one multiply two matrices? As always,
linear algebra is our door to nonlinear algebra. Further, the new nonlinear
tools will be applied to revisit fundamental questions in linear algebra.

9.1. Eigenvectors

In this section we extend the familiar concepts of eigenvectors, rank and sin-
gular values from matrices to the setting of tensors. We start by reviewing
some basics of linear algebra, beginning with the study of symmetric matri-
ces. Recall that symmetric matrices uniquely represent quadratic forms.

For instance, consider the following quadratic form in three variables:

(9.1) Q = 2x2 + 7y2 + 23z2 + 6xy + 10xz + 22yz.

This quadratic form is represented by a symmetric 3× 3-matrix as follows:

(9.2) Q =
(
x y z

)



2 3 5
3 7 11
5 11 23





x
y
z


 .

123
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The gradient of the quadratic form Q is the vector of its partial derivatives.
Thus, the gradient is a vector of linear forms. It defines a linear map from
K3 to itself. Up to multiplication by 2, this is the linear map one usually
associates with a square matrix. For the quadratic form in (9.1) we have

∇Q =



∂Q/∂x
∂Q/∂y
∂Q/∂z


 = 2 ·




2 3 5
3 7 11
5 11 23





x
y
z


 .

In this section, the field K is usually R or C. We call v ∈ Rn an eigen-
vector of Q if v is mapped to a scalar multiple of v by the gradient map:

(∇Q)(v) = λ · v for some λ ∈ K.
Just like in the earlier chapters, it is convenient to replace the affine space
Kn with the projective space Pn−1. Thus, two nonzero vectors are identified
if they are parallel. From Q we obtain a rational self-map of projective space:

(9.3) ∇Q : Pn−1 99K Pn−1.

The dashed arrow means that this is a rational map. If Q is rank-deficient
then the linear map has a kernel. These are the points where the gradient
∇Q vanishes. They are the base points of the map (9.3). If Q has full rank
then ∇Q is a regular map Pn−1 → Pn−1, i.e. it is defined on all of Pn−1. We
conclude our discussion with the following remark on the gradient map:

Remark 9.1. The eigenvectors of Q are the fixed points (λ 6= 0) and base
points (λ = 0) of the gradient map ∇Q in (9.3). These points v live in Pn−1.

Symmetric n × n matrices often appear in statistics. Consider n real-
valued random variables X1, . . . , Xn. Their covariance matrix is the matrix
Σ whose (i, j) entry is cov[Xi, Xj ] = E[(Xi−E[Xi])(Xj −E[Xj ])]. We note
that Σ is positive semidefinite, i.e. all its eigenvalues are nonnegative.

A n×n-matrix usually has n linearly independent eigenvectors, provided
the underlying field K is algebraically closed. If the matrix is real and
symmetric, then its eigenvectors have real coordinates and are orthogonal.
For a rectangular matrix, one considers pairs of singular vectors, defined
below; one on the left and one on the right. The number of these singular
vector pairs is equal to the smaller of the two matrix dimensions.

Eigenvectors and singular vectors are familiar from linear algebra, where
they are taught in concert with eigenvalues and singular values. Numerical
linear algebra is the foundation of applied mathematics and scientific com-
puting. Specifically, the concept of eigenvectors, and numerical algorithms
for computing them, became a key technology during the 20th century.

Singular vectors are associated to rectangular matrices. We review their
definition through the lens of Remark 9.1. We begin with the observation
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that each rectangular matrix represents a bilinear form, e.g.

(9.4) B = 2ux+3uy+5uz+3vx+7vy+11vz =
(
u v

)(2 3 5
3 7 11

)

x
y
z


.

The gradient of the bilinear form defines an endomorphism on the direct
sum of the row space and the column space. This fuses left multiplication
and right multiplication by our matrix into a single linear map.

For the example (9.4), the gradient is the following vector of linear forms

(9.5) ∇B =

((∂B
∂u

,
∂B

∂v

)
,
(∂B
∂x

,
∂B

∂y
,
∂B

∂z

))
.

The associated endomorphism has the form ∇B : K3 ⊕ K2 → K2 ⊕ K3.
This gradient map takes the pair

(
(x, y, z), (u, v)

)
to the pair in (9.5), i.e. to

((2x+ 3y + 5z, 3x+ 7y + 11z), (2u+ 3v, 3u+ 7v, 5u+ 11v)) .

More generally, let B be an m×n-matrix over K. Consider the equations

(9.6) Bx = λy und Bty = λx,

where λ is a scalar, x is a vector in Rn, and y is a vector in Rm. These are
our unknowns. Given a solution to (9.6), we see that x is an eigenvector of
BtB, y is an eigenvector of BBt, and λ2 is a common eigenvalue of these
two symmetric matrices. Assuming K = R, its nonnegative square root
λ ≥ 0 is a singular value of B. Associated to λ are the right singular vector
x and the left singular vector y. In analogy to Remark 9.1, the process of
solving (9.6) has the following dynamical interpretation:

Remark 9.2. The singular vector pairs (x,y) of a rectangular matrix B of
size m × n are the fixed points of the gradient map ∇B of the associated
bilinear form. This is now a self-map on a product of projective spaces:

∇B : Pn−1 × Pm−1 −→ Pm−1 × Pn−1

(
x,y

)
7→
(( ∂B

∂x1
, . . . ,

∂B

∂xn

)
,
( ∂B
∂y1

, . . .
∂B

∂ym

))
.

We summarize our brief review of linear algebra in the following points:

• Symmetric matrices Q represent quadratic forms.

• Rectangular matrices B represent bilinear forms.

• Their gradients ∇Q and ∇B specify the linear maps one usually
identifies with the matrices Q and B.

• Fixed points of these maps are eigenvectors and singular vectors.
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• These fixed points are computed via orthogonal decompositions:

Q = O · diag ·Ot and B = O1 · diag ·O2.

Here O, O1 and O2 are orthogonal matrices. The formulas above
are known as the spectral decomposition and the singular value de-
composition. These objects are usually defined for K = R.

In the age of Big Data, the role of matrices is increasingly played by
tensors, that is, multidimensional arrays of numbers. Principal component
analysis tells us that the eigenvectors of a covariance matrix Q = BBt give
directions in which the data B is most spread. One hopes to identify similar
features for tensor data. This has encouraged engineers and scientists to
spice up their linear algebra tool box with a pinch of algebraic geometry.

The spectral theory of tensors is the theme of the following discussion.
This theory was pioneered around 2005 by Lek-Heng Lim and Liqun Qi. We
refer to the textbook [44] for background and context. Our aim is to gener-
alize familiar notions, such as rank, eigenvectors and singular vectors, from
matrices to tensors. Specifically, we address the following two questions.
The answers to these two questions are provided in Examples 9.7 and 9.13.

Question 9.3. How many eigenvectors does a 3× 3× 3-tensor have?

Question 9.4. How many singular vector triples does a 3×3×3-tensor have?

A tensor is a d-dimensional array T = (ti1i2···id). Here the entries
ti1i2···id are elements in the ground field K. The set of all tensors of for-
mat n1×n2× · · ·×nd form a vector space of dimension n1n2 · · ·nd over K.
For d = 1, 2 we get vectors and matrices. A tensor has rank 1 if it is the
outer product of d vectors, written T = u⊗ v⊗ · · · ⊗w, or, in coordinates,

ti1i2···id = ui1vi2 · · ·wid .
The problem of tensor decomposition is the following. We wish to express
a given tensor T as a sum of rank 1 tensors, using as few summands as
possible. That minimal number of rank 1 summands needed to represent T
is the rank of T . We will discuss this topic in detail in the next section.

An n×n× · · ·×n-tensor T = (ti1i2···id) is called symmetric if it is un-
changed under permuting the indices. The space Symd(Rn) of such sym-

metric tensors has dimension
(
n+d−1

d

)
. It is identified with the space of

homogeneous polynomials of degree d in n variables, written as

(9.7) T =
n∑

i1,...,id=1

ti1i2···id · xi1xi2 · · ·xid .
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Figure 1. A symmetric 3×3×3 tensor represents a cubic curve in P2.

Example 9.5. A tensor T of format 3×3×3 has 27 entries. If T is a symmet-
ric tensor then it has at most ten distinct entries, one for each coefficient of
the associated cubic polynomial in three variables. This polynomial defines
a cubic curve in the projective plane P2, as indicated in Figure 1.

Symmetric tensor decomposition writes T as sum of powers of linear forms:

(9.8) T =
r∑

j=1

λjv
⊗d
j =

r∑

j=1

λj(v1jx1 + v2jx2 + · · ·+ vnjxn)d.

As before, the gradient of T defines a linear map ∇T : Kn → Kn. A vector
v ∈ Kn is an eigenvector of T if (∇T )(v) = λ · v for some λ ∈ K.

Eigenvectors of tensors arise naturally in optimization. Consider the
problem of maximizing a real homogeneous polynomial T over the unit
sphere in Rn. If λ denotes a Lagrange multiplier, then one sees that the
eigenvectors of T are the critical points of this optimization problem. One
can check the values of T at these points to find global maxima and minima.

We find it convenient to replace Kn by the projective space Pn−1. The
gradient map is then a rational map from this projective space to itself:

∇T : Pn−1 99K Pn−1.

The eigenvectors of T are fixed points (λ 6= 0) and base points (λ = 0) of
∇T . Thus the spectral theory of tensors is closely related to the study of
dynamical systems on Pn−1. The matrix case (d = 2) appeared in (9.3).
By the Spectral Theorem, a real quadratic form T has a real decomposition
(9.8) with d = 2. Here r is the rank, the λj are the eigenvalues of T , and the
eigenvectors vj = (v1j , v2j , . . . , vnj) are orthonormal. We can compute this
by power iteration, namely, by applying ∇T until a fixed point is reached.

For d ≥ 3, one can still use the power iteration to compute eigenvectors
of T . However, the eigenvectors are usually not the vectors vi in the low
rank decomposition (9.8). One exception arises when the symmetric tensor is



128 9. Tensors

odeco, or orthogonally decomposable. This means that T has the form (9.8),
where r = n and {v1,v2, . . . ,vr} is an orthogonal basis of Rn. These basis
vectors are the attractors of the dynamical system ∇T , provided λj > 0.

The following gives a count of the eigenvectors of a symmetric tensor.

Theorem 9.6 (Cartwright-Sturmfels [8]). If K is algebraically closed, then
the number of eigenvectors of a general tensor T ∈ Symd(Kn) equals

(d− 1)n − 1

d− 2
=

n−1∑

i=0

(d− 1)i.

Example 9.7 (n = d = 3). The Fermat cubic T = x3 + y3 + z3 is an odeco
tensor. Its gradient map is the regular map that squares each coordinate:
∇T : P2 → P2, (x : y : z) 7→ (x2 : y2 : z2). This dynamical system has
7 = 1 + 2 + 22 fixed points, of which only the first three are attractors:

(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 0), (1 : 0 : 1), (0 : 1 : 1), (1 : 1 : 1).

We conclude that T has seven eigenvectors, as predicted by Theorem 9.6.

It is known that all eigenvectors can be real for suitable tensors. This
was proved by Khozhasov [30] using the theory of harmonic polynomials.
For n = 3, this can be seen as follows. Let T be a product of linear forms in
x, y, z, defining d lines in P2

R. The
(
d
2

)
vertices of the line arrangement are

base points of ∇T , and each of the
(
d
2

)
+ 1 regions contain one fixed point.

This accounts for all 1 + (d−1) + (d−1)2 eigenvectors, which are hence real.

Example 9.8. Let d = 4 and fix the quartic T = xyz(x+ y+ z), which is a
symmetric 3×3×3×3 tensor. Its curve in P2 is an arrangement of four lines.
All 13 = 6 + 7 eigenvectors of T are real. The 6 vertices of the arrangement
are the base points of ∇T . Each of the 7 regions contains one fixed point.

For special tensors T , two of the eigenvectors in Theorem 9.6 may co-
incide. This corresponds to vanishing of the eigendiscriminant, a big poly-
nomial in the ti1i2···id . In the matrix case (d = 2), this is the discriminant
of the characteristic polynomial of an n×n-matrix [53, §7.5]. For 3×3×3
tensors, the eigendiscriminant is a polynomial of degree 24 in 27 unknowns.

Theorem 9.9 (Abo-Seigal-Sturmfels [2]). The eigendiscriminant is an irre-
ducible homogeneous polynomial of degree n(n−1)(d−1)n−1 in the ti1i2···id.

Example 9.10 (n = 2). The eigendiscriminant of a binary form T (x, y) of
degree d is the discriminant of x∂T∂y − y ∂T∂x , so it has degree 2d− 2 in T .

Singular value decomposition is a central notion in linear algebra and its
applications. Remark 9.2 casts the singular vector pairs of a matrix as fixed
points of a self-map of a product of two projective spaces. Consider now a
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d-dimensional tensor T in Rn1×···×nd . It corresponds to a multilinear form.
The singular vector tuples of T are the fixed points of the gradient map

∇T : Pn1−1× · · · × Pnd−1 99K Pn1−1× · · · × Pnd−1.

Example 9.11. The trilinear form T = x1y1z1 + x2y2z2 is interpreted as a
2×2×2 tensor. The gradient ∇T of this trilinear form is the rational map

P1 × P1 × P1 99K P1 × P1 × P1,(
(x1 : x2), (y1 : y2), (z1 : z2)

)
7→

(
(y1z1 : y2z2), (x1z1 : x2z2), (x1y1 : x2y2)

)
.

This map has six fixed points, namely
(

(1:0), (1:0), (1:0)
)
,
(

(0:1), (0:1), (0:1)
)
,(

(1:1), (1:1), (1:1)
)
,
(

(1:1), (1:−1), (1:−1)
)
,
(

(1:−1), (1:1), (1:−1)
)
, and(

(1:−1), (1:−1), (1:1)
)
. These are the singular vector triples of the tensor T .

Here is a formula for the expected number of singular vector tuples.

Theorem 9.12 (Friedland and Ottaviani [21]). For a general n1× · · ·×nd-
tensor T over an algebraically closed field K, the number of singular vector
tuples is the coefficient of the monomial zn1−1

1 · · · znd−1d in the polynomial

d∏

i=1

(ẑi)
ni − znii
ẑi − zi

where ẑi = z1 + · · ·+ zi−1 + zi+1 + · · ·+ zd.

We finish our study of spectral theory of tensors by answering Question 2.

Example 9.13. Let d=n1=n2=n3=3. The polynomial in Theorem 9.12 is

(ẑ1
2+ẑ1z1+z

2
1)(ẑ2

2+ẑ2z2+z
2
2)(ẑ3

2+ẑ3z3+z
2
3) = · · · + 37z21z

2
2z

2
3 + · · ·

Therefore, a general 3×3×3-tensor has exactly 37 triples of singular vectors.
Likewise, a general 3×3×3×3-tensor has 997 quadruples of singular vectors.

9.2. Tensor Rank

There are many ways to define the rank of an a×b matrix M over a field K:

(1) the smallest integer r such that all (r+ 1)× (r+ 1) minors vanish,

(2) the dimension of the image of the induced linear map Ka → Kb,

(3) the dimension of the image of the induced linear map Kb → Ka,

(4) the smallest r such that M = UW where U ∈ Ka×r and W ∈ Kr×b.

The first point implies that matrices of rank at most r form a variety. The
last point implies that a matrix of rank r is a sum of r matrices of rank one.
This is also true for symmetric matrices: a symmetric matrix of rank r is a
sum of r symmetric rank one matrices. Another fact is that a real matrix of
rank r has also rank r when viewed over C. This seems obvious, but a priori,
it is not clear why there is no shorter decomposition into rank one matrices
with entries in C. Our aim is to study these issues for arbitrary tensors.
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In this section we work in a tensor product V1 ⊗ V2 ⊗ · · · ⊗ Vd of finite-
dimensional vector spaces Vi over a fieldK. We sometimes identify Vi ' Kni ,
and thus V1 ⊗ V2 ⊗ · · · ⊗ Vd ' Kn1×n2×···×nd . A tensor T in this space has
rank one if it is the outer product of d vectors, i.e. T = u⊗ v⊗ · · · ⊗w. In
coordinates, this means that the entries of T factor as

ti1i2···id = ui1vi2 · · ·wid .

Tensors of rank at most one form an affine variety. It is the affine
cone over the Segre variety Pn1−1 × · · · × Pnd−1 in Pn1···nd−1. In fact, from
Chapter 2 and 8 we know the equations of this variety. They are binomial
quadrics, namely the 2× 2 minors of all flattenings of T .

The flattenings have the following invariant description. Let I be any
subset of [d] = {1, 2, . . . , d}. The corresponding flattening is the linear map

(9.9) K
∏
i∈I ni =

⊗

i∈I
V ∗i −→

⊗

i∈[d]\I
Vi = K

∏
i∈[d]\I ni

that is defined by T . Thus a tensor T has rank one if and only if all 2d − 2
flattenings of T are matrices of rank one. There is a similar result for tensors
of rank two, due to Landsberg and Manivel, but for all higher ranks only one
direction is true: the rank of T is bounded below by that of any flattening.

Example 9.14. A tensor T = (tijk) ∈ V1 ⊗ V2 ⊗ V3 induces the linear map

(9.10) V ∗1 → V2 ⊗ V3 , e∗i 7→ (tijk)j,k =
∑

j,k

tijk · fj ⊗ gk,

where (ei), (fj), (gk) are respectively bases of V1, V2, V3. This is the case
I = {1} in (9.9). We think of (9.10) as an n1× n2n3 matrix. The transpose
of this matrix is the n2n3×n1 matrix that corresponds to I = {2, 3} in (9.9).
Thus, a three-way tensor has three distinct flattenings, up to transposing.

We conclude that rank one tensors behave in a very nice way. However,
arbitrary tensors exhibit rather strange properties. Recall that the rank of
a tensor T is the minimal r such that T is the sum of r rank one tensors.
For instance, the three-way tensors of rank ≤ 2 are the tensors of the form

(9.11) T = a⊗ b⊗ c + d⊗ e⊗ f .

We shall see that the set of these tensors is not Zariski closed in Kn1×n2×n3 .

Example 9.15. Let d = 3 and V1 = V2 = V3 = C2 with basis {e0, e1}. The
following 2× 2× 2 tensor is known in quantum physics as the W -state:

(9.12) W = e0 ⊗ e0 ⊗ e1 + e0 ⊗ e1 ⊗ e0 + e1 ⊗ e0 ⊗ e0.

This representation shows that W has rank at most three. In fact, rkW = 3,
as the reader is asked to prove in Exercise 9. To do so, equate W with T



9.2. Tensor Rank 131

in (9.11). This gives an inconsistent system of 8 cubic equations in the 12
unknown coordinates a0, a1, b0, . . . , f1 of the vectors a,b, . . . , f in (9.11).

However, there exist rank two tensors arbitrarily close to W . We have

1

ε
((e0 + εe1)⊗ (e0 + εe1)⊗ (e0 + εe1)− e0 ⊗ e0 ⊗ e0) =

W + ε(e1 ⊗ e1 ⊗ e0 + e1 ⊗ e0 ⊗ e1 + e0 ⊗ e1 ⊗ e1) + ε2e1 ⊗ e1 ⊗ e1.

This is an identity for all ε 6= 0. In particular, we have

lim
ε→0

1

ε

(
(e0 + εe1)⊗ (e0 + εe1)⊗ (e0 + εe1)− e0 ⊗ e0 ⊗ e0

)
= W.

We conclude that the W-state is a tensor of rank three, but it can be ap-
proximated with arbitrary precision by a sequence of tensors of rank two.

Definition 9.16. The border rank brk(T ) of a complex tensor T is the
smallest r such that T lies in the closure of the set of tensors of rank r.

The notion of border rank requires a topology on the space of tensors.
The geometric locus of tensors of border rank ≤ r is the closure of the locus
of tensors of rank ≤ r. Over the complex numbers, by Chevalley’s Theorem
4.18, it does not matter if we take Euclidean or Zariski topology: the closures
coincide. However, the situation is different over the real numbers. To prove
this, we shall use the hyperdeterminant, denoted Det, from Example 4.10.

Lemma 9.17. The hyperdeterminant of the rank two tensor in (9.11) equals

(9.13) Det(T ) = (a0d1 − a1d0)2(b0e1 − b1e0)2(c0f1 − c1f0)2.

