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How Difficult Is Stereo?

Centrum for teknikstudier at Malmé Hogskola, Sweden The Vysehrad Fortress, Prague

® top: easy interpretation from even a single image
® bottom left: we have no help from image interpretation
® bottom right: ambiguous interpretation due to a combination of missing texture and occlusion
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A Summary of Our Observations and an Outlook

1. simple matching algorithms do not work
® the success of a model-free stereo matching is unlikely —158
® without scene recognition or use high-level constraints the problem seems difficult

2. stereopsis requires image interpretation in sufficiently complex scenes or another-modality measurement

we have a tradeoff: model strength <> universality

Outlook:

1. represent the occlusion constraint: correspondences are not independent due to occlusions
® disparity in rectified images
® uniqueness as an occlusion constraint

2. represent piecewise continuity the weakest of interpretations; piecewise: object boundaries
® ordering as a weak continuity model

3. use a consistent framework
® finding the most probable solution (MAP)
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Structural Ambiguity in Stereovision

® suppose we can recognize local matches independently but have no scene model
structural ambiguity in the presence of repetitions (or lack

® Jack of an occlusion model
® lack of a continuity model of texture)

® |llustration of the problem
® Keypoints: Window detections

left image right image

® Repetitive keypoints =- non-unique
matching

® Cameras are not canonical; constant-depth
surface is not a plane

matching/interpretation 1 interpretation 2
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»Understanding Basic Occlusion Types

T3

occluded - .

Yo /Y
Xo
surface pt. - | .

X1

transparent - >

half occlusion

mutual occlusion

mutual occlusion in the wall hole

® surface point at the intersection of rays I and r1 occludes a world point at the intersection (I,73) and implies the world

point (,r2) is transparent, therefore

(I,r3) and (I,7r2) are excluded by (I,71)

® in half-occlusion, every 3D point such as X or X3 is excluded by a binocularly visible surface point such as Y7, Y2, Y3
=> decisions on correspondences are not independent
® in mutual occlusion this is no longer the case: any X in the yellow zone above is not excluded

= decisions inside the zone are independent on the rest

half-occluded

occluded
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»Matching Table

Based on scene opacity and the observation on mutual exclusion we expect each pixel to match at most once.

T

P
3 4
1l 2/ 3/ 4 1 \2\3 |4 4 -
™ 12 5 -
. . 123 45 "
rays in epipolar plane matching table T’
matching table
® rows and columns represent optical rays
® nodes: possible correspondence pairs
® full nodes: matches
® numerical values associated with nodes: descriptor similarities see next
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» Constructing An Image Similarity Cost

® let p; = (I,r) and L(l), R(r) be (left, right) image descriptors (vectors) constructed from local image neighborhood
windows

in matching table 7"

‘block’ in the left image — ‘a set of random-variable samples’:

® a simple block (dis-)similarity is SAD(l,r) = ||L(I) — R(7)||1 Ly metric (sum of absolute differences; smaller is better)
L) — R(r)|?
® a scaled-descriptor (dis-)similarity is sim(l,r) = M smaller is better
af(l,r)

® 52 — the difference scale; a suitable (plug-in) estimate is % [var (L(1)) + var(R(r))], giving

sim(l,r) = 1— 2 cov(L(l), R(T)) var(.‘), c.ov(‘) is sampl.e (co-)variance, (38)

var (L(l)) + var(R(T)) not invariant to scale difference
p(LO).R()
® p— MNCC — Moravec's Normalized Cross-Correlation similarity bigger is better [Moravec 1977]
0% €o,1], sign p ~ ‘phase’

® another successful (dis-)similarity is the Hamming Distance over the Census Transform related to local binary patterns

3D
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Census Transform (CT)

® CT: Per-pixel binarization, given reference value (e.g the window center)

® For a grayscale image:

189 | 235 | 181
217 | 185 | 228
231 61 | 254

input window

® preserves sharp boundaries

input image

3(+;185)
—

0 l’ijST’