Proof. We have an explicit formula for Det(T ) is a homogeneneous poly-
nomial of degree 4 in the eight tensor entries tijk. If we substitute tijk =
aibjck+diejfk and factor, then we obtain the above product of degree 12. �

Corollary 9.18. Let T ∈ R2×2×2. If T has real rank ≤ 2 then Det(T ) ≥ 0.

Proof. Our hypothesis says that T has a representation (9.11) over R. The
expression (9.13) for Det(T ) is a square in R. It is hence nonnegative. �

Example 9.19. Let i =
√
−1. The following tensor has rank two in C2×2×2:

T =
1

2

(
(e1 + ie0)

⊗3 + (e1 − ie0)⊗3
)

= e1 ⊗ e1 ⊗ e1 − W.

Note that this tensor is real. By substituting its coefficients into the formula
for the hyperdeterminant in Example 4.10, we find that Det(T ) = −4 < 0.
Corollary 9.18 implies that the real rank of T is ≥ 3. Thus the tensor T has
the property that its complex rank is strictly smaller than its real rank.
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In Exercise 10, the reader is asked to prove that the set of rank two
tensors is Zariski dense in the space of 2 × 2 × 2 tensors. This holds for
any infinite field K. If K = C then they are also dense in the Euclidean
topology. In fact, a tensor T has complex rank ≤ 2 if and only if Det(T ) 6= 0.
Note that the W-state has rank 3 and it satisfies Det(W ) = 0. If K = R
then we must distinguish the two cases Det(T ) > 0 and Det(T ) < 0. In the
former case, T has real rank two. In the latter case, T has real rank three.

Our discussion has the following interpretation in projective geometry.
Tensors of rank one form the Segre threefold X = P1×P1×P1 in P7. Exercise
10 says that the secant variety of X fills P7. However, the tangential variety
of X, which the union of all tangent spaces to X, has dimension six. It
is the hypersurface {Det(T ) = 0} in P7. The W-state is a point on that
hypersurface. The line {λe0⊗e0⊗e0+W : λ ∈ K} crosses this hypersurface
transversally. If K = R then the real rank depends only on the sign of λ.

To conclude, unlike in the case of matrices or rank one tensors, we have:

• Tensors of rank at most r may not form a closed set.

• A real tensor can have smaller rank when seen as a complex tensor.

• Real tensors of bounded real border rank form semialgebraic sets.

We have described rank one tensors as the Segre product of projective spaces.
It is natural to ask for a geometric description of tensors of rank at most r.

Definition 9.20 (Secant Variety). Let X be any projective variety in Pn.
The k-th secant variety of X is the closure of the set of k-secant planes to X:

(9.14) σk(X) :=
⋃

p1,...,pk∈X
〈p1, . . . , pk〉.

Note that X = σ1(X) ⊂ σ2(X) ⊂ · · · ⊂ σdim〈X〉(X) = 〈X〉. These contain-
ments are strict until σr(X) equals the linear span 〈X〉 of the variety X.

If X is the Segre variety, then the union in (9.14) is the set of tensors of
rank ≤ r. Its closure σr(X) is the set of tensors of border rank ≤ r. It is a
major open problem to determine the ideal of σr(X). This would provide a
test for a tensor to have border rank r. The simplest equations for σr(X)
are the (r+ 1)× (r+ 1) minors of the various flattenings, as in (9.9). These
have degree r + 1. No polynomials of degree ≤ r vanish on σr(X).

If X is the Veronese variety then we obtain the notion of symmetric rank.
A symmetric tensor T is in X if the following equivalent conditions hold:

(1) The rank of T as a tensor is equal to one.

(2) T = v ⊗ v ⊗ · · · ⊗ v for some vector v.

(3) T , represented as a polynomial, is a power of a linear form.
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The symmetric rank of T is the smallest r such that T ∈ σr(X). The rank of
T is a lower bound for the symmetric rank of T , and ditto for border rank.

It was a longstanding question, known as Comon’s Conjecture, whether
the rank of a symmetric tensor is always equal to its symmetric rank. It turns
out that the answer is no. A counterexample was constructed by Shitov in
[47]. The border rank analogue of Comon’s Conjecture remains open.

It is easy to prove that general tensors have high rank and border rank.
But it is extremely hard to find explicit examples. In particular, it is not
known how to provide examples of complex n× n× n tensors T with either

• rank greater than 3n, or

• border rank greater than 2n.

By Exercise 12, a general tensor in Kn×n×n has border rank quadratic in n.
We offer a case study on tensor ranks in the case visualized in Figure 1.

Example 9.21 (3 × 3 × 3 tensors). Fix an algebraically closed field K.
Tensors of format 3 × 3 × 3 are points in the projective space P26. The 6-
dimensional Segre variety X = P2×P2×P2 consists of all tensors of rank 1.
Tensors of rank 2 form the variety σ2(X), which has dimension 13 and degree
783. Its ideal is generated by the 3×3-minors of the three flattenings. These
flattenings are 3 × 9-matrices, like

[
A |B |C

]
where A = (tij1), B = (tij2),

C = (tij3) are the 3×3 matrices that are obtained as the slices in our Rubik’s
cube. These 3× 3-minors span a space of cubics that has dimension 222.

The variety σ3(X) of rank 3 tensors has dimension 20. Its ideal is gen-
erated by a collection of quartic polynomials, namely the entries of the
3×3-matrices A ·adj(B) ·C−C ·adj(B) ·A, where we allow all possible ways
of slicing the tensor. Finally, there is the variety σ4(X) of rank 4 tensors.
This is a hypersurface of degree 9 in P26. Its defining polynomial is known
as the Strassen invariant. The Strassen invariant can be computed as

det(B)2 · det
(
A ·B−1C − C ·B−1A

)
.

The expression has 9216 terms and it is independent of the choice of slicing.
The fifth secant variety σ5(X) is equal to P26. In other words, the set of
tensors of rank ≤ 5 is dense in the space of all 3× 3× 3 tensors.

We now restrict the rank stratification to the space of symmetric tensors.

Example 9.22 (Ternary Cubics). Symmetric 3×3×3 tensors T are ternary
cubics, that is, homogeneous polynomials of degree three in three variables.
We regard them as points in P9 = P(Sym3(K

3)). Their ranks coincide with
their symmetric ranks, i.e. Comon’s Conjecture is true in this tiny case.

The three flattenings
[
A |B |C

]
in Example 9.21 are now all equal. After

removing redundant columns, this becomes a 3×6 matrix, known as Hankel
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matrix or catelecticant. The ideal of 2 × 2-minors of the Hankel matrix is
generated by the 27 binomial quadrics seen for A = 3∆2 in Example 8.18.
Its variety is the Veronese surface X ' P2 whose points in P9 are the cubics
of rank 1. The secant variety σ2(X) has dimension 5, its points are cubics of
rank ≤ 2, and it is defined by the 3×3 minors of the Hankel matrix. Finally,
the variety σ3(X) of rank 3 cubics is a quartic hypersurface in P9. Its defining
polynomial is the classsical Aronhold invariant. This has 25 terms and it can
be obtained by specializing any of the entries of A ·adj(B) ·C−C ·adj(B) ·A.

We have already discussed the distinction between complex rank and
real rank. A further refinement of the latter is the notion of nonnegative
rank. This very important in applications, e.g. in statistics, where one deals
with probabilities. A tensor T = (ti1i2···id) is called nonnegative if its entries
ti1i2···id are all nonnegative. A nonnegative rank of a nonnegative tensor T
is the minimal number r of nonnegative rank one tensors that sum up to T .
In generally, nonnegative rank is larger than real rank, even for matrices.

9.3. Matrix Multiplication

The multiplication of two matrices is a bilinear operation. In this section
we identify this operation with a very special tensor. We will use this to
explain how tensors may be regarded as computational problems, tensor
decompositions as algorithms, and tensor rank as a complexity measure.

Determining the rank of a tensor is an important computational problem
in non-linear algebra. In general one cannot hope for an efficient solution,
as it is NP-hard [27]. However, special cases are of particular interest. The
most well-known and important one is the matrix multiplication tensor.

Let Mata,b ' Ka×b be the space of a × b matrices over a field K. The
operation of matrix multiplication is a bilinear map Mata,b × Matb,c →
Mata,c. Hence, matrix multiplication is an element of the vector space

Hom(Mata,b ×Matb,c,Mata,c) = Mat∗a,b ⊗Mat∗b,c ⊗Mata,c.

This is a canonical isomorphism. We write Ma,b,c for the element in the
tensor space on the right hand side. This special three-way tensor is the
matrix multiplication tensor. To simplify notation we write Mn := Mn,n,n

for the tensor that represents the multiplication of two square matrices.

Let {eij}, {fjk} and {gik} be the standard bases of the spaces Mat∗a,b,
Mat∗b,c and Mata,c. Thus gik is the a×c matrix whose entries are zero except
for a one in row i and column k. The other two bases are dual to such matrix
units. The matrix multiplication tensor has the following representation:

(9.15) Ma,b,c =

a,b,c∑

i=1,j=1,k=1

eij ⊗ fjk ⊗ gik.
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Another presentation is suggested in Exercise 13.

Example 9.23. Consider the tensor M2 that represents multiplication of
2×2 matrices. Fixing the ordered basis (e00, e01, e10, e11) for Mat2,2 ' K4,
we can write M2 explicitly as a 4×4×4 tensor with entries in {0, 1}. Among
the 64 entries in this tensor, there are precisely eight ones and 56 zeros.

The rank one decomposition of the tensor Ma,b,c given in (9.15) can be
interpreted as an algorithm for computing the product of the two matrices:

• To carry out matrix multiplication, one needs to add abc partial
results labelled by (i, j, k) in {1, . . . , a} × {1, . . . , b} × {1, . . . , c}.
• In step (i, j, k) one performs one multiplication. Namely, one mul-

tiplies the (i, j)-th entry of the first matrix with the (j, k)-th entry
of the second. The result is stored in the (k, i)-th entry of the third.

This is the familiar classical algorithm for multiplying two matrices. It
performs abc − 1 additions and abc multiplications. For a = b = c = n, its
running time is O(n3). We note that the number of multiplications is exactly
equal to the number of rank one tensors appearing in the decomposition.

What if we presentMa,b,c in a different way? Could it be that the number
of multiplications we need is smaller than abc. Equivalently, is the rank of
Ma,b,c smaller than abc? Half a century ago, Volker Strassen set out on the
quest to prove that this is not possible. He quickly realized that the case
of arbitrary a, b, c is extremely hard and focused on the first nontrivial case
a = b = c = 2. For that tensor, he discovered a most surprising formula:

(9.16)

M2 = (e11 + e22)⊗ (f11 + f22)⊗ (g11 + g22)
+ (e21 + e22)⊗ f11 ⊗ (g21 − g22)
+ e11 ⊗ (f12 − f22)⊗ (g12 + g22)
+ e22 ⊗ (f21 − f11)⊗ (g11 + g21)
+ (e11 + e12)⊗ f22 ⊗ (g12 − g11)
+ (e21 − e11)⊗ (f11 + f12)⊗ g22

+ (e12 − e22)⊗ (f21 + f22)⊗ g11.

Thus the rank of the matrix multiplication tensor M2 is less than 8. In fact,
it is known that the rank and border rank of M2 are both exactly 7. The
latter is a highly nontrivial statement. We are not aware of any easy proof.

Why could such a decomposition be interesting? It furnishes an algo-
rithm to multiply 2×2 matrices that adds seven partial results. We describe
only the first two, as we are sure the reader can reconstruct the other five:

(1) Add the (1, 1) entry to the (2, 2) entry of the first matrix and multi-
ply by the sum of the (1, 1) and (2, 2) entries of the second matrix.
Retain this in the (1, 1) and (2, 2) entries of the first partial result.
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(2) Add the(2, 1) entry of the first matrix to the (2, 2) entry and mul-
tiply by the (1, 1) entry of the second matrix. Put the result in the
(2, 1) entry and negated (2, 2) entry of the second partial result.

Computing each partial result requires only one multiplication. Although
we improved on the number of multiplications, we increased the number
of additions (and subtractions) to 21. Why should this be exciting? The
reason is that multiplication of 2× 2 matrices is not our final aim.

We would like to multiply very large matrices. Consider two 512× 512
matrices. How to multiply them? We may regard our matrices as 2 × 2
matrices with entries that are 256 × 256 matrices and apply Strassen’s Al-
gorithm! We will have to add a lot of 256× 256 matrices, but we only need
to perform seven mutliplications of such matrices. Further, these multipli-
cations may be done recursively applying the same algorithm, reducing to
multiplication of 128× 128 matrices, etc. Anyone who tried multiplying or
adding very large matrices knows that it is beneficial to trade mutliplication
even for many additions. This is in fact a theorem: the complexity of the
(optimal) algorithm to multiply matrices is governed by the rank of Mn.

The asymptotics of these quantities is measured by the constant

ω = inf {τ : the complexity of multiplying two n× n matrices is O(nτ )}
= inf {τ : rank of Mn = O(nτ )}.

This quantity is known as the exponent of matrix multiplication. The naive
algorithm shows that ω ≤ 3. However Strassen’s Algorithm, as described
above, gives ω ≤ log2 7. As matrices are of size n2, we also know that ω ≥ 2.

The central conjecture in this field says that the lower bound is attained:

Conjecture 9.24. The constant ω is equal to two.

The conjecture would imply that it is not much harder to multiply very
large matrices then to add them (or even output the result)! At this point
we note that our story is really relevant for scientific computing. Strassen’s
Algorithm is implemented and used in practice to multiply large matrices.

A careful reader might now have an idea how to proceed with a proof
of Conjecture 9.24. As Strassen looked at 2 × 2 matrices, we should focus
on larger matrices, say 3 × 3. The disappointing fact is that despite many
attempts, no one knows either the rank or the border rank of the 9× 9× 9
tensor M3. For the current best estimates we refer to [33, 34, 35, 48].

For each fixed n, deciding if rank (resp. border rank) of Mn is ≤ r means
deciding if Mn belongs to the image (resp. closed image) of a particular poly-
nomial map. Thus, the methods of Chapter 4 apply. However, as tensor
spaces are high-dimensional, such computations are impossible to carry out
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in practice, even for n = 3. What one can use instead is representation the-
ory, as described in Chapter 10. The optimal estimates for ω are beyond the
scope of this book. Currently we know 2 ≤ ω < 2.38. It is fascinating that
the upper bounds are based on border rank and nonconstructive methods:
one proves the existence of an algorithm without explicitly providing it.

In general, we lack methods to show that a tensor has high rank or high
border rank. To prove that ω > 2 we would need to show that the rank of

the tensor Mn ∈ Cn2⊗Cn2⊗Cn2
grows superlinearly with the dimension n2

of the space of matrices. However, we currently cannot even prove that any
(explicit) given tensor has rank greater than 3n2. Some methods to obtain
bounds for the rank of the tensor will be discussed in Section 10.3.

Exercises

(1) Fix the quadratic form Q in (9.1). Compute all the maxima and minima
of Q on the unit 2-sphere. Find all fixed points of the gradient map
∇Q : P2 → P2. How are these two questions related?

(2) Compute all fixed points of the map ∇B : P2 × P1 → P2 × P1 that is
given by the bilinear form B in (9.4). What are the singular vectors?

(3) Consider the 3× 3× 2× 2 tensor defined by the multilinear form T =
x1y1z1w1 +x2y2z2w2. Determine all quadruples of singular vectors of T .

(4) For d = 2, 3, 4, pick random symmetric tensors of formats d×d×d and
d×d×d×d with entries in R. Compute all eigenvectors of your tensors.

(5) Prove Theorem 9.6.

(6) Find an explicit real 3×3×3×3 tensor with precisely 13 real eigenvectors.

(7) Find the number of singular vector tuples for your tensors in Problem 4.

(8) Compute the eigendiscriminants for symmetric tensors of format 2 × 2
and 2× 2× 2 and 2× 2× 2× 2. Write them explicitly as homogeneous
polynomials in these entries of an unknown tensor.

(9) Prove that the rank of the W -state equals three. Hint: Show that the
polynomial system W = T described in Example 9.15 has no solution.

(10) Show that the Zariski closure of the set of tensors of rank two in R2⊗R2⊗
R2 is the whole space. Hint: Use the Jacobian of the parametrization.

(11) Find the equation of the tangential variety to P1 × P1 × P2 in P11.

(12) Prove that in Cn ⊗ Cn ⊗ Cn:
(a) there exists a tensor of border rank at least 1

3n
2,

(b) every tensor has rank at most n2.
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(13) Linear maps from V1 to V2 are identified with tensors in V ∗1 ⊗ V2. The
composition of linear maps in V1 → V2 → V3 may be regarded as a map

(V ∗1 ⊗ V2)× (V ∗2 ⊗ V3)→ (V ∗1 ⊗ V3).
Hence, the matrix multiplication tensor MdimV1,dimV2,dimV3 belongs to

(V ∗1 ⊗ V2)∗ ⊗ (V ∗2 ⊗ V3)∗ ⊗ (V ∗1 ⊗ V3) = (V1 ⊗ V ∗1 )⊗ (V2 ⊗ V ∗2 )⊗ (V3 ⊗ V ∗3 ).

(a) How to interpret MdimV1,dimV2,dimV3 as an element of the last space?
Do not refer to the basis, but only linear maps Vi → Vi. Hint: The
identity map is a distinguished element in V ∗i ⊗ Vi.

(b) Provide a natural isomorphism Mat∗a,b ' Matb,a.

(c) The tensor Ma,b,c can also be identified with a trilinear map

Mata,b ×Matb,c ×Matc,a → K.

Describe this trilinear map without referring to coordinates.

(14) The matrix multiplication tensor M2,2,3 has format 4×6×6. Write this
tensor explicitly in coordinates. What do you know about its rank?

(15) Expand the Aronhold invariant and the Strassen invariant in monomials.

(16) Compute the ideal of the secant variety σ2(X) where X = P1 × P2 × P2

is the Segre variety in P17. How about the same question for σ3(X)?

(17) How can you test whether a complex 4× 4× 4 tensor has rank ≤ 4?



Chapter 10

Representation Theory

Symmetry is the key to many applications and computations. While this is
true across the mathematical sciences, it is especially pertinent in nonlinear
algebra. In its most basic form, symmetry is expressed via the action of
a group acting linearly on a vector space. The study of such actions is
the subject of representation theory. For instance, the symmetric group on
n + 1 letters acts on n-dimensional space by the rotations and reflections
that fix a regular n-simplex. The map that takes each group element to
its associated n × n matrix is the representation of the group. The matrix
representations of the groups we study here can be simultaneously block-
diagonalized. The blocks are irreducible representations. Identifying these
blocks is tantamount for exploiting symmetry in explicit computations. Our
objective in this chapter is to give a first introduction to representation
theory.

10.1. Irreducible Representations

The most important groups we study in this chapter are:

• GL(V ) = GL(dimV ) — the group of linear isomorphisms of a
finite-dimensional vector space V . This group has the structure of
an algebraic variety, given by Exercise 8 in Chapter 2.

• SL(V ) = SL(dimV ) — the group of volume– and orientation–
preserving linear automorphisms of V , with the structure of an
algebraic variety given by the equation detA = 1;

• Sn — the group of permutations of a set with n elements; this is an
algebraic variety consisting of n! distinct points in GL(n), namely
the n× n permutation matrices.

139



140 10. Representation Theory

The groups that we consider have two structures: of an abstract group and
of an algebraic variety. We note that basic group operations, like inverse
or group action, are in fact morphisms of algebraic varieties. We call such
groups algebraic. In what follows, we restrict our attention to algebraic
groups and morphisms between them that are both group morphisms and
morphisms of algebraic varieties. We work over an algebraically closed field
K of characteristic zero.

In general, the following strategy to study an object can be very power-
ful:

• consider all maps from (resp. to) this object into (resp. from) an-
other basic object.

This general approach could be seen as motivation to study homotopy, ho-
mology or the theory of embeddings. For groups, we obtain the following
central definition.

Definition 10.1. A representation of a group G is a morphism G→ GL(V ).

Given a representation ρ : G → GL(V ), every element of g induces a
linear map ρ(g) : V → V . It is useful to think about a representation as a
map G× V → V with the notation

gv := ρ(g)(v) ∈ V.
Here, we have the natural compatibilities

(g1g2)v = g1(g2v) and g(λv1 + v2) = λgv1 + gv2,

where λ ∈ K, v, v1, v2 ∈ V and g, g1, g2 ∈ G. We say that the group G acts
on the vector space V . If the action follows from the context then we call
V a representation of G.

Example 10.2. The groups GL(n) and SL(n) act (by linear change of

coordinates) on the space V = K[x1, . . . , xn]k ' K(n+k−1
k ) of homogeneous

polynomials of degree k in n variables. Using the monomial basis on V ,
the representation ρ maps a small matrix, of size n × n, to a large matrix,
with rows and columns indexed by monomials of degree k. The entries in
that large matrix are homogeneous polynomials of degree k in the entries
of the small matrix. We recommend working this out for n = k = 2. This
representation ρ of GL(n) plays an important role in classical Invariant
Theory, the topic to be studied in the next Chapter 11.

A morphism f between representations ρ1 : G→ GL(V1) and ρ2 : G→
GL(V2) is a linear map f : V1 → V2 that is compatible with the group action:

f(ρ1(g)(v)) = ρ2(g)(f(v)) for all g ∈ G and v ∈ V1.
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This can also be written as f(gv) = gf(v). The kernel and cokernel of f is
also a representation of G—cf. Exercise 3.

Our first aim is to describe the basic building blocks of representations.

Definition 10.3. A subrepresentation of a representation V of a group G
is a linear subspace W ⊂ V such that the action of G restricts to W , i.e.

gw ∈W for all w ∈W and g ∈ G.

For any representation V , the subspaces 0 and V are always subrepre-
sentations.

Definition 10.4. A representation V is called irreducible if and only if 0
and V are its only subrepresentations.

We next show that there are no nonzero morphisms between nonisomor-
phic irreducible representations.

Lemma 10.5 (Schur’s Lemma). Let V1 and V2 be irreducible representations
of a group G. If f : V1 → V2 is a morphism of representations then either
f is an isomorphism or f = 0. Further, any two isomorphisms between V1
and V2 differ by a scalar multiple.

Proof. Both the kernel ker f and the image im f are representations. As V1
is irreducible, either ker f = V1 or f is injective. In the latter case, im f ' V1
is a nontrivial subrepresentation of V2, hence f is also surjective, i.e. it is a
linear isomorphism. The inverse of f , as a linear map, is also the inverse as
morphism of representations.

For the last part, consider two isomorphisms f1 and f2. We may assume
that f1 is the identity on V1. If v is the eigenvector of f2 with eigenvalue
λ ∈ K then

f2(v) = λv = λf1(v).

Consider the morphism of representations f := f2 − λf1. Clearly, v ∈ ker f .
Hence, by the first part, f2 − λf1 is the zero map, and hence f2 = λf1. �

Theorem 10.6 (Maschke’s theorem). Let V be a finite-dimensional repre-
sentation of a finite group G. There exists a direct sum decomposition

V =
⊕

Vi,

where each Vi is an irreducible representation of G.

Remark 10.7. We recall that we work under the assumption that the field
is algebraically closed and of characteristic zero, which makes representation
theory much better behaved. Representation theory in finite characteristic
is considerably more complicated.
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Proof of Theorem 10.6. By induction on the dimension, it is enough to
prove the following statement: if W is a subrepresentation of V , then there
exists a subrepresentation W ′ such that V = W ⊕W ′.

Let π : V →W be any linear (surjective) projection. Let π̃ : V →W be
defined by:

π̃(v) =
1

|G|
∑

g∈G
ρ(g)|W ◦ π ◦ ρ(g)−1.

We note that π̃ is a morphism of representations and V = W ⊕ ker π̃. �

Remark 10.8. The existence of decomposition into irreducible components
holds not only for finite groups. It also holds for GL(n) and SL(n). One
possible proof is similar to the one above and is known as the unitarian
trick. It was introduced by Hurwitz and generalized by Weyl.

A representation of an arbitrary group that allows such a decomposition
is called semi-simple or completely reducible. If all representations of G have
this property then the group G is called reductive.

Example 10.9. The group G = (C,+) is not reductive. Indeed, let us
consider the following representation:

G 3 a→
(

1 a
0 1

)
∈ GL(2).

Clearly, the one dimensional subspace of C2 spanned by the second basis
vector is invariant under the group action. However, it does not allow a
complement - cf. Exercise 13.

The decomposition into irreducible representations in Maschke’s Theo-
rem is not unique. The following example makes this clear.

Example 10.10. Any group G acts on any vector space V trivially by
gv = v. Any subspace of V is a subrepresentation. The irreducible subrep-
resentations are the 1-dimensional subspaces of V . Hence, any decomposi-

tion into 1-dimensional subspaces V =
⊕dimV

i=1 K1 is a decomposition into
irreducible representations, but there is no distinguished one.

As we will see, the reason for nonuniquness, is the fact that distinct
Vi’s appearing in the decomposition may be isomorphic. Let us group the
isomorphic Vi’s together obtaining:

(10.1) V =
⊕

V
×aj
j ,

where Vj0 ' Vj1 if and only if j0 = j1. The subrepresentations V
×aj
j are

called isotypic components. The number aj is the multiplicity of the irre-
ducible representation Vj in V .
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Corollary 10.11 (to Schur’s Lemma). The isotypic components and mul-
tiplicities of a semi-simple representation V are well defined, i.e. do not
depend on the choice of the decomposition into irreducible representations.

Proof. Consider two decompositions:

V =
⊕

j

V
×aj
j =

⊕

k

V ×bkk .

Allowing aj , bk to be equal to zero, we may assume that all irreducible
representations occur and that the indexing in both sums

⊕
is the same.

First we prove that for a given irreducible representation Vi we have ai = bi.
The restriction of identity gives us an injective map:

m : V ×aii →
⊕

k

V ×bkk .

By Schur’s Lemma, the composition of m with the projection

πs :
⊕

k

V ×bkk → V ×bss

equals zero, unless s = i. Hence, imm ⊂ V ×bii . In particular, by dimension
count, ai ≤ bi. Analogously bi ≤ ai, i.e. the multiplicities do not depend
on the decomposition. Further, the composition πs ◦m is an isomorphism
if s = i and is zero if s 6= i. It follows that imm = V ×bii . Thus, the identity
maps isotypic components to (the same) isotypic components. �

Our next aim is to understand the irreducible representations of a given
group G. The following definition provides us with the most important tool.

Definition 10.12 (Character). Let ρ : G → GL(V ) be a representation
of G. The character χρ = χV of ρ is the function G → K obtained by
composing ρ with the trace function Tr:

χρ(g) = Tr(ρ(g)).

The analogy to characters studied in Chapter 8 will be presented in
Remark 10.14.

Properties of the trace of a square matrix imply the following about
characters:

• If V =
⊕
Vi then χV =

∑
χVi .

• If g1 and g2 are conjugate elements of G, then χ(g1) = χ(g2) for
any character χ.

• If V1, V2 are representations with characters χ1, χ2 then their tensor
product V1 ⊗ V2 is also a representation, and its character is the
product χ1χ2.
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• We have χV (e) = dimV , where e ∈ G is the neutral element.

For a finite group G, we fix the following scalar product on the complex
vector space CG of all functions from G to C:

(10.2) 〈χ1, χ2〉 :=
1

|G|
∑

g∈G
χ1(g)χ2(g).

It turns out that characters of all irreducible representations of G are or-
thonormal with respect to this scalar product. For details we refer to Serre’s
book [45, Chapter 2]. In particular, the characters of irreducible represen-
tations are linearly independent elements in CG. Hence, we can find the
multiplicities aj in the isotypic decomposition V =

⊕
j V

aj
j by decomposing

the character:

χV =
∑

j

ajχj .

For any finite group G there are finitely many irreducible representations -
the sum of squares of their dimensions equals the order of the group [45,
Chapter 2.5, Corollary 2]. A class function is a function G → K that
is constant on conjugacy classes. Characters in fact form a basis of the
space of class functions. Often (all) characters are represented in a table,
which makes the decomposition very easy, if we know the character of a
representation.

Example 10.13. Consider the group S3 of permutations of three elements.
There are three conjugacy classes: the class of identity (with one element),
the class of a 3-cycle (with two elements) and the class of any transposition
(with three elements). Hence, there are three irreducible representations.
The first is the trivial representation gv = v, the second is the sign repre-
sentation gv = (sgn g)v, and the third is the two-dimensional representation,
given by the symmetries of a regular triangle. Each column in the table be-
low represents a function S3 → C that is constant on conjugacy classes. We
present the character table for the symmetric group S3:

Trivial representation Sign repr. 2-dimensional repr.
identity 1 1 2

cycles (ijk) 1 1 −1
transpositions (ij) 1 −1 0

.

The reader should make sure to check these functions are orthonormal with
respect to the inner product (10.2). In fact, one builds the character table
of a finite group by exploiting the orthonormality of the columns. In this
manner, one obtains the 5× 5 character table for S4 and the 7× 7 character
table for S5.
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These ideas generalize to GL(n) and SL(n). In this cases, we cannot
represent the characters by tables as there are infinitely many conjugacy
classes. However, we can represent each character χ by its values on the
Zariski dense subset of diagonalizable matrices. Hence, we fix a torus T =
(K∗)n ⊂ GL(n) and restrict the character to T . As χ is constant on any
conjugacy class and any diagonalizable matrix is conjugate to an element of
T , the function χ|T characterizes χ. Therefore, given any representation W
of GL(n), we restrict the group and regard W as a representation of T . By
Exercise 1 and Corollary 10.11 we know that, as a representation of T , the
space W decomposes:

(10.3) W =
⊕

b∈Zn
W ab

b ,

where t = (t1, . . . , tn) takes w to tbw for w ∈Wb. The isotypic components
W ab

b for the T -action are called weight spaces. The characters b of T for
which ab 6= 0 are called weights.

Remark 10.14. Let T be the torus of diagonal matrices t = diag(t1, . . . , tn)
in GL(n). If χ is a character of GL(n) then its restriction to T is the function
χ|T : T → K, t 7→ Tr(ρ(t)). Here Tr denotes the trace of a (large) square
matrix. The restricted character χ|T equals

χ|T (t) =
∑

b∈Zn
abtb.

This Laurent polynomial in t1, . . . , tn is invariant under permuting its n
unknowns.

Example 10.15. Following Example 10.2, we consider the action of GL(n)
on homogeneous polynomials of degree k. Let χ be its character. Then χ|T
is the complete symmetric polynomial of degree k, i.e., χ|T (t) is the sum of
all monomials ta where a ∈ Nn and |a| = k.

Example 10.16. The group GL(n) acts naturally on the kth exterior power

V =
∧kKn. Write ρ for this representation and χ for its character. We

identify V with K(nk) by fixing the standard basis
{
ei1 ∧ · · · ∧ eik : 1 ≤

i1 < · · · < ik ≤ n
}

. The image ρ(g) of an n × n-matrix g = (gij) is the
kth compound matrix or kth exterior power, whose entries are the (suitably
signed) k × k minors of g. We note that the determinant of ρ(g) equals

det(g)(
n−1
k−1). The restricted character χ|T (t) is the kth elementary symmetric

polynomial in t1, . . . , tn.

For a concrete example, let k = 2. Then ρ(g) is the
(
n
2

)
×
(
n
2

)
matrix

whose rows and columns are labeled by ordered pairs from {1, 2, . . . , n}, and
whose entry in row (i < j) and column (k < l) equals gikgjl − gilgjk. We
have det(ρ(g)) = det(g)n−1 and χ|T (t) =

∑
i<j titj . For k = 1 we have
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ρ(g) = g, so χ|T (t) = t1 + t2 + · · · + tn. Finally, for k = n, we get the one
dimensional representation where ρ(g) is the 1×1-matrix with entry det(g),
so we have χ|T (t) = t1t2 · · · tn. The latter gives the trivial representation
when restricted to SL(n).

Let ρ be any representation of GL(n). We fix the lexicographic order on
the set of weights b that occur in ρ. Of particular importance is the highest
weight . The corresponding eigenvectors w ∈Wb in (10.3) are called highest
weight vectors. They span the highest weight space. In Example 10.15,
the highest weight is (d, 0, . . . , 0) ∈ Zn, and a highest weight vector is the
monomial xd1. In Example 10.16, the highest weight is (1, . . . , 1, 0, . . . , 0),
and a highest weight vector is e1∧· · ·∧ek. In both cases, the highest weight
space is 1-dimensional. We note that the highest weight vector does not
depend on n, provided it exists (e.g. n ≥ k in the exterior power case).

Example 10.17 (Adjoint representation). The space V = Kn×n of n × n
matrices M forms a representation of GL(n) under the action by conju-
gation, where ρ(g)(M) := gMg−1. This is the adjoint representation.
The weights, known as roots in this case, are ti/tj with the highest weight

(1, 0, . . . , 0,−1). If we restrict it to SL(V ) we have t−1n =
∏n−1
i=1 ti and the

highest weight becomes (2, 1, . . . , 1) ∈ Zn−1. Again, the highest weight space
is 1-dimensional.

The following result provides a characterization of irreducible represen-
tations.

Proposition 10.18. Every irreducible representation of SL(V ) is deter-
mined (up to isomorphism) by its highest weight, and the highest weight
space is 1-dimensional. A weight (a1, . . . , an−1) ∈ Zn−1 is the highest weight
for some irreducible representation if and only if a1 ≥ a2 ≥ · · · ≥ an−1 ≥ 0.

Proof. For the proof we refer to [22, Chapter 15]. �

Here is a combinatorial tool for building irreducible representations from
highest weights:

Definition 10.19. A Young diagram with k-rows is a nonincreasing se-
quence of k positive integers. It is usually presented in the following graph-
ical form, e.g. for a sequence (2, 1, 1):

.

This particular Young diagram encodes the weight (2, 1, 1). For SL(4) it
represents the adjoint representation. We note that for SL(5) the same
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Young diagram would not represent the adjoint representation, however the
highest weight vector would be the same.

Proposition 10.18 tells us that the irreducible representations of SL(n)
are in bijection with the Young diagrams with at most n − 1 rows. Rep-
resentations of GL(n) are not very different: first, every irreducible repre-
sentation V of GL(n) is also an irreducible representation of SL(n), so it
has a corresponding Young diagram λ. However, different representations
of GL(n) give the same representation of SL(n) if they differ by a power of
the determinant. Precisely, consider a representation ρ : SL(n) → GL(V )
with associated Young diagram λ. We have the following representations of
GL(n) for any a ∈ Z:

ρa(g) := (det g)a · n
√

det g · ρ
( 1
n
√

det g
· g
)
.

Here, the argument of ρ is in SL(n). The irreducible representations of
GL(n) are in bijection with pairs of: a Young diagram with at most n rows
and an integer a ∈ Z.

The 1-dimensional representation g 7→ det(g) of GL(n) corresponds to a
Young diagram with one column and n rows. Thus for a ≥ 0 the representa-
tion ρa may be represented by a Young diagram λ extended by a columns of
height n. The representation of GL(U) corresponding to a Young diagram
λ is denoted by Sλ(U).

Given a Young diagram λ, we write χλ for character of the irreducible
representation Sλ(U). This is a symmetric polynomial in t = (t1, . . . , tn),
known as the Schur polynomial of λ. Schur polynomials include the complete
symmetric polynomials in Example 10.15, for λ = (n), and the elementary
symmetric polynomials in Example 10.16, for λ = (1, 1, . . . , 1).

Here is an explicit formula for Schur polynomials.

Proposition 10.20. The Schur polynomial for λ is the following ratio of
n× n determinants:

χλ(t) =
det
(
t
λj+n−j
i

)
1≤i,j≤n

det
(
tn−ji

)
1≤i,j≤n

.

If λ has less than n rows, we extend it by zeros.

We can find the decomposition (10.1) of a representation V into irre-
ducibles by writing the character χV as linear combination of Schur func-
tions χλ with nonnegative integer coefficients aj . These coefficients are the
multiplicities. This expression is unique because the Schur polynomials form
a Z-linear basis for the ring of symmetric polynomials in n variables.
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Example 10.21. Let n = 3. The Schur polynomial for λ = (λ1, λ2, λ3) is
the ternary form

χλ(t) =
1

(t1 − t2)(t1 − t3)(t2 − t3)
· det



tλ1+2
1 tλ2+1

1 tλ31
tλ1+2
2 tλ2+1

2 tλ32
tλ1+2
3 tλ2+1

3 tλ33


 .

From this, we compute the three Schur polynomials of degree |λ| = 3 as
follows:

χ(3,0,0) = t31 + t21t2 + t1t
2
2 + t32 + t21t3 + t1t2t3 + t22t3 + t1t

2
3 + t2t

2
3 + t33

χ(2,1,0) = (t1 + t2)(t1 + t3)(t2 + t3)
χ(1,1,1) = t1t2t3

The action of GL(3) on U = K3 induces an action on the 27-dimensional
space U⊗3 of 3×3×3-tensors. As characters are multiplicative under tensor
product, its character equals

χU⊗3 = (t1 + t2 + t3)
3 = χ(3,0,0) + 2 · χ(2,1,0) + χ(1,1,1).

From this decomposition into Schur polynomials, we conclude the irreducible
decomposition

(10.4) U⊗3 = S(3)(U) ⊕
(
S(21)(U) ⊕ S(21)(U)

)
⊕ S(111)(U).

The first summand is the symmetric tensors, the last summand is the an-
tisymmetric tensors, and the middle summand consists of two copies of the
adjoint representation (Example 10.17).

The irreducible representations Sλ(U) of SL(U) come together with nice
algebraic varieties. The group SL(U) acts also on the projective space
P(Sλ(U)). The letter action has unique closed orbit, namely the orbit of
the highest weight vector. Particular examples are:

(1) The orbit of [e1 · · · e1] ∈ P(Sk(U)). This is the k-th Veronese em-
bedding of P(U).

(2) The orbit of [e1∧· · ·∧ek] ∈ P(∧k(U)) is the Grassmannian G(k, U)
in its Plücker embedding. Here λ = (1, . . . , 1) as in Example 10.16.

This result provides us with a unified approach to homogeneous varieties.
It could be also used to build some of the representations. Fix a Young
diagram λ and let kλ be a Young diagram where each row is scaled by k.
Given the homogeneous varietyX in P(Sλ(U)) we can take the k-th Veronese
map vk of this projective space and the linear span of vk(X) is Skλ(V ). A
special case of this construction is point (1) above where X = P(U).



10.2. Schur-Weyl Duality 149

10.2. Schur-Weyl Duality

In this section we present a beautiful connection between finite groups - Sn
and Lie groups - SL(n) or GL(n). This is the Schur-Weyl duality. We refer
readers interested in the topic to [22, Chapter 4].

Before stating it let us go back to irreducible representations of Sn. Their
characters form a basis of class functions. Hence the number of irreducible
representations equals the number of conjugacy classes. Each conjugacy
class can be encoded by lengths of cycles in a decomposition of a permutation
into cycles. These can be further represented by a Young diagram with n
boxes: the first row represents the length of the longest cycle, the last of the
shortest. Thus, the number of irreducible representations of Sn equals the
number of Young diagrams with n boxes.

Example 10.22. For S3 we have three conjugacy classes:

• Identity (1)(2)(3) with the Young diagram ;

• Transpositions, e.g. (12)(3) with the Young diagram ;

• 3-cycles, e.g. (123) with the Young diagram .

We shall exhibit a natural bijection between Young diagrams with n
boxes and irreducible representations of Sn. Before we see how to construct
it, let us assume that to each such Young diagram λ we can associate a
representation Sλ of Sn.

Fix a vector space U and consider the n-fold tensor product U⊗n. There
are two groups acting on it: GL(U) - on each factor - and Sn - by permuting
factors. Schur-Weyl duality provides a simultaneous decomposition of the
space of tensors with respect to both groups.

Theorem 10.23 (Schur-Weyl duality). Let U be a vector space of dimension
at least n. Then

(10.5) U⊗n =
∑

|λ|=n
Sλ ⊗ Sλ(U),

where the sum is over all Young diagrams with precisely n boxes.

When n = 2 and dimU ≥ 2 we obtain U⊗2 = S2(U) ⊕ ∧2 U , as there
are only two irreducible representations of S2, both 1-dimensional. This
recovers the fact every n × n matrix is uniquely the sum of a symmetric
matrix and a skew-symmetric matrix. The S2 action on the matrix space
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U⊗2 is transposition, which acts trivially on S2(U) and changes the sign on∧2 U .