#(wigi ) = 1 x>
ij

1] 0| 1 |=483 (new value for the central pixel)

M

» : RGB CT, 2-bit per pixel, 3 x 3 window

® may or may not use windowing (cost aggregation)

3D Computer Vision: VII. Stereovision (p. 175/199) ¥“a®

R. Séra, CMP; rev. 12-Dec-2023 [Eill



How A Scene Looks in The Filled-In Matching Table

object

left image right image

® MNCC p used
(a=15,8=1) —182

® high-similarity structures correspond to
scene objects

Things to notice:
3 x 3 window

constant disparity
® a diagonal in the matching table

® zero disparity is the main diagonal
assuming standard stereopair

depth discontinuity
® horizontal or vertical jump in matching table
large image window
® similarity values have better discriminability
® worse occlusion localization
repeated texture

® horizontal and vertical block repetition

a good tradeoff occlusion artefacts undiscriminable
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Image Point Descriptors And Their Similarity

Descriptors: Image points are tagged by their (viewpoint-invariant) physical properties:
® texture window [Moravec 77]
® Census Transform [Zabih & Woodfill 94]
® a descriptor like DAISY [Tola et al. 2010]
® |earned descriptors

® reflectance profile under a moving illuminant

® (pixelwise) photometric ratios [Wolff & Angelopoulou 93-94]

® dual photometric stereo [Ikeuchi 87]

® (pixelwise) polarization signature

[ ]

e similar points are more likely to match
e image similarity values for all ‘match candidates’ give the 3D matching table also called: ‘disparity volume’

click for video
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»Marroquin’s Winner Take All (WTA) Matching Algorithm

Alg: Per left-image pixel: The most SAD-similar pixel along the right epipolar line —174
1. select disparity range this is a critical weak point

2. represent the matching table diagonals in a compact form

d=0- T

1 2 3 4 5 6
d=0--0--0-0--0-0--0--

d=1-----0-0--0-0--0--
d=2------- o -o0-0-0--
3. use the ‘image sliding & cost aggregation algorithm’
4. take the maximum over disparities d
5. threshold results by the maximal allowed SAD dissimilarity il T I T T TTT]
(or minimal MNCC similarity) imr;; LTI T T TT T image shifted
: — i by d = 1 pixel
[iml;; — imry| @
o T
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A Matlab Code for WTA

function dmap = marroquin(iml, imr, disparityRange)
% iml, imr - rectified gray-scale images
% disparityRange - non-negative disparity range

% (c) Radim Sara (sara@cmp.felk.cvut.cz) FEE CTU Prague, 10 Dec 12

thr = 20;

r = 2;

winsize = 2*xr+[1 1];

N = boxing(ones(size(iml)), winsize);

% bad match rejection threshold

% 5x5 window (neighborhood) for r=2
% the size of each local patch is
% N = (2r+1)"2 except for boundary pixels

% —-—- compute dissimilarity per pixel and disparity --->

for d = O:disparityRange

slice = abs(imr(:,1:end-d) - iml(:,d+l:end));
V(:,d+1:end,d+1) = boxing(slice, winsize)./N;
end

% cycle over all disparities
% pixelwise dissimilarity (unscaled SAD)
% window aggregation

% --- collect winners, threshold, output disparity map --->
[cmap,dmap] = min(V,[],3);

dmap(cmap > thr) = NaN;
end % of marroquin

% collect winners and their dissimilarities
% mask-out high dissimilarity pixels

function ¢ = boxing(im, wsz)
% if the mex is not found, run this slow version:

c = conv2(ones(1,wsz(1)), ones(wsz(2),1), im,

’same’) ;
end % of boxing
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WTA: Some Results

results are fairly bad

false matches in textureless image regions and on repetitive structures (book shelf)
a more restrictive threshold (thr = 10) does not work as expected

we searched the true disparity range, results get worse if the range is set wider

chief failure reasons:
® unnormalized image dissimilarity does not work well
® no occlusion model (it just ignores the occlusion structure we have discussed —172)

3D
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»A Principled Approach to Similarity