The case n = 3 is the first interesting one. The three irreducible rep-
resentations Sλ of S3 in Example 10.13 correspond to the three outer sum-
mands in (10.4). Note that dim(Sλ) = 2 for λ = (2, 1). The middle sum-

mand in (10.4) is the 16-dimensional space S(21) ⊗ S(21)(U).

By Schur-Weyl duality, the multiplicity of Sλ(U) in U⊗n equals the di-
mension of Sλ. This provides us with a method for defining Sλ. Consider the
decomposition of U⊗n as a GL(U) representation, into isotypic components.
Here the aλ can be found using Schur functions:

U⊗n = ⊕λ(Sλ(U))aλ .

For each isotypic component (Sλ(U))aλ consider the highest weight space,
i.e. eigenvectors of the torus action with weight λ. The permutation group
Sn acts on the highest weight space. This representation of Sn is irreducible,
and we find that it is precisely Sλ.

Coming back to the example of matrices (n = 2), the highest weight
vectors are as follows:

• The highest weight vector e1e1 = e1⊗ e1 of S2(U) is invariant with
respect to transposition, i.e. it provides the trivial representation
of the two-element group S2.

• The highest weight vector e1 ∧ e2 = 1
2(e1 ⊗ e2 − e2 ⊗ e1) of ∧2(U)

changes sign when transposed, i.e. it provides the sign representa-
tion of the two-element group S2.

Example 10.24 (n = 3). Let λ = (2, 1). The isotypic component (S(21)(U))2

in the middle of (10.4) has a 2-dimensional subspace Sλ of highest weight vec-
tors. One possible basis of this space consists of the tensors e112+e211−2e121
and e121 + e211 − 2e112, where eijk := ei ⊗ ej ⊗ ek.

10.3. Exploiting Symmetry

In this section we will show how representation theory can guide us to ob-
tain lower bounds for complexity problems—precisely matrix multiplication
discussed in Chapter 9.3.

Let W1 = A∗ ⊗ B, W2 = B∗ ⊗ C, W3 = A∗ ⊗ C be respectively the
space of linear maps from A to B, from B to C and from A to C. For
simplicity, we assume dimA = dimB = dimC = n. Explicitly, we describe
ideas how to bound the border rank of the matrix multiplication tensor
Mn ∈ W ∗1 ⊗ W ∗2 ⊗ W3, following [36]. We note that Mn is an invariant
tensor with respect to the GL(A) × GL(B) × GL(C) action. It may be



10.3. Exploiting Symmetry 151

thought of as a morphism of representations:

Mn : B∗ ⊗ C → A∗ ⊗ C ⊗A⊗B∗.
The reader is encouraged to check that in the above map the C factor just
goes by the identity map. This was part of Exercise 13 in Chapter 9. Thus
it is essential to consider:

M ′n : B∗ → A∗ ⊗W ∗1
and Mn = M ′n⊗IdC . In terms of linear maps rkMn = n rkM ′n. Further, the
rank of Mn as a tensor is bounded below by the rank of Mn as a linear map.
This gives the trivial bound rkMn ≥ n2. The problem with this approach
is that M ′n is represented as a nonsquare n × n2 matrix, hence obtaining
good lower rank bounds seems impossible. This is where representations
come into play. First we turn M ′n into much larger matrix by tensoring with∧kW ∗1 :

Mn ⊗ id∧kW ∗1 : B∗ ⊗
k∧
W ∗1 → A∗ ⊗W ∗1 ⊗

k∧
W ∗1 .

The new map is represented by an n
(
n2

k

)
× n2

(
n2

k

)
matrix. This is still far

from a square matrix. The next idea is to consider an equivariant projection:

W ∗1 ⊗
∧kW ∗1 →

∧k+1W ∗1 . Landsberg and Ottaviani find a subspace of W ∗1
on which M ′n composed with the above projection becomes injective. This
is also achieved via representation theory—for a more combinatorial proof
we refer to [34].

First, one identifies A ' Sn−1C2 and B∗ ' Sn−1C2 with the space of
homogeneous polynomials of degree n−1 in two variables. We have a natural
multiplication map: Sn−1C2 ⊗ Sn−1C2 → S2n−2C2. By Schur’s Lemma, or
simply by dualizing the map above, we obtain a 2n−1 dimensional subspace
S2n−2C2 inside W ∗1 . A direct computation reveals that indeed the induced
map:

B∗ ⊗
n−1∧

S2n−2C2 → A∗ ⊗
n∧
S2n−2C2

is injective, hence an isomorphism. In particular, the map:

n−1∧
S2n−2C2 ⊗B∗ ⊗ C → A∗ ⊗ C ⊗

(
n∧
S2n−2C2

)

has full rank equal to n2
(
2n−1
n−1

)
. To sum up the final map was obtained in

the following steps:

(1) Consider Mn as a tensor in the space W ∗1 ⊗W ∗2 ⊗W3.

(2) Restrict it to a special subspace C2n−1 ⊗W ∗2 ⊗W3.

(3) Represent it as a linear map W2 →W3 ⊗ C2n−1.

(4) Tensor the map by the identity map on
∧n−1C2n−1.
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(5) Contract the codomain through C2n−1⊗∧n−1C2n−1 → ∧nC2n−1.

(6) The result is the final map:

n−1∧
C2n−1 ⊗W2 →W3 ⊗

n∧
C2n−1.

The above procedure may be applied to any tensor, not only Mn. Irrespec-
tive of the choice of C2n−1 ⊂ W ∗1 the reader should check that a rank one

tensor gives rise to the final map of rank at most
(
2n−2
n−1

)
. Hence, we obtain

the following proposition.

Proposition 10.25 ([36]). The border rank of the tensor Mn is at least:

n2
(

2n− 1

n− 1

)
/

(
2n− 2

n− 1

)
= 2n2 − n

We stress the fact that there are many further applications of representa-
tion theory. In fact, the book of Serre [45] to which we referred several times
grew out of lectures for quantum chemists and physicists. For applications
in probability theory and statistics we refer to [16].

Exercises

(1) (a) Prove that, over an algebraically closed field, every irreducible rep-
resentation of an abelian group is 1-dimensional.

(b) Explain the correspondence between the characters of a torus T =
(C∗)n, as defined in Chapter 8, and the irreducible representations
of T .

(2) Derive the character table of the symmetric group S4. Hint:

12+12+22+32+32 = 24.

What is the geometric meaning of the 3-dimensional irreducible repre-
sentations?

(3) Let f : V1 → V2 be a morphism between two representations of a group
G.
• Prove that the kernel, image and cokernel of f are also representa-

tions.
• Prove that morphisms of two representations are closed under tak-

ing scalar multiples and sums, i.e. they form a vector space.

(4) Derive the character table of the symmetric group S5. Hint:

12+12+42+42+52+52+62 = 120.



Exercises 153

Can you write matrices ρ(g) for the 6-dimensional irreducible represen-
tation?

(5) Let V1 and V2 be two representations of a group G.
(a) Prove that linear morphisms Hom(V1, V2) have also a structure of

a representation. How can you characterize morphisms of represen-
tations inside Hom(V1, V2)?

(b) In terms of multiplicities of isotypic components of V1 and V2, what
is the dimension of the space of morphisms among these two repre-
sentations?

(c) Conclude that the multiplicity of an irreducible representation W in
V1 equals the dimension of morphisms of representations W → V1
(or equivalently of V1 →W ).

(6) Let V be a representation of GL(n). Its character χV is a Laurent

polynomial in t1, . . . , tn. Show that the vector spaces S2(V ) and
∧2 V

are also representations of GL(V ), and compute the characters χS2(V )

and χ∧2 V in terms of χV .

(7) Describe the 2-dimensional irreducible representation from Example 10.13
explicitly, by assigning a 2× 2 matrix to each of the six permutations of
{1, 2, 3}.

(8) Consider the representation ρ of GL(3) action on
∧3K6? What is the

highest weight? What is the associated Young diagram? Find the entries
of the 20× 20-matrix ρ(g).

(9) Is every 2× 2× 2 tensor the sum of a symmetric and a skew-symmetric
tensor?

(10) If U = Kn, what is the dimension of S (U)? Give a formula in terms
of n.

(11) What is the dimensions of the vector space S3(S3(K3))? Find a weight
basis. Write down the character of this representation of GL(3). Can
you decompose it into Schur polynomials?

(12) What are the orbits of points in the adjoint representation? Are they
closed? What is the dimension of a general orbit? What is the vanishing
ideal of such an orbit, e.g. for n = 3?

(13) Show that the representation C2 in Example 10.9 is not a sum of irre-
ducible representations.





Chapter 11

Invariant Theory

What is geometry? An answer to this question was proposed by Felix Klein’s
Erlanger Programm. According to Klein, a quantity is geometric if it is in-
variant under the action of an underlying group of transformations. Thus, in
short, geometry is invariant theory. For example, Euclidean geometry is the
study of quantities, expressed in the coordinates of points, that are invari-
ant under the Euclidean group. From the modern point of view, invariant
theory can be seen as a branch of representation theory. However, that view
does not do justice to the tremendous utility of invariant theory for dealing
with geometric objects. In particular, in algebraic geometry, invariants are
used to construct quotients of algebraic varieties modulo groups that act on
them. This results in a concise description of orbit spaces. The study of
such spaces is called Geometric Invariant Theory. Our aim in this chapter
is to give a first introduction to this theory, starting with actions by finite
groups.

11.1. Finite Groups

We fix the polynomial ring K[x] = K[x1, . . . , xn] over a field K of charac-
teristic zero. The group GL(n,K) of invertible n× n matrices acts on Kn.
This induces an action by G on the ring of polynomial functions on Kn.
Namely, if σ = (σij) is a matrix in GL(n,K) and f is a polynomial in K[x]
then σf is the polynomial that is obtained from f by replacing the variable
xi by the linear form

∑n
j=1 σijxj for i = 1, . . . , n.

Let G be a subgroup of GL(n,K). A polynomial f ∈ K[x] is an invariant
of the group G if σf = f for all σ ∈ G. We write K[x]G for the set of all
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such invariants. This set is a subring because the sum of two invariants is
again an invariant, and same for the product.

In this chapter we discuss two scenarios. In this section we consider
finite groups G, and in the next one we consider representations of nice,
i.e. reductive, infinite groups like SL(d,K) and SO(d,K). A celebrated
theorem of Hilbert shows that the invariant ring is finitely generated in this
case. After two initial examples, we begin by proving this for finite groups G.

Example 11.1. Let G be the group of n × n permutation matrices. The
invariant ring K[x]G consists of all polynomials f that are invariant under
permuting the coordinates, i.e.

f(xπ1 , xπ2 , . . . , xπn) = f(x1, x2, . . . , xn) for all permutations π of {1, 2, . . . , n}.
Such polynomials are called symmetric. The invariant ring K[x]G is gener-
ated by the n elementary symmetric polynomials E1, . . . , En. These are the
coefficients of the following auxiliary polynomial in one variable z:

(11.1) (z + x1)(z + x2) · · · (z + xn) = zn +

n∑

i=1

Ei(x)zn−i.

We also set E0 = 1. Alternatively, K[x]G can also be generated by the
power sums

Pj(x) = xj1 + xj2 + · · ·+ xjn for j = 1, 2, . . . , n.

The formulas that connect the Ei and the Pj are known as Newton’s Iden-
tities:
(11.2)

kEk =
∑k

i=1(−1)i−1Ek−iPi
and Pk = (−1)k−1kEk +

∑k−1
i=1 (−1)k−1−iEk−iPi for 1 ≤ k ≤ n.

Next, we provide geometric motivation to study the ring of invariants.
Suppose a group G acts on an n dimensional vector space Kn. Our aim
is to describe the space of orbits Q, i.e. a geometric object, which points
correspond to orbits. We are not claiming that such a space has always
a structure of a variety, but let us assume this for a moment. Following
the approach presented in Chapters 1 and 2 we try to describe Q through
polynomial functions on it. By assigning to a point an orbit to which it
belongs we expect a map Kn → Q. This provides us with a map from the
ring of polynomial functions K[Q] on Q to K[x]. Note that a function on Q
gives rise to a polynomial that is constant on the orbits of G. As invariants
are exactly the polynomial functions that are constant along G-orbits, we
see that K[Q] maps to K[x]G. Thus invariants offer an algebraic view on
the space of orbits. We may define Q as the spectrum of K[x]G. In the
quotient space Q = Kn//G, the (closed) points should correspond to the
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orbits. This interpretation is only informal, as the details are very subtle.
Note in particular, that we have not proved that indeed there is a bijection
between (closed) points of Q and orbits. Making it all precise is the aim of
Geometric Invariant Theory.

Example 11.2. For n = 2, consider the following representation of the
cyclic group of order 4:

(11.3) G =

{(
1 0
0 1

)
,

(
−1 0

0 −1

)
,

(
0 1
−1 0

)
,

(
0 −1
1 0

)}
.

These are the rotational symmetries of the square. Its invariant ring is
generated by

I1 = x21 + x22 , I2 = x21x
2
2 , I3 = x31x2 − x1x32.

These three invariants are algebraically dependent. Using their relation we
can write

(11.4) K[x1, x2]
G = K[I1, I2, I3] ' K[y1, y2, y3]/

〈
y21y2 − 4y22 − y23

〉
.

The spectrum of the ring (11.4) corresponds to the cubic surface in K3

defined by the equation y21y2 = 4y22 + y23. The points on this surface are in
one-to-one correspondence with the G-orbits on K2.

In what follows, let G be a finite subgroup of GL(n,K). One can create
invariants by averaging polynomials. The Reynolds operator, denoted by a
star, is

(11.5) ∗ : K[x] → K[x]G , f 7→ f∗ :=
1

|G|
∑

σ∈G
σf.

Each of the following properties of the Reynolds operator is easily verified:

Lemma 11.3. The Reynolds operators ∗ has the following three properties:

(a) The map ∗ is K-linear, i.e. (λf + νg)∗ = λf∗ + νg∗ for all f, g ∈
K[x] and λ, ν ∈ K.

(b) The map ∗ restricts to the identity on K[x]G, i.e. I∗ = I for all
invariant polynomials I.

(c) The map ∗ is a K[x]G-module homomorphism, i.e. (fI)∗ = f∗I for
all f ∈ K[x] and I ∈ K[x]G.

The following result from 1890 marks the beginning of Commutative
Algebra.

Theorem 11.4 (Hilbert’s Finiteness Theorem). The invariant ring K[x]G

of any finite matrix group G ⊂ GL(n,K) is finitely generated as a K-algebra.
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We present the proof under the hypothesis that K has characteristic
zero. However, the result holds for every field K. For a proof see [15]. This
is known as modular invariant theory.

Proof. Let IG = 〈K[x]G+〉 be the ideal in K[x] that is generated by all ho-
mogeneous invariants of positive degree. By Lemma 11.3 (a), every invariant
is a K-linear combination of symmetrized monomials (xa)∗. These homoge-
neous invariants are the images of monomials under the Reynolds operator.
Thus IG is generated by the set { (xa)∗ : a ∈ Nn\{0}}. By Hilbert’s Basis
Theorem 1.14, the ideal IG is finitely generated, so that a finite subset of a
in Nn suffices. In conclusion, there exist invariants I1, I2, . . . , Im such that
IG = 〈I1, I2, . . . , Im〉.

We claim that these m invariants generate the invariant ring K[x]G as
a K-algebra. Suppose the contrary, and let I be a homogeneous element
of minimal degree in K[x]G\K[I1, I2, . . . , Im]. Since I ∈ IG, we have I =∑m

j=1 fjIj for some homogeneous polynomials fj ∈ K[x] whose degrees are

all strictly less than deg(I).

Applying the Reynolds operator on both sides of the equation I =∑m
j=1 fjIj , we obtain

I = I∗ =
( m∑

j=1

fjIj
)∗

=
m∑

j=1

f∗j Ij .

Here we are using the properties (b) and (c) in Lemma 11.3. The new coef-
ficients f∗j are homogeneous invariants whose degrees are less than deg(I).

From the minimality assumption on the degree of I, we get f∗j ∈ K[I1, . . . , Im]

for j = 1, . . . ,m. This implies I ∈ K[I1, . . . , Im], which is a contradiction to
our assumption. This completes the proof of Theorem 11.4. �

Theorem 11.5 (Noether’s Degree Bound). If G is finite and char(K) = 0
then the invariant ring K[x]G is generated by homogeneous invariants of
degree ≤ |G|.

Proof. Let u = (u1, . . . , un) be new variables. For any d ∈ N, we consider
the expression

Sd(u,x) =
[

(u1x1 + · · ·+ unxn)d
]∗

= 1
|G|
∑

σ∈G
[
u1(σx1) + · · ·+ un(σxn)

]d
.

This is a polynomial in u whose coefficients are polynomials in x. Up to
a multiplicative constant, they are the invariants (xa)∗ where |a| = d. All
polynomials in u are fixed under ∗.

Consider the |G| expressions u1(σx1)+· · ·+un(σxn) , one for each group
element σ ∈ G. The polynomial Sd(u,x), up to a multiplicative constant,
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is the dth power sum of these expressions. The power sums for d > |G| are
polynomials in the first |G| power sums. Such a representation is derived
from Newton’s Identities (11.2). It implies that all u-coefficients of Sd(u,x)
for d > |G| are polynomial functions in the u-coefficients of Sd(u,x) for
d ≤ |G|. Hence all invariants (xa)∗ with |a| > |G| are polynomial functions
(over K) in the invariants (xb)∗ with |b| ≤ |G|. This proves the claim. �

We note that Example 11.2 attains Noether’s degree bound. The cyclic
group in that example has order 4, and the invariant ring requires a generator
of degree 4.

Our next theorem is a useful tool for constructing the invariant ring. It
says that we can count invariants by averaging the reciprocal characteristic
polynomials of the group elements.

Theorem 11.6 (Molien). The Hilbert series of the invariant ring K[x]G

equals

(11.6)
∞∑

d=0

dimK

(
K[x]Gd

)
zd =

1

|G|
∑

σ∈G

1

det(id− zσ)
.

The coefficient of zd in this formal generating function is the number of
linearly independent invariants of degree d.

Proof. See [51, Theorem 2.2.1]. �

Example 11.7. Consider the cyclic group G = Z4 in Example 11.2. For the
four matrices σ in Example 11.2, the quadratic polynomials det(id−zσ) are
(1−z)2, (1+z)2 and twice 1+z2. Adding up their reciprocals and dividing
by |G| = 4, we see that the Hilbert series of K[x]G is

(11.7)
1 + z4

(1− z2)(1− z4) = 1 + z2 + 3z4 + 3z6 + 5z8 + · · · .

This agrees with the Hilbert series of the ring on the right in (11.4), where
deg(y1) = 2 and deg(y2) = deg(y3) = 4. We see that every element of the
ring can be uniquely represented as a polynomial in y1 and y2 or y3 times
such a polynomial. One says that the ring is a free module with basis {1, y3}
over K[y1, y2]. This explains the numerator and denominator on the left of
(11.7), and it proves that I1, I2, I3 do indeed generate K[x]G.

11.2. Classical Invariant Theory

Hilbert’s Finiteness Theorem also holds for an infinite group G ⊂ GL(n,K)
that has a Reynolds operator ∗ satisfying the properties (a), (b) and (c) in
Lemma 11.3. This is the case when G is reductive. Indeed, homogeneous
polynomials of degree d in n variables form a representation K[x]d and
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K[x]Gd is a subrepresentation. If we know there exists a complementary

subrepresentation H such that H ⊕ K[x]Gd = K[x]d we may define ∗ as a
projection with kernel H. Summing over all possible d and extending ∗
linearly we obtain the Reynolds operator.

Corollary 11.8. Fix a reductive group G of n×n-matrices. If {g1, g2, . . . , gm}
is a set of homogeneous polynomials that generates the ideal IG then its im-
age {g∗1, g∗2, . . . , g∗m} under the Reynolds operator generates the invariant ring
K[x]G as a K-algebra.

Proof. Let M = 〈x1, . . . , xn〉 be the homogeneous maximal ideal in K[x],
and consider the finite-dimensional vector space IG/MIG. It has a ba-
sis of invariants since IG is generated by invariants. This means that
the Reynolds operator acts as the identity on IG/MIG. The images of
g1, g2, . . . , gm also span IG/MIG as a vector space, and hence so do the in-
variants g∗1, g

∗
2, . . . , g

∗
m. By Nakayama’s Lemma, we find that g∗1, g

∗
2, . . . , g

∗
m

generate the ideal IG. As in the proof of Theorem 11.4, we conclude that
g∗1, g

∗
2, . . . , g

∗
m generate the K-algebra K[x]G. �

Classical invariant theory was primarily concerned with the case when G
is a representation of the group SL(d,K) of d×d-matrices with determinant
1. Here d is an integer that is usually much smaller than n and K is a field
of characteristic zero. This means that G is the image of a group homo-
morphism SL(d,K) → GL(n,K). It is known that SL(d,K) is a reductive
group, i.e. there also exists an averaging operator ∗ : K[x]→ K[x]G which
has the same formal properties as the averaging operator of a finite group,
stated in Lemma 11.3.

That Reynolds operator ∗ can be realized either by integration or by
differentiating. In the first realization, one replaces the sum in (11.5) by an
integral. Namely, one takes K = C and one integrates over the compact
subgroup SU(d,C) with respect to Haar measure. The same kind of integral
also works in Theorem 11.6. If G = SL(d,C) then one can compute the
Hilbert series of the invariant ring by averaging reciprocal characteristic
polynomials.

An alternative to integrating with respect to Haar measure on SU(d,C)
is a certain differential operator known as Cayley’s Ω-process. This pro-
cess, which is explained in [51, Section 4.3], can also be used to transform
arbitrary polynomials into invariants.

A third method for computing invariants is plain old linear algebra. In-
deed, suppose we fix an integer d ∈ N and we seek a basis for the space K[x]Gd
of homogeneous invariants of degree d. We then pick a general polynomial
f of degree d with unknown coefficients, and we examine the equations
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σf = f for σ ∈ G. Each of these translates into a linear system of equa-
tions in the unknown coefficients of f . By taking enough matrices σ, we
obtain a linear system of equations whose solutions are precisely the invari-
ants of degree d. In the case when G is a connected Lie group, like SL(d,C),
one can replace the condition σf = f by requiring that f is annihilated by
the associated Lie algebra. Setting up these linear equations and solving
them is usually quite efficient on small examples. See [51, Section 4.5].

In what follows we take the matrix group to be an n-dimensional poly-
nomial representation of G = SL(d,K) for some d, n ∈ N. Each of these is a
direct sum of irreducible representations, one for each integer partition, as
seen in Chapter 10.

Example 11.9. Let U = (Kd)m be the space of d×m-matrices. Thus U is
the direct sum of m copies of the defining representation of G. The group
G acts on U by matrix multiplication on the left. This induces an action on
the ring K[U ] of polynomials in the entries of a d ×m matrix of variables.
If m < d then this action has no non-constant invariants. If m ≥ d then
the

(
m
d

)
maximal minors of the d×m matrix are invariants. This invariance

holds because the determinant of the product of two d × d-matrices is the
product of the determinants. It is known that the invariant ring K[U ]G is
generated by these

(
m
d

)
determinants. This result is the First Fundamental

Theorem of Invariant Theory; cf [51, Section 3.2].

Note that we already encountered the ring K[U ]G in Chapter 5. It is
the coordinate ring of the Grassmannian of d-dimensional subspaces in Km.
Thus, K[U ]G is isomorphic to a polynomial ring in

(
m
d

)
variables, modulo

the ideal of quadratic Plücker relations.

Arguably, the most important irreducible representations of the group
G = SL(d,K) are the p-th symmetric powers of the defining represen-
tation Kd, where p ∈ N. We denote such a symmetric power by V =
K[u1, . . . , ud]p = Symp(K

d). Its elements are homogeneous polynomials of

degree p in d variables. The G-module V has dimension n =
(
p+d−1
p

)
. The

monomials form a basis. The action of G on V is simply by linear change
of coordinates.

Example 11.10 (d=2, p=3). Fix the space V = Sym3(K
2) of binary cubics

(11.8) f(u1, u2) = x1u
3
1 + x2u

2
1u2 + x3u1u

2
2 + x4u

3
2.

The coefficients xi are the coordinates on V ' K4. The way we set things
up, the group SL(2,K) acts on this space by left multiplication, in its guise
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as the group G of 4× 4-matrices of the form
(11.9)

φ(σ) =




σ3
11 σ2

11σ12 σ11σ
2
12 σ3

12

3σ2
11σ21 σ2

11σ22 + 2σ11σ12σ21 σ2
12σ21 + 2σ11σ12σ22 3σ2

12σ22
3σ11σ

2
21 σ12σ

2
21 + 2σ11σ21σ22 σ11σ

2
22 + 2σ12σ21σ22 3σ12σ

2
22

σ3
21 σ2

21σ22 σ21σ
2
22 σ3

22.


 .

For σ ∈ G = SL(2,K), the determinant of this 4×4-matrix equals (σ11σ22−
σ12σ21)

6 = 1. The G-action on V is given by x 7→ φ(σ)x where x is
the column vector (x1, x2, x3, x4)

T . One invariant under this action is the
discriminant of the binary cubic f(u1, u2), which is

(11.10) ∆ = 27x21x
2
4 − 18x1x2x3x4 + 4x1x

3
3 + 4x32x4 − x22x

2
3.

It turns out that the discriminant generates the invariant ring, i.e. K[x]G =
K[∆].

Invariants of binary forms (d = 2) are a well-studied subject in invariant
theory. Complete lists of generators for the invariant ring are known up to
degree p = 10. For p = 2, there is also only the discriminant ∆ = x22−4x1x3.
For p = 4, we have two generating invariants of degree 2 and 3 respectively.
For p = 10, the invariant ring has 106 minimal generators.

11.3. Geometric Invariant Theory

According to Felix Klein, invariant theory plays a fundamental role for ge-
ometry. Namely, a polynomial in the coordinates of a space is invariant
under the group of interest if and only if that polynomial expresses a geo-
metric property. For instance, consider the space V of binary cubics f in
Example 11.10. The hypersurface defined by f in P1 consists of three points.
The vanishing of the invariant ∆ means that these three points are not all
distinct.

In geometric invariant theory, one considers the variety V(IG) defined
by all homogeneous invariants of positive degree. This variety is known as
the nullcone. Its points are known as unstable points. For a finite group G,
the nullcone consists just of the origin, V (IG) = {0}. For G = SL(d,K)
the situation is more interesting, and the geometry of the nullcone is very
important for understanding the invariant ring K[x]G. Corollary 11.8 says,
more or less, that computing K[x]G is equivalent to finding polynomial
equations that define the nullcone.

Example 11.11 (d=p=3). Consider the 10-dimensional space V = Sym3(K
3)

of ternary cubics

f(u) = x1u
3
1 + x2u

3
2 + x3u

3
3 + x4u

2
1u2 + x5u

2
1u3+

x6u
2
2u1 + x7u

2
2u3 + x8u

2
3u1 + x9u

2
3u2 + x0u1u2u3.
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The group G = SL(3,K) acts on V by linear change of coordinates. The
corresponding invariant ring is generated by two invariants I4 and I6 of
degrees 4 and 6 respectively. In symbols, K[x]G = K[I4, I6]. The degree 4
invariant is the following sum of 25 monomials:

I4 = x40 − 8x20x4x9 − 8x20x5x7 − 8x20x6x8 − 216x0x1x2x3 + 24x0x1x7x9
+24x0x2x5x8 + 24x0x3x4x6 + 24x0x4x7x8 + 24x0x5x6x9

+144x1x2x8x9 + 144x1x3x6x7 − 48x1x6x
2
9 − 48x1x

2
7x8 + 144x2x3x4x5

−48x2x4x
2
8 − 48x2x

2
5x9 − 48x3x

2
4x7 − 48x3x5x

2
6 + 16x24x

2
9

−16x4x5x7x9 − 16x4x6x8x9 + 16x25x
2
7 − 16x5x6x7x8 + 16x26x

2
8.

The degree 6 invariant is also unique up to scaling. It is a sum of 103
monomials:

I6 = x60−12x40x4x9−12x40x5x7−12x40x6x8+540x30x1x2x3+ · · ·+96x5x
2
6x7x

2
8−64x36x

3
8.

The invariant I4 is the Aronhold invariant. This plays an important role in
the theory of tensor decomposition. Indeed, we can regard f as a symmetric
3× 3× 3-tensor. A random tensor f has rank 4. The Aronhold invariant f
vanishes for those tensors of border rank ≤ 3. In other words, I4 = 0 holds if
and only if f is a sum of three cubes of linear forms, or can be approximated
by a sequence of such. See the discussion of ranks of tensors in Chapter 9.

On the geometric side, we identify f with the cubic curve V (f) it defines
in the projective plane P2. To a number theorist, this is an elliptic curve.
An important invariant of this curve is the discriminant ∆. This invariant
has degree 12 and its explicit formula equals

(11.11) ∆ = I34 − I26 .

This expression vanishes if and only if the curve V (f) has a singular point.
Typically, this singularity is a node. In the special case when both I4 and I6
vanish, that singular point is a cusp. Thus, for ternary cubics, the nullcone
V(IG) is given by plane cubics that have a cusp. The moduli space of elliptic
curves is parametrized by the j-invariant, which equals I34/∆.

We now present a general-purpose algorithm, due to Harm Derksen, for
computing the invariant ring of a reductive algebraic group G that acts
polynomially on a vector space V = Kn. The group G can represented as
an algebraic variety inside GL(n,K), that is, by polynomial equations in
the entries of an unknown n × n-matrix. This works for both finite groups
and for polynomial representations of SL(d,K), such as the ones discussed
about. As before, we use the notation σ 7→ φ(σ) to write the representation
of G on V = Kn explicitly.

The product G×V ×V is an algebraic variety, with coordinates (σ,x,y).
Inside its coordinate ring K[σ,x,y], let JG be the ideal generated by the n
entries of the vector y − φ(σ)x. This ideal is radical, and it is prime when
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G is a connected group like SL(d,K). Its variety describes the action of the
group. The elimination ideal JG ∩K[x,y] is also radical (resp. prime). Its
variety contains pairs of points in V that lie in the same G-orbit.

Theorem 11.12 (Derksen’s Algorithm). The ideal IG of the nullcone is the
image in K[x] of the elimination ideal JG ∩K[x,y] under the substitution
y = 0. From any finite list of ideal generators of IG, algebra generators for
the invariant ring K[x]G are found via Corollary 11.8.

Proof. Let I be any homogeneous invariant of positive degree. Then I(x) ≡
I(φ(σ)x) ≡ I(y) modulo the ideal JG that defines the group action. There-
fore, I(x) − I(y) lies in the elimination ideal JG ∩ K[x,y], and we find
I(x) in the ideal that is obtained by substituting y = 0. This proves that
IG is contained in the ideal that is computed by Derksen’s Algorithm. For
the converse direction, we refer to the argument given in the proof of [14,
Theorem 3.1]. �

Example 11.13 (p=d=2). Consider the 3-dimensional space V = Sym2(K
2)

of binary quadrics

f(u1, u2) = x1u
2
1 + x2u1u2 + x3u

2
2.

The coordinate ring of the variety SL(2,K)×V ×V is the polynomial ring

K[σ,x,y] = K
[
σ11, σ12, σ21, σ22, x1, x2, x3, y1, y2, y3

]

modulo the principal ideal 〈σ11σ22−σ12σ21− 1〉. Note that this ring has 10
generators. The ideal that encodes our action equals

JG =
〈
σ211x1 + σ11σ21x2 + σ221x3 − y1, σ

2
12x1 + σ12σ22x2σ

2
22x3 − y3,

2σ11σ12x1 + (σ11σ22 + σ12σ21)x2 + 2σ21σ22x3 − y2
〉

Elimination of the four variables for the group elements yields the principal
ideal

JG ∩K[x,y] = 〈 4x1x3 − x22 − 4y1y3 + y22 〉.
We now set y1 = y2 = y3 = 0. The result is the familiar discriminant
∆ = 4x1x3 − x22. In this manner, Derksen’s Algorithm finds the invariant
ring for binary quadrics K[x]G = K[∆].

In Example 11.10, we determined the invariant ring for SL(2,K) acting
on 2 × 2 × 2 tensors that are symmetric. In what follows, we extend this
computation to non-symmetric tensors. Thus, we present case study in
invariant theory for d = 2 and n = 8. We identify K8 with the space (K2)⊗3

of 2× 2× 2-tensors. The corresponding polynomial ring is denoted by

K[x] = K[x111, x112, x121, x122, x211, x212, x221, x222].

The group G = SL(2,K) acts on K2 by matrix-vector multiplication. This
action extends naturally to the triple tensor product of K2. Explicitly, if
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σ =

(
σ11 σ12
σ21 σ22

)
is a 2 × 2-matrix in G then σ acts by performing the

following substitution in each polynomial on K[x]:

(11.12) xijk 7→
2∑

r=1

2∑

s=1

2∑

t=1

xrstσriσsjσtk.

Here are two nice polynomials that are invariant under this action:

Example 11.14. Up to scaling, there is a unique polynomial of degree
2 that is invariant under G = SL(2,K). That invariant is the following
quadric, which we call the hexagon invariant:

Hex(x) = x112x122 − x122x121 + x121x221 − x221x211 + x211x212 − x212x112.

Another nice invariant is homogeneous of degree four. This is the hyperde-
terminant

Det(x) = x2221x
2
112+x

2
211x

2
122+x

2
121x

2
212+x

2
111x

2
222

+4x111x221x122x212+4x121x211x112x222
−2x211x221x112x122 − 2x121x221x112x212 − 2x121x211x122x212
−2x111x221x112x222 − 2x111x211x122x222 − 2x111x121x212x222.

One checks by computation that the substitution (11.12) maps the hexagon
invariant Hex(x) to itself times the third power of det(σ) = σ11σ22−σ12σ21.
Similary, the hyperdeterminant Det(x) transforms to itself times det(σ)6.
Hence both are invariant when det(σ) = 1.

Invariants can be used to test whether two tensors lie in the same orbit.
Here is a concrete example. We write our 2× 2× 2 tensors as vectors in R8

as follows: c = (c111, c112, c121, c122, c211, c212, c221, c222). The following two
tensors appear in the theory of signatures of paths. It is of interest to know
whether their G-orbits agree up to scaling:

caxis =
(
1
6 ,

1
2 , 0 , 1

2 , 0 , 0 , 0 , 1
6

)
and cmono =

(
1
6 ,

1
4 ,

1
6 ,

4
15 ,

1
12 ,

2
15 ,

1
10 ,

1
6

)
.

The two polynomials in Example 11.14 are relative invariants of the GL(2)
action on the tensor space R8. The following rational function is an absolute
invariant. It is homogeneous of degree zero, so it represents an invariant
rational function on the projective space P7:

(11.13)
Hex(x)2

Det(x)
.

We find that the invariant (11.13) evaluates to 81 on caxis, and it evaluates
to 45 on cmono. Hence the orbit closures of our two special core tensors of
format 2× 2× 2 are disjoint in P7.
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We now come to determination of the full ring of invariants for the G-
action on the space K8 of 2× 2× 2 tensors. Using Derksen’s Algorithm, we
derive:

Theorem 11.15. The invariant ring K[x]SL(2) of 2 × 2 × 2 tensors has
Krull dimension five. It is minimally generated by 13 invariants, namely the
hexagon invariant of degree two, eight invariants of degree four (including
the hyperdeterminant), and four invariants of degree six.

In addition to the hyperdeterminant, there are three additional invari-
ants of degree four that deserve special attention. Each has 17 terms when
expanded. One of these invariants is

(11.14)
(x111x222 − x212x121)2 + x121x222x

2
112 + x111x212x

2
122 + x121x222x

2
211

+x111x212x
2
221 − (x122 + x221)(x112 + x211)(x111x222 + x212x121)
+ 2x111x122x212x221 + 2x112x121x211x222.

The other two invariants in this family are obtained by permuting indices.

Corollary 11.16. The three quartics in (11.14) together with Hex and
Det form an algebraically independent system of five primary invariants.
All other invariants in K[x]SL(2) are integral over the polynomial subring
generated by these five. The five primary invariants cut out the null cone

V
(
K[x]

SL(2)
+

)
, which is a variety of dimension four and degree 12 in P7.

It is instructive to restrict the 13 generating invariants in Theorem 11.15
to the 4-dimensional subspace Sym3(K

2) of symmetric 2×2×2 tensors, seen
in Example 11.10. We do this by setting

x111 = x1 , x112 = x121 = x211 =
1

3
x2 , x122 = x212 = x221 =

1

3
x3 , x222 = x4.

The resulting symmetric tensors correspond to binary cubics (11.8). The
hyperdeterminant and five other generators of degree four specialize to the
discriminant ∆ of the binary cubic. The other eight generators of K[x]SL(2),
including the hexagon invariant, specialize to zero. In this manner, the
invariant ring in Theorem 11.15 maps onto the invariant ring of binary
cubics.
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Exercises

(1) Let G be the symmetry group of the square [−1, 1]2 in the plane R2. This
is an order 8 subgroup in GL(2,R). List all eight matrices. Determine
the invariant ring R[x1, x2]

G.

(2) Let G be the symmetry group of the regular 3-cube, as a subgroup of
GL(3,R). How many matrices are in G, and what are their characteristic
polynomials? Determine the Molien series (11.7) of this group. What
does it tell you about the invariant ring?

(3) Fix n = 5. Let ψ(j) denote the number of monomials in the expansion
of the power sum Pj in terms of the elementary symmetric functions
E1, E2, E3, E4, E5. Compute ψ(j) for some small values, say j ≤ 20.
Guess a formula for ψ(j). Can you prove it?

(4) Show that Noether’s Degree Bound is always tight for finite cyclic groups.

(5) Find a subgroup of GL(4,K) that has order 15. Compute the invariant
ring.

(6) Let T be the group of 3 × 3 diagonal matrices with determinant 1,
acting on the space V = Sym3(K

3) of ternary cubics. This group is the
torus T ' (K∗)2. Determine the invariant ring K[V ]T . Do you see any
relationship to the invariants in Example 11.11?

(7) Let G = An be the alternating group of order n!/2. Its elements are the
even permutation matrices. Determine the invariant ring K[x]G.

(8) List all 103 monomials of the invariant I6 of ternary cubics in Exam-
ple 11.11. Give an explicit formula, in terms of x1, x2, . . . , x9, x0, for the
discriminant and the j-invariant.

(9) Consider the action of SL(3,K) on the space Sym2(K
3) ' K6 of sym-

metric 3 × 3-matrices. The entries of the 6 × 6 matrix φ(σ) are qua-
dratic forms in σ11, σ12, . . . , σ33. Write this matrix explicitly, similarly
to (11.9). What is the invariant ring?

(10) Using Derksen’s Algorithm, determine the invariant ring for binary quar-
tics (d = 2, p = 4). How many minimal generators does this ring have?

(11) The rotation group SO(2,R) acts by left multiplication on the space of
2× 2-matrices. Determine the invariant ring.

(12) Is the invariant ring of every matrix group G ⊂ GL(n,K) finitely gen-
erated?





Chapter 12

Semidefinite
Programming

The transition from linear algebra to nonlinear algebra has a natural coun-
terpart in convex optimization, namely the passage from linear programming
to semidefinite programming. This transition is the topic of this chapter.
Linear programming concerns the solution of linear systems of inequalities,
and the optimization of linear functions subject to linear constraints. The
feasible region is a convex polyhedron, and the optimal solutions form a face
of that polyhedron. In semidefinite programming we work in the space of
symmetric n × n-matrices. The inequality constraints now stipulate that
some linear combination of matrices be positive semidefinite. The feasible
region given by such constraints is a closed convex set, known as a spectra-
hedron. We again wish to optimize a linear function. The condition for a
polynomial to be a sum of squares may be regarded as a semidefinite pro-
gram. This furnishes a connection to the real Nullstellensatz (Chapter 6),
thereby establishing semidefinite programming as a key tool for computing
in real algebraic geometry.

12.1. Spectrahedra

In this chapter we work over the field R of real numbers. The Spectral
Theorem in Linear Algebra states that all eigenvalues of a symmetric matrix
A ∈ Sym2(Rn) are real. Moreover, there is an orthonormal basis of Rn
consisting of eigenvectors of A. We say that the matrix A is positive definite
if it satisfies the following conditions. It is a basic fact about quadratic forms
that these three conditions are equivalent:

169
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(1) All n eigenvalues of A are positive real numbers.

(2) All 2n principal minors of A are positive real numbers.

(3) Every non-zero column vector u ∈ Rn satisfies uTAu > 0.