Empirical Distribution of MNCC p for Matches (green) and Non-Matches (red)

MNCC, 5.5 window, 50 KITTI images
T T T

E) 08 06 04 02 1

® histograms of p computed from 5 x 5 correlation window p: bigger is better
® KITTI dataset

® 4.2-108 ground-truth (LiDAR) matches for p1(p) (green),
® 4.2.10% random non-matches for po(p) (red)

Obs:
® non-matches (red) may have arbitrarily large p
® matches (green) may have arbitrarily low p
® p =1 is improbable for matches
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Match Likelihood

negative log-likelihood Vi (blue) and — log Vi (red)

.. a=10, 3=1.5 o
® pis just a normalized measurement 5¢ 18
® we need a probability distribution on [0, 1] al . ~
e.g. the histogram or the Beta distribution: = s
1 a—1 B—1 Ss3f 4 ‘%
pp) = 5—=lp L—lp ol Q
(») B(a,ﬁ)l\ (1 —1p) 3 S
2r 2 =
® note that uniform distribution is obtained fora =3 =1
® when a =2 and 8 =1 then p1(:) = 2|p| 1t 0
0 - - -2
0 0.2 04 p 06 0.8 1

® the mode is at aigiz ~ 0.9733 fora =10, B =1.5

® if we chose 8 = 1 then the mode was at p =1
® perfect similarity is ‘suspicious’ (depends on expected camera noise level)
® from now on we will work with negative log-likelihood cost

Vi (p(l, T)) = —logp1 (p(l, 7‘)) smaller is better (39)

® we should also define similarity (and negative log-likelihood Vy(p(l,7))) for non-matches
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»A Principled Approach to Matching: Formulating ‘What We Want’

given matching M in table T, what is the likelihood of observed data D?
data — all cost pairs (Vp, V1) in the matching table T’

matches — pairs p; = (l;,r;) e M CT, i=1,...,n

matching: partitioning matching table 7" to matched M and excluded E pairs

T=MUE, MNE=0

matching cost (negative log-likelihood, smaller is better) constant number of variables in T
V(D |MT)=3 Vi(D|p)+ Y Vo(D|p)
pEM peET\M

Vi(D | p) — negative log-probability of data D at matched pixel p (39)
Vo(D | p) — ditto at unmatched pixel p —181 and —182
matching problem
M* =arg min V(D |M,T)
MEM(T)

M(T) — the set of all matchings in table T

symmetric: formulated over pairs, invariant to left <> right image swap unlike in WTA
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»(cont’d) Log-Likelihood Ratio

® we need to reduce the matching to a standard polynomial-complexity problem

1. convert the matching cost to an ‘easier’ sum

V(D|M,T)=>Y Vi(D|p)+ > Vo(D|p) + > Vo(DIp)— > Vo(D|p)

peM pET\M peM peM
:Z(%(Dlp) VoDlp) > VoD Ip)+ > Vo(D|p)
pEM peET\M pEM
—L(D | p) Z Vo(D | p) = const
peT
2. hence

D|M)= L(D 40

arg | min V(D | M) = arg W) Z | p) (40)

L(D | p) - logarithm of matched-to-unmatched likelihood ratio (bigger is better)
why this way: we want to use maximum-likelihood on the entire T°

3. (40) is max-cost matching (maximum assignment) for the maximum-likelihood (ML) matching problem

® use the Hungarian (Munkres) algorithm and threshold the result with 7: L(D | p) > 7 >0
or approximate the problem by sacrificing symmetry and accuracy to speed and use dynamic programming
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Some Results for the Maximum-Likelihood (ML) Matching

left image

3% / 61%

4.3% / 76%

® unlike the WTA we can efficiently control the density/accuracy tradeoff with 7 black = no match
® middle row: threshold 7 for L(D | p) set to achieve error rate of 3% (and 61% density results)
® bottom row: threshold 7 set to achieve density of 76% (and 4.3% error rate results)
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Thank You
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3D Computer Vision: enlarged figures
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