Here, by a principal minor we mean the determinant of any square submatrix
of A whose set of column indices agree with its set of row indices. For the
empty set, we get the 0× 0 minor of A, which equals 1. Next there are the
n diagonal entries of A, which are the 1×1 principal minors, and finally the
determinant of A, which is the unique n × n principal minor. Each of the
three conditions (1), (2) and (3) behaves as expected when we pass to the
closure. This is not obvious because the closure of an open semialgebraic set
{f > 0}, where f ∈ R[x], is generally smaller than the corresponding closed
semialgebraic set {f ≥ 0}.
Example 12.1. Let f = x3 + x2y + xy2 + y3 − x2 − y2. The set {f > 0}
is the open halfplane above the line x+ y = 1 in R2. The closure of the set
{f > 0} is the corresponding closed halfplane. It is properly contained in
{f ≥ 0} which also contains the origin (0, 0).

Luckily, no such thing happens with condition (2) for positive definite
matrices.

Theorem 12.2. For a symmetric n× n matrix A, the following three con-
ditions are equivalent:

(1’) All n eigenvalues of A are nonnegative real numbers.

(2’) All 2n principal minors of A are nonnegative real numbers.

(3’) Every non-zero column vector u ∈ Rn satisfies uTAu ≥ 0.

If this holds then A is called positive semidefinite. The semialgebraic set
PSDn of positive semidefinite n×n matrices is a full-dimensional closed con-
vex cone in Sym2(Rn).

We use the notation X � 0 to express that a symmetric matrix X is
positive semidefinite. A spectrahedron S is the intersection of the cone PSDn

with an affine-linear subspace L of the ambient space Sym2(Rn). Hence,
spectrahedra are closed convex semialgebraic sets.

A subspace L of symmetric matrices is either given parametrically, or
as the solution set to an inhomogeneous system of linear equations. In the
equational representation, we write
(12.1)
L =

{
X ∈ Sym2(Rn) : 〈A1, X〉 = b1, 〈A2, X〉 = b2, . . . , 〈As, X〉 = bs

}
.

Here A1, A2, . . . , As ∈ Sym2(Rn) and b1, b2, . . . , bs ∈ R are fixed. We employ
the standard inner product in the space of square matrices, which is given
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by the trace of the matrix product:

(12.2) 〈A,X〉 := trace(AX) =

n∑

i=1

n∑

j=1

aijxij .

The associated spectrahedron S = L ∩ PSDn consists of all positive semi-
definite matrices that lie in the subspace L. If the subspace is given by a
parametric representation, say

(12.3) L =
{
A0 + x1A1 + · · ·+ xsAs : (x1, . . . , xs) ∈ Rs

}
,

then it is customary to identify the spectrahedron with its preimage in Rs.
Hence,

(12.4) S =
{

(x1, . . . , xs) ∈ Rs : A0 + x1A1 + · · ·+ xsAs � 0
}
.

Proposition 12.3. Every convex polyhedron is a spectrahedron. Convex
polyhedra are precisely the spectrahedra that arise when the subspace L con-
sists only of diagonal n× n matrices.

Proof. Suppose that the matrices A0, A1, . . . , As are diagonal matrices.
Then (12.4) is the solution set in Rs of a system of n inhomogeneous linear
inequalities. Such a set is a convex polyhedron. Every convex polyhedron in
Rs has such a representation. We simply write its defining linear inequalities
as the diagonal entries of the matrix A0 + x1A1 + · · ·+ xsAs.

The formula S = L ∩ PSDn with L as in (12.1) corresponds to the
standard representation of a convex polyhedron, as the set of non-negative
points in an affine-linear space. Here the equations in (12.1) include those
that require the off-diagonal entries of all matrices to be zero:

〈X,Eij〉 = xij = 0 for i 6= j.

In the other inequalities, the matrices Ai are diagonal and the bi are typically
nonzero. �

Example 12.4. Let L be the space of symmetric 3 × 3 matrices whose
three diagonal entries are all equal to 1. This is an affine-linear subspace of
dimension s = 3 in Sym2(R3) ' R6. The spectrahedron S = L∩SDP3 is the
yellow convex body seen in Chapter 1, Figure 1. To draw this spectrahedron
in R3, one uses the representation (12.4), namely

S =

{
(x, y, z) ∈ R3 :




1 x y
x 1 z
y z 1


 � 0

}
.

The boundary of S consists of all points (x, y, z) where the matrix has de-
terminant zero and its nonzero eigenvalues are positive. The determinant is
a polynomial of degree three in x, y, z, so the boundary lies in cubic surface
in R3. This cubic surface also contains points where the three eigenvalues
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are positive, zero and negative. Such points are drawn in red in our picture
1 from Chapter 1. They lie in the Zariski closure of the yellow boundary
points.

We next slice our 3-dimensional spectrahedron to get a picture in the
plane.

Example 12.5. Suppose that L ⊂ Sym2(R3) is a general plane that inter-
sects the cone PSD3. The spectrahedron S is a planar convex body whose
boundary is a smooth cubic curve, drawn in red in Figure 1. On that
boundary, the 3× 3 determinant vanishes and the other two eigenvalues are
positive. For points (x, y) ∈ R2\S, the matrix has at least one negative
eigenvalue. The black curve lies in the Zariski closure of the red curve. It
separates points in R2\S whose remaining two eigenvalues are positive from
those with two negative eigenvalues.

Figure 1. A plane curve of degree three (left) and its dual curve of
degree six (right). The red part on the left bounds a spectrahedron
while that on the right bounds its convex dual.

To be explicit, suppose that our planar cubic spectrahedron is defined
as follows:

(12.5) S =

{
(x, y) ∈ R3 :




1 x x+ y
x 1 y

x+ y y 1


 � 0

}
.

The cubic curve is the locus where the 3 × 3 matrix is singular. Its deter-
minant is

(12.6) f = 2x2y + 2xy2 − 2x2 − 2xy − 2y2 + 1.

The curve {f = 0} has four connected components in R2, one in red and
three in black, as shown in Figure 1 (left). The boundary of the cubic
spectrahedron S is the convex part of the curve that is shown in red.
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The picture on the right in Figure 1 shows the dual curve. This lives in
the dual plane whose points (u, v) represent the lines ` = {(x, y) : ux+vy =
1} in R2. The points in the dual curve correspond to lines ` that are tangent
to the original curve. The dual curve has degree six, and its equation is
computed by the following ideal computation in R[x, y, u, v]:
(12.7)
〈 f(x, y) , u · x+ v · y − 1 , ∂f/∂x · v − ∂f/∂y · u 〉 ∩ R[u, v] =

〈 8u6 − 24u5v + 21u4v2 − 2u3v3 + 21u2v4 − 24uv5 + 8v6 − 24u5 + 60u4v
−24u3v2 − 24u2v3 + 60uv4 − 24v5 + 12u4 − 24u3v + 36u2v2 − 24uv3

+12v4 + 24u3 − 36u2v − 36uv2 + 24v3 − 24u2 + 24uv − 24v2 + 4 〉.

The black points on the sextic correspond to lines that are tangent at black
points of the cubic, and similarly for the red points. Moreover, the convex
set enclosed by the red sextic on the right in Figure 1 is dual, in the sense
of convexity, to the spectahedron on the left.

The polynomials in (12.6) and (12.7) have degree three and six respec-
tively, confirming what was asserted in the caption to Figure 1. A random
line L will meet the curve in three (left) or six (right) complex points. Con-
sider the point p on the other side that is dual to L, that is points of L
correspond to lines through p. There are three (right) or six (left) complex
lines through p that are tangent to the curve.

12.2. Optimization and Duality

We now finally come to semidefinite programming (SDP). This refers to the
problem of maximizing or minimizing a linear function over a spectrahedron.
Linear programming is the special case when the spectrahedron consists
of diagonal matrices. If the spectrahedron is given in its standard form
representation (12.1), then we get the SDP in its primal form:

(12.8)
Minimize 〈C,X〉 subject to 〈A1, X〉 = b1,
〈A2, X〉 = b2, . . . , 〈As, X〉 = bs and X � 0.

Here C = (cij) is a matrix that represents the cost function. Every convex
optimization problem has a dual problem. On first glance, it is not so easy
to relate that duality to those for plane curves in Figure 1. The semidefinite
problem dual to (12.8) takes the following form
(12.9)

Maximize bTx =
s∑

i=1

bixi subject to C − x1A1− x2A2− · · · − xsAs � 0.

In this formulation, the spectrahedron of feasible points lives in Rs, similarly
to (12.4). We refer to either formulation (12.8) or (12.9) as a semidefinite
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program, also abbreviated SDP. Here the term “program” is simply an old-
fashioned way of saying “optimization problem”. The relationship between
the primal and the dual SDP is given by the following theorem:

Theorem 12.6 (Weak Duality). If x is any feasible solution to (12.9) and
X is any feasible solution to (12.8) then bTx ≤ 〈C,X〉. If the equality
bTx = 〈C,X〉 holds then both x and X are optimal.

The term feasible means only that the point x resp. X satisfies the
equations and inequalities that are required in (12.9) resp. (12.8). The
point is optimal if it is feasible and it solves the program, i.e. it attains the
minimum resp. maximum value for that optimization problem.

Proof. The inner product of two positive semidefinite matrices is a non-
negative real number:
(12.10)

0 ≤ 〈C −
s∑

i=1

xiAi, X〉 = 〈C,X〉 −
s∑

i=1

xi · 〈Ai, X〉 = 〈C,X〉 − bTx.

This shows that the optimal value of the minimization problem (12.8) is an
upper bound for the optimal value of the maximization problem (12.9). If
the equality is attained by a pair (X,x) of feasible solutions then X must
be optimal for (12.8) and x must be optimal for (12.9). �

There is also Strong Duality Theorem which states that, under suitable
hypotheses, the duality gap 〈C,X〉 − bTx must attain the value zero for
some feasible pair (X,x). These hypotheses are always satisfied for diagonal
matrices, and we recover the Duality Theorem for Linear Programming as a
special case. Interior point methods for Linear Programming are numerical
algorithms that start at an interior point of the feasible polyhedron and
create a path from that point towards an optimal vertex. The same class of
algorithms works for Semidefinite Programming. These run in polynomial
time and are well-behaved in practice.

Semidefinite Programming has a much larger expressive power than Lin-
ear Programming. Many more problems can be phrased as an SDP. We
illustrate this with a simple example.

Example 12.7 (The largest eigenvalue). Let A be a real symmetric n ×
n matrix, and consider the problem of computing its largest eigenvalue
λmax(A). We would like to solve this without having to write down the
characteristic polynomial and extract its roots. Let C = Id be the identity
matrix and consider the SDP problems (12.8) and (12.9) with s = 1 and
b = 1. They are

(12.8’) Minimize trace(X) subject to 〈A,X〉 = 1.
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(12.9’) Maximize x subject to Id− xA � 0.

If x∗ is the common optimal value of these two problems then λmax(A) =
1/x∗.

The inner product 〈A,X〉 = trace(A · X) of two positive semidefinite
matrices A and X can only be zero when their matrix product A ·X is zero.
We record this for our situation:

Lemma 12.8. If the expression in (12.10) is zero then (C−∑s
i=1 xiAi) ·X

is the zero matrix.

This lemma allows us to state the following algebraic reformulation of
SDP:

Corollary 12.9. Consider the following system of s linear equations and(
n+1
2

)
bilinear equations in the

(
n+1
2

)
+ s unknown coordinates of the pair

(X,x):

(12.11) 〈A1, X〉 = b1 , . . . , 〈As, X〉 = bs and (C −
s∑

i=1

xiAi) ·X = 0.

If X � 0 and C −∑s
i=1 xiAi � 0 then X is optimal for (12.8) and x is

optimal for (12.9).

The equations (12.11) are known as the Karush-Kuhn-Tucker (KKT)
equations. These play a major role when one explores semidefinite program-
ming from an algebraic perspective. In particular, they allow us to study
the nature of the optimal solution as function of the data. A key feature
of the KKT system is that the two optimal matrices have complementary
ranks. This follows from the complementary slackness condition on the right
of (12.11):

rank
(
C −

s∑

i=1

xiAi
)

+ rank(X) ≤ n.

In particular, if X is known to be nonzero then the determinant of C −∑s
i=1 xiAi vanishes. For instance, for the eigenvalue problem in Exam-

ple 12.7, we have (Id− xA) ·X = 0 and 〈A,X〉 = 1. This implies det(Id−
xA) = 0, so 1/x is a root of the characteristic polynomial.

Example 12.10. Consider the problem of maximizing a linear function
`(x, y) = ux + vy over the spectrahedron S in (12.5). This is the primal
SDP (12.8) with s = 2 and b = (u, v) and

A1 = −




0 1 1
1 0 0
1 0 0


 and A2 = −




0 0 1
0 0 1
1 1 0


 .
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The KKT system (12.11) consists of eight equations in eight unknowns, with
two parameters:

2x12 + 2x13 + u = 2x13 + 2x23 + v = 0 and



1 x x+y
x 1 y

x+y y 1


 ·



x11 x12 x13
x12 x22 x23
x13 x23 x33


 =




0 0 0
0 0 0
0 0 0


.

By eliminating the variables xij we obtain an ideal I in Q[u, v, x, y] that
characterizes the optimal solution (x∗, y∗) to our SDP as an algebraic func-
tion of (u, v). Let `∗ now be a new unknown, and consider the elimination
ideal

(
I + 〈ux+ vy − `∗〉

)
∩ Q[u, v, `∗]. Its generator is a ternary sextic in

u, v, `∗. This is precisely the homogenization of the dual sextic in (12.7). It
expresses the optimal value `∗ as an algebraic function of degree six in the
cost (u, v).

This relationship between the dual hypersurface and the optimal value
function generalizes to arbitrary polynomial optimization problems, includ-
ing semidefinite programs. This is the content of [4, Theorem 5.23]. We
refer to the book [4], and especially Chapter 5, for further reading on spec-
trahedra, semidefinite programming, and the relevant duality theory.

A fundamental task in Convex Algebraic Geometry [4] is the compu-
tation of the convex hull of a given algebraic variety or semialgebraic set.
Recall that the convex hull of a set is the smallest convex set containing
the given set. Spectrahedra or their linear projections, known as spectrahe-
dral shadows, can be used for this task. This matters for optimization since
minimizing a linear function over a set is equivalent to minimizing over its
convex hull.

Figure 2. Toeplitz spectrahedron and its dual convex body.



12.3. Sums of Squares 177

Example 12.11 (Toeplitz Spectrahedron). Consider the convex body

(12.12) K =

{
(x, y, z) ∈ R3 :




1 x y z
x 1 x y
y x 1 x
z y x 1


 � 0

}
.

The determinant of the given Toeplitz matrix of size 4× 4 factors as

(x2 + 2xy + y2 − xz − x− z − 1)(x2 − 2xy + y2 − xz + x+ z − 1).

The Toeplitz spectrahedron (12.12) is the convex hull of the cosine moment
curve {(

cos(θ), cos(2θ), cos(3θ)
)

: θ ∈ [0, π]
}
.

The curve and its convex hull are shown on the left in Figure 2. The two
endpoints, (x, y, z) = (1, 1, 1) and (x, y, z) = (−1, 1,−1), correspond to rank
1 matrices. All other points on the curve have rank 2. To construct the
Toeplitz spectrahedron geometrically, we form the cone from each endpoint
over the cosine curve, and we intersect these two quadratic cones. The two
cones intersect along this curve and the line through the endpoints of the
cosine curve.

Shown on the right in Figure 2 is the convex bodyK∗ dual to the Toeplitz
spectrahedron K. It is the set of trigonometric polynomials 1 + a1 cos(θ) +
a2 cos(2θ) + a3 cos(3θ) that are nonnegative on [0, π]. This convex body K∗

is not a spectrahedron because it has a non-exposed edge, that is an edge
which is not an intersection of K∗ with a kernel of a linear form that is
nonnegative on K∗ (cf. [4, Exercise 6.13]).

12.3. Sums of Squares

Semidefinite programming can be used to model and solve arbitrary poly-
nomial optimization problems. The key to this is the representation of
nonnegative polynomials in terms of sums of squares, or, more generally,
the Real Nullstellensatz (cf. Chapter 6)). We explain this for the simplest
scenario, namely the problem of unconstrained polynomial optimization.

Let f(x1, . . . , xn) be a polynomial of even degree 2p, and suppose that
f attains a minimal real value f∗ on Rn. Our goal is to compute f∗ and a
point u∗ ∈ Rn such that f(u∗) = f∗. Minimizing a function is equivalent
to finding the best possible lower bound λ for that function. Our goal is
therefore equivalent to solving the following optimization problem:

(12.13) Maximize λ such that f(x)− λ ≥ 0 for all x ∈ Rn.

This is a difficult problem. Instead, we consider the following relaxation:

(12.14) Maximize λ such that f(x)− λ is a sum of squares in R[x].
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Here relaxation means that we restricted the set of feasible solutions. Indeed,
every sum of squares is nonnegative, but not every nonnegative polynomial
is a sum of squares of polynomials. For instance, the Motzkin polynomial
x4y2 + x2y4 + 1 − 3x2y2 is nonnegative but it is not a sum of squares of
polynomials. For that reason, the optimal value of (12.14) is always a lower
bound for the optimal value of (12.13), but the two values can be different
in some cases. However, here is the good news:

Proposition 12.12. The optimization problem (12.14) is a semidefinite
program.

Proof. Let x[p] be the column vector whose entries are all monomials in
x1, . . . , xn of degree ≤ p. Thus x[p] has length

(
n+p
n

)
. Let G = (gij) be a

symmetric
(
n+p
n

)
×
(
n+p
n

)
matrix with unknown entries. Then (x[p])T ·G ·x[p]

is a polynomial of degree d = 2p in x1, . . . , xn. We set

(12.15) f(x)− λ = (x[p])T ·G · x[p].

By collecting coefficients of the x-monomials, this gives a system of
(
2p+n
n

)

linear equations in the unknowns gij and λ. The number of unknowns is((n+pn )+1
2

)
+ 1.

Suppose the linear system (12.15) has a solution (G,λ) such that G is
positive semidefinite. Then we can write G = HTH where H is a real matrix
with r rows and

(
p+n
n

)
columns. (This is known as a Cholesky factorization

of H.) The polynomial in (12.15) then equals

(12.16) f(x)− λ = (Hx[p])T · (Hx[p]).

This is the scalar product of a vector of length r with itself. Hence f(x)−λ
is a sum of squares. Conversely, every representation of f(x) − λ as a sum
of squares of polynomials uses polynomials of degree ≤ p, and it can hence
be written in the form as in (12.16).

Our argument shows that the optimization problem (12.14) is equivalent
to

(12.17)
Maximize λ subject to (G,λ) satisfying
the linear equations (12.15) and G � 0.

This is a semidefinite programming problem, and so the proof is complete.
�

If n = 1 or d = 2 or (n = 2 and d = 4) then every nonnegative polynomial
is a sum of squares. In those special cases, problems (12.13) and (12.17) are
equivalent.

Example 12.13 (n = 1, p = 2, d = 4). Suppose we seek to find the mini-
mum of the degree 4 polynomial f(x) = 3x4 + 4x3 − 12x2. Of course, we
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know how to do this using Calculus. However, we here present the SDP
approach. The linear equations (12.15) have a one-dimensional space of so-
lutions. Introducing a parameter µ for that line, the solutions can be written
as

(12.18) f(x)− λ =
(
x2 x 1

)



3 2 µ− 6
2 −2µ 0

µ− 6 0 −λ





x2

x
1


 .

Consider the set of all pairs (λ, µ) such that the 3 × 3 matrix in (12.18) is
positive semidefinite. This set is a cubic spectrahedron in the plane R2, just
like that shown on the left in (1). We seek to maximize λ over all points in
that cubic spectrahedron. The optimal point equals (λ∗, µ∗) = (−32,−2).
Substituting this into the matrix in (12.18) we obtain a positive definite
matrix of rank 2. This can be factored as G = HTH, where H has format
2× 3. The resulting representation (12.16) as a sum of two squares equals

f(x)− λ∗ = f(x) + 32 =
(
(
√

3x− 4√
3

) · (x+ 2)
)2

+
8

3
(x+ 2)2.

The right hand side is nonnegative for all x. It takes the value 0 only when
x = −2.

Any polynomial optimization problem can be translated into a relax-
ation that is a semidefinite programming problem. If we are minimizing
f(x) subject to some polynomial constraints, then we seek a certificate for
f(x) − λ < 0 to have no solution. This certificate is promised by the Real
Nullstellensatz or Postitivstellensatz. If we fix a degree bound then the ex-
istence of a certificate translates into a semidefinite program, and so does
the additional requirement for λ to be minimal. This relaxation may or
may not give the correct solution for some fixed degree bound. However,
if one increases the degree bound then the SDP formulation is more likely
to succeed, albeit at the expense of having to solve a much larger problem.
This is a powerful and widely used approach to polynomial optimization,
known as SOS programming. The term Lasserre hierarchy refers to varying
the degree bounds.

Every spectrahedron S = L ∩ PSDn has a special point in its relative
interior. This point, defined as the unique matrix in S whose determinant is
maximal, is known as analytic center. Finding the analytic center of S is a
convex optimization problem, since the function X 7→ log det(X) is strictly
convex on the cone of positive definite matrices X. The analytic center is
important for semidefinite programming because it serves as the starting
point for interior point methods. Indeed, the central path of an SDP starts
at the analytic center and runs to the optimal face. It is computed by a
sequence of numerical approximations.
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Example 12.14. The determinant function takes on all values between 0
and 1 on the spectrahedron S in (12.5). The value 1 is attained only by
the identity matrix, for (x, y) = (0, 0). This point is therefore the analytic
center of S.

We close by relating spectrahedra and their analytic centers to statistics.
Every positive definite n× n matrix Σ = (σij) is the covariance matrix of a
multivariate normal distribution. Its inverse Σ−1 is the concentration matrix
of that distribution.

A Gaussian graphical model is specified by requiring that some off-
diagonal entries of Σ−1 are zero. These entries correspond to the non-edges
of the graph. Maximum likelihood estimation for this graphical model trans-
lates into a matrix completion problem. Suppose that S is the sample co-
variance matrix of a given data set. We regard S as a partial matrix, with
visible entries only on the diagonal and on the edges of the graph. One
considers the set of all completions of the non-edge entries that make the
matrix S positive definite. The set of all these completions is a spectrahe-
dron. Maximum likelihood estimate for the data S in the graphical model
amounts to maximizing the logarithm of the determinant. We hence seek to
compute the analytic center of the spectrahedron of all completions.

Example 12.15 (Positive definite matrix completion). Suppose that the
eight entries σij in the following symmetric 4× 4-matrix are visible, but the
entries x and y are unknown:

(12.19) Σ =




σ11 σ12 x σ14
σ12 σ22 σ23 y
x σ23 σ33 σ34
σ14 y σ34 σ44


 .

This corresponds to the graphical model of the four-cycle 12, 23, 34, 41.
Given visible entries σij , we consider the set of pairs (x, y) that make Σ
positive definite. This is the interior of a planar spectrahedron Sσ bounded
by a quartic curve. The MLE is the analytic center of Sσ.

One is also interested in conditions on the σij such that int(Sσ) is non-
empty. When can we find (x, y) that make Σ positive definite? A necessary
condition is that the diagonal entries σii and the four visible principal 2×2-
minors are positive:

(12.20) σ11σ22 > σ212 , σ22σ33 > σ223 , σ33σ44 > σ234 , σ11σ44 > σ214.
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But this is not sufficient. The answer is a cone that is bounded by the
hypersurface
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2
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4
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2
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22σ
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14 − 4σ11σ44σ12σ14σ

3
23σ34 − 2σ11σ22σ33σ44σ

2
12σ

2
34

−2σ11σ
2
22σ33σ

2
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12σ
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11σ22σ44σ
2
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12σ

2
23σ

2
34

+4σ11σ22σ
2
14σ

2
23σ

2
34 − 4σ11σ22σ12σ14σ23σ

3
34 + σ2

11σ
2
22σ

4
34.

This polynomial of degree eight is found by eliminating x and y from the
determinant and its partial derivatives with respect to x and y, after satu-
rating by the ideal of 3× 3-minors. For more details on this example see to
[55, Theorem 4.8].

Exercises

(1) Prove Theorem 12.2.

(2) Show that a real symmetric matrix G is positive semidefinite if and only
if it admits a Cholesky factorization G = HTH over the real numbers,
with H upper triangular.

(3) What is the largest eigenvalue of any of the 3× 3 matrices in the set S
in (12.5)?

(4) Maximize and minimize the linear function 13x + 17y + 23z over the
spectrahedron S in Example 12.4. Use SDP software if you can.

(5) Maximize and minimize the linear function 13x + 17y + 23z over the
Toeplitz spectrahedron in Example 12.11. Use SDP software if you can.

(6) Write the dual SDP and solve the KKT system for the previous two
problems.

(7) Determine the convex body dual to the spectrahedron S in Example
12.4.

(8) Consider the problem of minimizing the univariate polynomial x6+5x3+
7x2 + x. Express this problem as a semidefinite program.

(9) In the partial matrix (12.19) set σ11 = σ22 = σ33 = σ44 = 5, σ12 = σ23 =
σ34 = 1 and σ14 = 2. Compute the spectrahedron Sσ, draw a picture,
and find the analytic center.

(10) Find numerical values for the eight entries σij in (12.19) that satisfy
(12.20) but int(Sσ) = ∅.





Chapter 13

Combinatorics

“Combinatorics is the nanotechnology of mathematics.”
Sara Billey

Combinatorics interacts in many fruitful ways with algebra and geome-
try, for instance in the interplay between convex polytopes and toric vari-
eties. This chapter offers a pinch of combinatorics in a vast sea of algebra.
We present topics that are important for nonlinear algebra. The first such
topic is matroid theory. Matroids encode independence, just like groups
encode symmetry. The theory of matroids has many connections to toric
geometry and we will present a few of them. One of our main aims is to
highlight connections between Grassmannians (Chapter 5), toric varieties
(Chapter 8) and matroids. In all topics the lattice polytopes will play a
prominent role. We will finish by presenting a snapshot of generating func-
tions. Their role as Hilbert series brings us back to the two key invariants of
a variety: dimension and degree. We would like to stress the fact that our
emphasis is not on combinatorics itself, but rather on its interactions with
algebra and geometry.

13.1. Matroids

In this section we give an introduction to the theory of matroids. The
name matroids suggests that these should be regarded as generalizations of
matrices. Indeed, as we will soon see every matrix defines a matroid. We
fix a finite set E, which we will refer to as the ground set of a matroid.
We would like to distinguish a family of subsets of E that we could call
independent. Thus a matroid M will be a family I ⊂ 2E of subsets E that

183
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we refer to as independent sets. These are of course assumed to satisfy
certain axioms.

A first observation is that whenever we have an independent set I ⊂ E,
it is reasonable to assume that every subset of I is also independent. We
obtain the first axiom of a matroid for the family I:

1. If I ∈ I and J ⊂ I, then J ∈ I.

What we defined so far is a very important object in mathematics: simplicial
complex . Another observation is that we would like I to be nonempty, or
equivalently we want the empty set to be independent:

2. We have ∅ ∈ I.

It turns out that to obtain a matroid we need just one more axiom. To mo-
tivate it we make a following observation. Whenever we have finite linearly
independent subsets I, J ⊂ V of a vector space V , if |I| < |J |, then we may
extend I by an element of j ∈ J , in such a way that I ∪ {j} is still linearly
independent. This simple observation is precisely what we need to get the
last axiom for the family I:

3. If I, J ∈ I and |I| < |J | then there exists j ∈ J such that I∪{j} ∈ I.

Definition 13.1. A matroid is a family of subsets I satisfying Axioms 1,2,3.

Exercise 1 asks to prove that the following structures are matroids:

Example 13.2. • (Representable/Realizable matroid) Let V be a
vector space over an arbitrary field F . Let E ⊂ V be a nonempty,
finite subset. We define I to be the family of subsets of E that
are linearly independent. We say that the matroid is representable
over F . In coordinates, V ' Fn and we may identify the set E as
an |E| × n matrix.

• (Graphic matroid) Let G be a graph with edge set E. Let I be the
family of those subsets of E that do not contain a cycle. Equiva-
lently I is the family of forests in G.

• (Algebraic matroid) Let F ⊂ K be an arbitrary field extension.
Let E be a finite subset of K. Let I be the family of subsets of E
that are algebraically independent over F .

• (Uniform matroid) Let E be a finite set and k ≤ |E|. Let I be the
family of subsets of cardinality at most k. This matroid is denoted
by Uk,E or Uk,|E|.

Matroids are known for having many equivalent definitions, depending
on the point of view on the matroid. For example, due to the first axiom
to determine a matroid we do not have to know all independent sets, just
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those that are inclusion maximal. By analogy to linear algebra, the inclusion
maximal independent sets are called basis. It turns out - as the reader is
asked to prove in Exercise 2 - that a nonempty family B ⊂ 2E of subsets of
E is a family of basis of some matroid if and only if the following axiom is
satisfied:

• For all B1, B2 ∈ B, b2 ∈ B2 \B1 there exists b1 ∈ B1 \B2 such that
(B1 \ {b1}) ∪ {b2} ∈ B.

The seemingly weak axiom on B in fact implies the following two statements:

• For all B1, B2 ∈ B, b2 ∈ B2 \B1 there exists b1 ∈ B1 \B2 such that
both (B1 \ {b1}) ∪ {b2}, (B2 \ {b2}) ∪ {b1} ∈ B.

• For all B1, B2 ∈ B and any subset A2 ⊂ B2\B1 there exists a subset
A1 ⊂ B1 \B2 such that both (B1 \A1) ∪A2, (B2 \A2) ∪A1 ∈ B.

The first point is known as the symmetric exchange property and the sec-
ond one as the multiple symmetric exchange property . The facts that both
exchange properties hold is nontrivial - we refer the reader to the proofs in
[7, 58]. We will soon see the algebraic meaning of the exchange properties.

Exercise 3 states that all basis of a matroid have the same cardinality.
The cardinality of a basis is known as the rank of a matroid. More generally
for a matorid on a ground set E we may define the rank of any subset A ⊂ E.

Definition 13.3. For a matroid on a ground set E and independent sets
I ⊂ 2E we define the rank function:

r : 2E 3 A→ max
I∈I
{|I ∩A|} ∈ Z.

Equivalently, the rank of a set is the cardinality of a largest independent set
contained in it.

We note that for a representable matroid the rank is simply the dimen-
sion of the vector subspace spanned by the given vectors. Clearly, for any
matroid the rank function r satisfies the following:

• 0 ≤ r(A) for all A ⊂ E and r(∅) = 0.

• r(A) ≤ r(A ∪ {b}) ≤ r(A) + 1 for all A ⊂ E, x ∈ E.

Further, the rank function has one more property known as submodularity :

• for all A,B ⊂ E we have r(A ∪B) + r(A ∩B) ≤ r(A) + r(B).

In Exercise 7 the reader is asked to prove that any function r : 2E → Z
satisfying the three axioms above is a rank function of a matroid. The
independent sets can be reconstructed as those I ⊂ E for which r(I) = |I|.
This gives us another possible definition of a matroid.
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13.2. Lattice Polytopes

In this section we discuss the interplay between toric geometry and matroids.
It is not possible to even state all of the interesting results ; we refer to
[19, 28, 20, 41].

We start by recalling the definition of a lattice polytope.

Definition 13.4 (Lattice polytope). Let Rn be a real vector space. A
polytope P is the convex hull of a finite set of points p1, . . . , pk ∈ Rn:

P := {x ∈ Rn : x =

k∑

i=1

λipi for some real λ1, . . . , λk ≥ 0,

k∑

i=1

λi = 1}.

We say that P is a lattice polytope if we may find p1, . . . , pk ∈ Zn ⊂ Rn.

For each polytope P there is an inclusion minimal set of pi’s of which it
is a convex hull. We call these pi’s the vertices of P .

To pass from a combinatorial object, like a matroid, to a polytope, we
apply the following ’standard’ construction. Consider a vector space R|E|
with basis elements be corresponding to the elements e ∈ E. Any subset
A ⊂ E can be identified with a point pA :=

∑
e∈A be ∈ R|E|. In this way a

family of subsets may be identified with a set of points.

Definition 13.5 (Matroid basis polytope). Let M be a matroid on the
ground set E and basis set B. We use the notation introduced above. We
define the matroid basis polytope PM ⊂ R|E| as the convex hull of the points
pB :=

∑
e∈B be ∈ R|E|, where we take all B ∈ B.

Clearly PM is a lattice polytope, hence we may consider the toric vari-
ety associated to it. Precisely, it is the closed image of the map given by
monomials, in variables corresponding to elements of E, that are products
of elements in a basis.

Example 13.6. Consider the rank two uniform matroid on the set E =
{1, 2, 3}. Its set of bases is

B = {{1, 2}, {1, 3}, {2, 3}}.
We consider R3. The three basis correspond, in the given order, to the three
points

(1, 1, 0), (1, 0, 1), (0, 1, 1) ∈ R3.

Hence, the matroid basis polytope is a triangle. The polynomial map is:

(C∗)3 3 (x1, x2, x3)→ (x1x2, x1x3, x2x3) ∈ P2.

The closure of the image is the whole P2, which is the associated toric variety.
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The combinatorial statement equivalent to the proposition presented
below was proved by White [57].

Proposition 13.7. A matroid basis polytope is normal in the lattice it spans.

In order to present the proof we state one of the most useful theorems
about matroids.

Theorem 13.8 (The matroid union theorem). Let M1, . . . ,Mk be ma-
troids on the same ground set E with respective families of independent sets
I1, . . . ,Ik and rank functions r1, . . . , rk. Let

I := {I ⊂ E : I =
k⋃

i=1

Ii for Ii ∈ Ii}.

Then I is also a family of independent sets for a matroid, known as the
union of M1, . . . ,Mk. Further, the rank of any set A ⊂ E for the union
matroid is given by:

r(A) = min
B⊂A
{|A \B|+

k∑

i=1

ri(B)}.

For the proof we refer to [41, 12.3.1]. As a corollary of the matroid
union theorem we obtain the following theorem due to Edmonds.

Theorem 13.9. Let M be a matroid on a ground set E with rank function
r. E can be partitioned into k independent sets if and only if |A| ≤ k · r(A)
for all subsets A ⊂ E.

Proof. The implication ⇒ is straightforward.

For the other implication consider the union U of M with itself k times.
We apply the matroid union theorem to compute the rank of E:

rU (E) = min{|E| − |B|+ k · rM (B)}.
Clearly by assumption |E| − |B| + k · rM (B) ≥ |E| and equality holds for
B = ∅. Hence, rU (E) = |E|. This means that E is an independent set in U ,
and hence by definition it is a union of k independent sets of M . �

Definition 13.10. Let M be a matroid on a ground set E with the family
of independent sets I. Let E′ ⊂ E. The restriction of M to E′ is a matroid
where A ⊂ E′ is independent if and only if A ∈ I.

Proof of Proposition 13.7. LetM be a matroid on the ground set {1, . . . , n}.
Let p ∈ kPM . We know that p =

∑
b∈B λBpB with

∑
λB = k and

0 ≤ λB ∈ Q. After clearing the denominators we have:

dp =
∑

λ′Bpb,
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where
∑
λ′B = dk and 0 ≤ λB ∈ Z.

By restricting the matroid M we may assume that all coordinates of
p = (p1, . . . , pn) are nonzero.

We define two matroids. The first matroid N is on the ground set EN :=
{(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ pi}. In other words, we replace a point i in the
original matroid by pi equivalent points. A subset {(i1, j1), . . . , (is, js)} ⊂
EN is independent if only if:

• all iq’s are distinct,

• {i1, . . . , is} is an independent set in M .

We note that a basis of N maps naturally to a basis of M . Also the
rank function for N is the same as the one for M if we forget the second
coordinates. The point p has a decomposition as a sum of k points corre-
sponding to basis of M if and only if the matroid N is covered by k basis
(i.e. the ground set is a union of k basis). Hence, by Theorem 13.9 our aim
is to prove the following statement:

For any A ⊂ EN we have |A| ≤ krN (A).

The second matroid N ′ is on the ground set EN ′ := {(i, j, l) : 1 ≤ i ≤
n, 1 ≤ j ≤ pi, 1 ≤ l ≤ d.}. In other words we replace any point of N by d
equivalent points. A subset {(i1, j1, l1), . . . , (is, js, ls)} ⊂ EN is independent
if only if:

• all iq’s are distinct,

• {i1, . . . , is} is an independent set in M .

We have a natural projection π : EN ′ → EN given by forgetting the last
coordinate. We note that rN ′(π

−1(A)) = rN (A). As the point dp is decom-
posable we know that the matroid N ′ can be covered by kd basis. Hence,
for any B ⊂ EN ′ we have: |B| ≤ dk · rN ′(B). Applying this to π−1(A) we
obtain:

k|A| = |π−1(A)| ≤ dk · rN ′(π−1(A)) = dk · rN (A).

This is equivalent to the statement we wanted to prove! �

Our next aim is to relate matroids with the geometry of special subva-
rieties of Grassmannians. We recall that one of the possible definitions of

a Grassmannian G(k, n) is an orbit of [e1 ∧ · · · ∧ ek] ∈ P(
∧k Cn) under the

action of the group of n × n invertible matrices GL(n). While the Grass-
mannian is an orbit of the big group GL(n), we may ask how smaller groups
act on G(k, n). In particular, consider the torus T := (C∗)n of diagonal

matrices. This torus acts on P(
∧k Cn) and on G(k, n). However, in general

G(k, n) is not an orbit of T or even a closure of an orbit of T . Indeed, we
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already know that G(k, n) has dimension k(n−k) which may be much larger
than n. Let us fix a point p ∈ G(k, n). The questions that motivate us are:

• What is the T -orbit of p?

• What is the closure of this orbit?

• How can we describe this variety?

A beautiful answer was provided by Gelfand, Goresky, MacPherson and
Serganova [23]. The point p = [v1 ∧ · · · ∧ vk] ∈ G(k, n) represents a k-
dimensional subspace V = 〈v1, . . . , vk〉 in Cn. We may present the vectors
v1, . . . , vk as a k × n matrix Np. From Chapter 5 we know that the coor-

dinates of p ∈ P(
∧k Cn), are given by maximal minors of Np. How does a

point t = (t1, . . . , tn) ∈ T act on p? In general, t acts on the coordinate
indexed by ei1 ∧ · · · ∧ eik rescaling it by ti1 · · · tik . Hence, the orbit of p is
the image of the map:

T 3 (t1, . . . , tn)→ (ti1 · · · tik det((Np)i1,...,ik))1≤i1<···<ik≤n ∈ P(
k∧
Cn),

where (NP )i1,...,ik denotes the k×k submatrix of Np with the chosen columns
indexed by i1, . . . , ik.

Example 13.11. Consider the two dimensional subspace of the four dimen-
sional space spanned by the rows of the following matrix:

[
1 1 1 1
1 2 3 4

]
.

In the coordinates of the Grassmannian we have the associated point:

(e1+e2+e3+e4)∧(e1+2e2+3e3+4e4) = e1∧e2+2e1∧e3+3e1∧e4+e2∧e3+2e2∧e4+e3∧e4.

The orbit in the coordinates above is parameterized as follows:

(t1, t2, t3, t4)→ (t1t2, 2t1t3, 3t1t4, t2t3, 2t2t4, t3t4).

This is almost a monomial map! Indeed, the only thing that changes are
the constants given by minors of the matrix Np. However, these constants
do not depend on t ∈ T and hence we may define an automorphism of

P(
∧k Cn) that turns the orbit to an image of a monomial map, by simply

rescaling the coordinates.

At this point one could have a false impression that the orbit is isomor-
phic to the image of a monomial map defined by all squarefree monomials
of degree k. This is not the case, as some of the monomials may not appear
at all. This happens if the corresponding minor was equal to zero - then we
cannot rescale it.
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Example 13.12. (1) First we continue Example 13.11. The polytope
associated to the toric variety has the following vertices:

(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1).

This is the hypersimplex ∆2,4. The associated projective toric va-
riety is three dimensional. It represents the closure of the T -orbit
of a general point in the Grassmannian G(2, 4). The associated
matroid is the uniform rank two matroid on four elements.

(2) Let us now consider a different point of G(2, 4) given by the rows
of the following matrix:

[
1 0 0 0
1 2 3 4

]
.

The orbit is parameterized as follows:

(t1, t2, t3, t4)→ (2t1t2, 3t1t3, 4t1t4, 0, 0, 0).

The polytope representing the toric variety has the following ver-
tices:

(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1).

It is isomorphic to a two dimensional simplex, hence the closure of
the orbit is a P2, as can be seen directly from the parameterization.

Which monomials are thus left? Exactly those for which the correspond-
ing minor of Np was not zero.

Let us consider the representable matroid Mp of n points in Ck, defined
by the columns of the matrix Np. Clearly a set of points is a basis of Mp if
and only if the corresponding minor of Np is nonzero. We have proved the
following proposition.

Proposition 13.13. The closure of the T -orbit of any point p = [v1∧· · ·∧vk]
in a Grassmannian G(k, n) is the toric variety represented by the matroid
base polytope, for the representable matroid defined by columns of the k × n
matrix Np with i-th row equal to vi.

The results of Chapter 8 combined with Proposition 13.7 show the fol-
lowing.

Proposition 13.14. Any torus orbit closure in any Grassmannian in the
Plücker embedding is projectively normal.

The proposition also holds, if we reembed the Grassmannian by a Veronese
map, and for more general manifolds, known as flag varieties.

We now turn to the interpretation of basis exchange properties in terms
of algebraic geometry. Consider a matroid with basis polytope P . We recall
that:
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• the ideal of the associated toric variety is generated by binomials,

• every binomial in the ideal corresponds to an integral relation
among lattice points of P .

How do these statements specialize in the case of matroids? A lattice point
of P is the characteristic function of a basis. A sum of lattice points is the
sum of these characteristic functions. This corresponds to taking a sum of
basis as multisets.

Example 13.15. Consider the rank two uniform matroid on four elements
{p1, p2, p3, p4}. An integral relation among the vertices of the matroid poly-
tope is:

(1, 1, 0, 0) + (0, 0, 1, 1) = (1, 0, 1, 0) + (0, 1, 0, 1).

As a sum of basis elements this corresponds to:

{p1, p2} ∪ {p3, p4} = {p1, p3} ∪ {p2, p4}.
It is a degree two binomial in the ideal of the associated toric variety.

Hence, we say that two multisets of basis are compatible if their union (as
multisets) is the same. Equivalently, every element of the base set belongs
to the same number of basis in the first and second multiset of basis. Thus,
the binomials in the ideal of the toric variety represented by matroid base
polytope are in bijection with pairs of compatible multisets of basis.

What are the quadrics in such an ideal? Equivalently, when {B1, B2} is
equivalent to {B3, B4}? This is if and only if B1 ∪ B2 = B3 ∪ B4. In other
words, this is if and only if we change:

• B1 by subtracting from it a set A1 ⊂ B1 \ B2 and adding to it
A2 ⊂ B2 \B1 and

• B2 by adding to it A1 and subtracting A2.

We see that quadrics in the ideal correspond to multiple symmetric ex-
changes. It follows that symmetric basis exchanges form a distinguished set
of quadrics in the ideal. The following four conjectures are due to White.

Conjecture 13.16. • Representable case: The ideal of any torus or-
bit closure in any Grassmannian is:
(1) generated by quadrics,
(2) generated by quadrics corresponding to symmetric basis ex-

changes.

• General case: For any matroid M any two finite multisets of ba-
sis (Bi), (Bj) such that

⋃
Bi =

⋃
Bj can be transformed to one

another in a finite number of such steps that:
(1) we replace two basis B,B′ in one multiset, by two basis B̃, B̃′

obtained by multiple symmetric exchange (i.e. B∪B′ = B̃∪B̃′),
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(2) we replace two basis B,B′ in one multiset, by two basis B̃, B̃′

obtained by a symmetric exchange (i.e. B = B̃ ∪ {b1} \ {b2}
and B′ = B̃′ ∪ {b2} \ {b1}).

One can show that the general case implies the representable case.

13.3. Generating Functions

In this section we introduce multivariate generating functions that are given
by rational functions. The key example is multigraded Hilbert series. We
discuss methods for computing them, and we explore connections to regular
triangulations. In particular, we discuss the Ehrhart series.

We start with the familiar example of the polynomial ring K[x]. From
Chapter 8 we know we may interpret it as a semigroup algebra K[Zn≥0].
How to interpret the Hilbert function h(q) introduced in Chapter 1? As the
monomials of degree d form a basis of K[Zn≥0]d the h(d) equals the number
of lattice points in the semigroup that belong to the hyperplane Hd ⊂ Rn
defined by

∑n
i=1 yi = d. Let ∆ be the standard simplex, i.e. the convex hull

of basis vectors. We note that the Hilbert function counts the number of
lattice points in dilations of ∆, precisely h(d) = |d∆ ∩ Zn|. Further, for the
Hilbert series we obtain

HS(z) =
∞∑

q=0

|q∆ ∩ Zn|zq =
1

(1− z)n ,

as in Example 1.22. Our next aim is to refine our counting. So far we
have treated all monomials of the same degree on an equal footing. What
happens if we try to remember each monomial, not only its degree?

Definition 13.17. Let C ⊂ Rn be a rational pointed polyhedral cone. We
define the associated multigraded Hilbert series as a formal power series:

MHSC(x) =
∑

c∈C∩Zn
xc.

If C ⊂ Rn≥0 then we may reconstruct the Hilbert series of C[C] from
the multigraded Hilbert series, by setting x1 = · · · = xn = z. However, the
multigraded Hilbert series remembers much more information: all lattice
points of the cone. Our next aim is to represent MHS as a rational func-
tion, just as we did with the Hilbert series. A cone generated by linearly
independent vectors is called simplicial.

Lemma 13.18. Let C be a simplicial cone with ray generators c1, . . . , cd ∈
Zn. Then

MHSC(x) =
κC(x)

∏d
i=1(1− xci)

,
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where κC(x) is a Laurent polynomial with non-negative coefficients.

Proof. Consider the following half-open parallelepiped:

P := {x ∈ C : x =
d∑

i=1

λici, 0 ≤ λ1, . . . , λd < 1}.

As ci are linearly independent and generate C as a cone, every lattice point

c ∈ C has a unique representation c = p+
∑d

i=1 sici, where p ∈ P is a lattice
point and si are non-negative integers. We obtain:

MHSC(x) =
∑

c∈C∩Zn
xc =

∑

p∈P∩Zn
xp

(
d∏

i=1

( ∞∑

si=0

xsici

))
=

∑

p∈P∩Zn
xp

(
d∏

i=1

1

1− xci

)
=

∑
p∈P∩Zn xp

∏d
i=1(1− xci)

.

�

Remark 13.19. We could freely manipulate with infinite summations in
Lemma 13.18 as the assumption that C is pointed assures that the series is
absolutely convergent in some neighborhood.

Proposition 13.20. Let C be a pointed, rational polyhedral cone with ray
generators c1, . . . , cd ∈ Zn. Then

MHSC(x) =
κC(x)

∏d
i=1(1− xc

i )
,

where κC(x) is a Laurent polynomial with integral coefficients.

Proof. We may triangulate the cone C, i.e. present it as a union of simplicial
cones which rays are rays of C and which intersect only in lower dimensional
simplicial cones. This may be done e.g. by induction on the number of rays.

Lemma 13.18, together with induction on dimension of C and inclusion-
exclusion allow us to conclude. �

Remark 13.21. We note that the proofs of Proposition 13.20 and Lemma
13.18 give us an algorithm to compute the multigraded Hilbert series, as
well as combinatorial interpretation of the numerator.

The case when C is a cone over a lattice polytope is particularly nice. Let
P be a lattice polytope in Rn. We may regard it as a polytope P × {1} ⊂
Rn × R. Let C ⊂ Rn+1 be the cone over P , i.e. the smallest cone that
contains P × {1}.
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Proposition 13.22. Let C and P be as defined above. The Hilbert function
for C with respect to the grading induced by the last variable is given by:

h(q) = |qP ∩ Zn+1|.
It counts the number of lattice points in dilations of P . It is known as
the Ehrhart polynomial of P and indeed it coincides with a polynomial for
q ∈ Z≥0.

Proof. The only nontrivial statement is that h(q) is equal to a polynomial
for all positive integers q. By induction on dimP and by triangulating P it is
enough to prove the statement when P is a simplex with vertices v1, . . . , vd.
Let f(q) :=

(
d+q−1
q

)
=
(
d+q−1
d−1

)
for q ≥ 0 and f(q) = 0 for q < 0. As in the

proof of Lemma 13.18 we have:

h(q) =

d−1∑

i=0

aif(q − i),

where ai is the number of lattice points with the last coordinate i in the set

{x : x =
d∑

i=1

λi(vi, 1), 0 ≤ λ1, . . . , λd < 1}.

We only have to consider ai for i < d, as there are no lattice points in this
parallelepiped with last coordinate greater or equal to d.

We note that f is not a polynomial if we consider the negative arguments.
The punchline is that the polynomial g(q) := (d+q−1)(d+q−2) · · · q/(d−1)!
equals f also for negative, integral q, as long as q ≥ −d + 1. Hence, for
q ∈ Z≥0 we have:

h(q) =

d−1∑

i=0

aig(q − i).

�

Given a lattice polytope P with N lattice points, we may associate to
it a projective toric variety in PN−1 as in Chapter 8. Hence, we obtain a
binomial ideal IP ⊂ K[x] = K[x1, . . . , xN ]. Let us fix a term order ≺ which
induces the initial ideal in≺(IP ). The latter is a monomial ideal. Thus the
radical rad in≺(IP ) has the following property:

• if a product m of distinct variables does not belong to rad in≺(IP ),
then neither does any monomial that divides m.

This may be restated as:

• subsets S of variables such that
∏
x∈S x 6∈ rad in≺(IP ) form a sim-

plicial complex.
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Our aim is to obtain a nice, geometric description of this simplicial complex.
The main idea is that the variables in the ring are in bijection with lattice
points of P . Let ∆ be a subdivision of P into polytopes Pi that are convex
hulls of sets of points S, such that the product of variables corresponding
to S is not in rad in≺(IP ).

Example 13.23. Let P be the square conv((0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)).
The associated projective variety is a surface in P3 defined by x0x3 − x1x2.
We fix a term order for which x0x3 is the leading term. The triangu-
lation ∆ of P contains two triangles: conv((0, 0, 1), (0, 1, 1), (1, 0, 1)) and
conv((0, 1, 1), (1, 0, 1), (1, 1, 1)). The minimal nonface is the pair of vertices
(0, 0, 1), (1, 1, 1) corresponding to the unique generator of the initial ideal.

If we change the term order so that x1x2 becomes the leading term we
obtain a different triangulation of P , given by the other diagonal.

The following proposition relates Gröbner bases to triangulations.

Proposition 13.24. Using the notation introduced above ∆ is a triangula-
tion of P . The minimal non-faces of ∆ correspond to (radicals of) generators
of in≺(IP ).

Definition 13.25. The triangulations of the form ∆, induced by any term
order, are called regular. There exist triangulations that are not regular.

The story that we are telling has in fact three sides: combinatorial,
algebraic and geometric. From the combinatorial point of view, as described
above, we are triangulating a lattice polytope P into simplices. The algebraic
part is the finest: we degenerate a toric, i.e. binomial, prime ideal IP to a
monomial ideal that shares with IP all the most important invariants, like
dimension and degree.

Let us now describe the geometry in this picture. Here we degenerate
the variety V(IP ) to V(in≺(IP )). One of the problems is that in≺(IP ) maybe
not radical, thus we may loose some information, however let us ignore this
for a moment.

What is V(in≺(IP ))? As V(in≺(IP )) = V(rad(in≺(IP ))) the question is
what is the set of solutions of a squarefree monomial ideal. Let us state the
solution to Exercise 12 in Chapter 2:

• the variety V(rad(in≺(IP ))) is the union of (coordinate) vector sub-
spaces. Each subspace is spanned by basis vectors (ei)i∈S such that∏
i∈S xi 6∈ rad(in≺(IP )).

In particular: the simplices in the induced triangulation of P correspond
naturally to components of V(in≺(IP )) - as the triangulation breaks the
polytope into simple pieces, our variety breaks into simple components.
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We note that the idea of computing the dimension and degree of an
ideal, by passing to the initial ideal is equivalent to the idea of computing
the Hilbert series of a cone, by subdividing it into simplicial cones.

We know that the dimension of the (projective) toric variety associated
to a polytope P equals the dimension of P . What about the degree?

Proposition 13.26. Let P be a d dimensional lattice polytope, whose lattice
points generate the lattice Zd. The degree of the ideal IP equals the Euclidean
volume of P times d!.

Sketch of the proof. (1) The degree times the factorial of the di-
mension is the leading coefficient of the the Ehrhart polynomial h.
Thus it is enough to show that for any ε > 0 there exists a constant
C such that:

(13.1)
volP − ε

d!
qd − C ≤ hP (q) ≤ volP + ε

d!
qd + C,

for any positive integer q, where hP (q) is the number of lattice
points in qP .

(2) It is easy to prove inequality 13.1 for rational polytopes that are
products of intervals.

(3) Point (2) implies point (1), by covering P with small products of
intervals, according to the definition of the Lebesgue measure.

�

Example 13.27. Let P be a d-dimensional simplex, given as the convex
hull of 0 and d basis vectors. The Ehrhart polynomial is given by h(q) =(
d+q
d

)
= 1

d!q
d + lower order terms. Indeed volP = 1

d! and dimP = d.

The usual Euclidean volume multiplied by d! is known as the normalized
volume. The simplex that is the convex hull of 0 and all standard basis
vectors has normalized volume equal to one. Every lattice polytope has
normalized volume that is a positive integer, equal to the degree of the
associated variety, if one works in the correct lattice.

How is the triangulation compatible with the degree computation? Clearly
the volume of the polytope is equal to the sum of volumes of (maximal) sim-
plices in its triangulation.

Theorem 13.28. Let P be a d dimensional lattice polytope whose lattice
points generate the lattice Zd. Let IP be the associated toric ideal. Let ≺ be
a term order and ∆ the associated triangulation of P .

(1) The minimal primes of in≺(IP ) are in bijection with the maximal
simplices in the triangulation ∆.
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(2) The (unique) primary ideal corresponding to a minimal prime of
in≺(IP ) has degree equal to the normalized volume of the associated
simplex in ∆.

Exercises

(1) Show that Example 13.2 presents matroids.

(2) (a) Fix a family of independent sets I for a matroid M . Prove that the
inclusion maximal elements in I satisfy the axiom for the basis of
a matroid.

(b) Fix a nonempty set B ⊂ 2E satisfying the axiom for basis of a
matroid. Prove that I := {I ⊂ E : ∃B∈B : I ⊂ B} satisfies the
axioms for the independent sets.

(3) Prove that all basis in a matroid have the same cardinality.

(4) Prove that the points pB in Definition 13.5 are vertices of the polytope
PM . Prove that these are the only lattice points of PM .

(5) In this exercise we examine matroid duality.
(a) Let B ⊂ 2E be a set of basis of a matroid M . Let B∗ := {B ⊂ E :

E \B ∈ B}. Prove that B∗ is a set of basis of a matroid M∗. The
matroid M∗ is known as the dual matroid (of M).

(b) Prove that a dual of a representable matroid is repesentable.

(6) Prove that for any matroid the rank function is submodular.

(7) Prove that any function 2E → Z satisfying the three axioms of the rank
function is indeed a rank function of some matroid.

(8) How many distinct torus orbit closures are there in G(2, 4)? How many
up to isomorphism (of algebraic varieties)?

(9) Prove White’s conjectures for uniform matroids.
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Adjoint representation, 146
affine cone, 25
Aronhold invariant, 163
Artin’s Theorem, 86
associated prime, 44

border rank, 131

character, 143
as a Laurent polynomial, 145
product of, 144

Chevalley’s theorem, 27
Chinese remainder theorem, 21
Cholesky factorization, 178
class function, 144
complementary slackness, 175
complete symmetric polynomial, 145
constructible set, 22
cosine moment curve, 177
covariance, 124

matrix, 124
cusp, 32
cuspidal curve, 32

degree
of a polynomial, 2
of a variety, 23
of an ideal, 13

Derksen’s Algorithm, 164
Descartes’ Rule of Signs, 38
Dickson’s Lemma, 7
dimension, 13

of a variety, 23

Ehrhart polynomial, 194
eigenspace, 99

of a tropical matrix, 99
eigenvalue, 98
eigenvector

of a symmetrix matrix, 124
of a tensor, 127

elementary symmetric polynomial, 156
elliptic curve, 163
embedded prime, 45
Erlanger Programm, 155
Extended Buchberger Algorithm, 83

Farkas’ Lemma, 88
flag, 75

Gröbner basis, 8
reduced, 9

Grassmannian
as a GL orbit, 148

group
reductive, 142

hexagon invariant, 165
highest weight, 146
highest weight space, 146
highest weight vector, 146
Hilbert function, 14

affine, 14
for monomial ideal, 11

Hilbert polynomial, 13
Hilbert s Finiteness Theorem, 157
Hilbert series, 15

for monomial ideal, 11
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multigraded, 192
Hilbert’s Basis Theorem, 9
Hilbert’s Nullstellensatz, 84
homogeneous ideal, 25
homogeneous polynomial, 25
hyperdeterminant, 165
hypersimplex, 190

icosahedron, 28
ideal, 3

p-primary, 42
homogeneous, 25
irreducible, 42
maximal, 4
monomial, 8
primary, 4, 41
prime, 4
radical, 4
zero-dimensional, 37

ideal quotient, 3
initial form

in tropical setting, 101
initial monomial, 8
integral domain, 4
invariant, 155
irreducible

representation, 141
isotypic component, 142

j-invariant, 163
Jacobian matrix, 24

Kalman Varieties, 27
Karush-Kuhn-Tucker equations, 175

lattice polytope, 186

Maschke’s theorem, 141
matrix multiplication

as a tensor, 134
matrix multiplication tensor, 134
matroid, 183, 184

algebraic, 184
basis of, 185
basis polytope, 186
graphic, 184
rank, 185
representable, 184
restriction, 187
uniform, 184
union, 187

matroid union theorem, 187
minimal prime, 45

monomial
standard, 9

morphism
of representations, 140

multigraded Hilbert series, 192
multiple symmetric exchange property,

185

Newton’s Identities, 156
nilpotent, 4
Noether’s Degree Bound, 158
normalized volume, 196
nullcone, 162
Nullstellensatz

certificate, 82
weak version, 81

odeco, 128
order

degree lexicographic, 7
degree reverse lexicographic, 7
lexicographic, 7
monomial, 7

orthogonal decomposition
of a matrix, 126

orthogonally decomposable tensor, 128
oval, 28

PDE, 47
PID, 4
polytope

lattice, 186
vertex, 186

positive definite
matrix, 169

positive semidefinite
matrix, 170

Positivstellensatz, 88
power iteration, 127
power sum polynomial, 156
primary decomposition, 43

minimal, 43
projective closure, 25
projective space, 24
pseudoline, 28
Puiseux series, 38, 93

quadratic module, 88

rank, 126
rational normal curve, 26
reductive group, 142
representation, 140
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completely reducible, 142
irreducible, 141
semi-simple, 142

Reynolds operator, 157
ring

Noetherian, 41
roots

in representation theory, 146

Schur polynomial, 147
Schur’s Lemma, 141
Schur-Weyl duality, 149
SDP, 173

dual form, 173
primal form, 173

secant variety, 132
Segre variety

as rank one tensors, 130
semi-algebraic set, 23
semi-simple

representation, 142
simplicial complex, 184
singular

point, 24
singular locus, 24

of a hypersurface, 24
singular value, 125
singular value decomposition, 126
singular vector, 124
smooth

point, 24
spectrahedral shadow, 176
spectrahedron, 170
spectral decomposition, 126
Spectral Theorem, 169
spectrum

of a ring, 20
standard monomial, 9
Strassen’s algorithm, 135
submodularity, 185
subrepresentation, 141
symmetric exchange property, 185
symmetric polynomials, 156

tangential variety, 132
tensor, 126
Toeplitz Spectrahedron, 177
triangulation

regular, 195
tropical

addition, 91
convexity, 99

determinant, 96
eigenvalues, 97
eigenvectors, 97
multiplication, 91
polynomial, 100
polytope, 99
projective torus, 99
semiring, 91
triangle, 100
variety, 102
zero, 101

unstable points, 162

variety, 17
irreducible, 18
projective, 25

Veronese variety
as a GL orbit, 148

Weak Duality Theorem, 174
weight spaces, 145
weights, 145

Young diagram, 146

Zariski topology, 18
zero divisor, 4
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