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Module VI

3D Structure and Camera Motion

@ Reconstructing Camera System: From Triples and from Pairs

ndle Adjustment

covered by
[1] [H&Z] Secs: 9.5.3, 10.1, 10.2, 10.3, 12.1, 12.2, 12.4, 12.5, 18.1

[2] Triggs, B. et al. Bundle Adjustment—A Modern Synthesis. In Proc ICCV Workshop on Vision Algorithms.
Springer-Verlag. pp. 298-372, 1999.

additional references

@ D. Martinec and T. Pajdla. Robust Rotation and Translation Estimation in Multiview Reconstruction. In Proc CVPR, 2007

@ M. I. A. Lourakis and A. A. Argyros. SBA: A Software Package for Generic Sparse Bundle Adjustment. ACM Trans Math Software
36(1):1-30, 20009.
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»Reconstructing Camera System by Gluing Camera Triples

Given: Calibration matrices K; and tentative correspondences per camera triples. X%

Initialization
1. initialize camera cluster C with a pair P1, P»
2. find essential matrix E12 and matches Mi2 by the
5-point algorithm  ,__ Q,,jjb,[\gc% —89
3. construct camera pair
P, =K, [I O]7 P; = K> [R t}
4. triangulate {X;} per match
from Mo —108

5. initialize point cloud X with {X;} satisfying
chirality constraint z; > 0 and apical angle
constraint |o;| > ar

Attaching camera P; ¢ C
1. select points X from X' that have matches to P;
2. estimate P; using X;, RANSAC with the 3-pt alg. (P3P), projection errors e;; in X; —66
3. reconstruct 3D points from all tentative matches from P; to all P}, [ # k that are not in X’
4. filter them by the chirality and apical angle constraints and add them to X
5. add Pj to C

6. perform bundle adjustment on X and C coming next —142
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» The Projective Reconstruction Theorem

® We can run an analogical procedure when the cameras remain uncalibrated. But:

Observation: Unless P; are constrained, then for any number of cameras j =1,...,k

3.2
m;, ~ P,X; = P,H ' HX, = P} X] Bty
l !’ !
j Crodl [- - — 3
® when P; and X are both determined from correspondences (including calibrations K;), they are given up to a
common 3D homography H
(translation, rotation, scale, shear, pure perspectivity)

Y

mi ma

hen cameras are internally calibrated (K, known) then H is restricted to a similarity since it must preserve
the calibrations K [H&Z, Secs. 10.2, 10.3], [Longuet-Higgins 1981]
(translation, rotation, scale) —137 for an indirect proof
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»Reconstructing Camera System from Pairs (Correspondence-Free)

Problem: Given a set of p decomposed pairwise essential matrices Ei]’ = [f:ij]XRi]- and calibration matrices K;

reconstruct the camera system P;, i =1,...,k
—82 and —154 on representing E

We construct calibrated camera pairs P;; € R%* see (19)
. K;'P; I o
b, — [ } _ [ A } C ot
® singletons i, j correspond to graph nodes k nodes
® pairs ij correspond to graph edges p edges
P1 E12 P2 P3 P4
151-]- are in different coordinate systems but these are related by similarities Pi]’Hi]‘ =Py H,;; € SIM(3)
1 AO R_qr] tij| L |[Ri ot (31)
Rij tz‘j 0 Sij Rj tj
——
€R6:4 H;; €R%:4 €R6:4
_ _ & Sth(3)
® (31) is a system of 24p egs. in Tp + 6k unknowns 24 =64, Tp ~ (ti;, Rij, sij), 6k ~ (Ry,t;)
® cach P, = (R;, t;) appears on the RHS as many times as is the degree of node P; eg. Ps 3%
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»cont’d

Eq. (31) implies Y = and ) 2 B L
@ (31) ime |:Rij Ri.y} |:R:i Rijtij + sijti; t;
® R;; and t;; can be eliminated:
Ri]‘Ri = Rj Rijti + Sijfij =t;, sy >0 (32)
® note transformations that do not change these equations assuming no error in R
1. R;— R;R, 2. t;—ot; and Sij k> 0Sij, 3. t;—t; + Rt

® the global frame is fixed, e.g. by selecting

R: =1, Z t; =0, % Z sij =1 (33)
‘ o

® rotation equations are decoupled from translation equations
® in principle, s;; could correct the sign of f:ij from essential matrix decomposition —82
but R; cannot correct the « sign in R;; = therefore make sure all points are in front of cameras and constrain s;; > 0; —84

+ pairwise correspondences are sufficient

— suitable for well-distributed cameras only (dome-like configurations) otherwise intractable or numerically unstable
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Finding The Rotation Component in Eq. (32)

1. Poor Man’s Algorithm:
a) create a Minimum Spanning Tree of G from —136
b) propagate rotations from R; = I via R;;R; = R; from (32)

2. Rich Man'’s Algorithm:
Consider R;;R; = R, (i,5) € E(G), where R are a 3 x 3 rotation matrices
Errors per columns ¢ = 1,2,3 of R;:

efj = Rijl‘;: — I‘;, for all 4, j’ .

Solve
1 i=5Ak=1

3
arg min Z Z (e5) ef; st (r) (=30 i#jrk=1
(1,/)€E(G) =1 0 i=jAk#l

this is a quadratic programming problem

3. SVD-Lover’s Algorithm:
Ignore the constraints and project the solution onto rotation matrices see next
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SVD Algorithm (cont'd)

Per columns ¢ =1, 2,3 of R;:

Rir{ —r; =0, forall i, j (34)
® fix ¢ and denote r¢ = [I“{, rs, ..., rz] T c-th columns of all rotation matrices stacked; r¢ € R3F
® then (34) becomes Dr¢ =0 D € R37:3F
® 3p equations for 3k unknowns — p > k in a 1-connected graph we have to fix r{ = [1,0, 0]

by

Rior{ —r5=0 R -I O r§
— Rasrs —r5=0 — Dr°=| 0 Ras -I| [r3| =0
A~ . . - c
Risri —r5=0 Riz 0 —I1Ims] o
Cl = e
e must hold for any ¢ ll D ¥ ’( 7 bt
Idea: [Martinec & Pajdla CVPR 2007]
1. find the space of all r¢ € R3* that solve (34) D is sparse, use [V,E] = eigs(D’*D,3,0); (Matlab)
2. choose 3 unit orthogonal vectors in this space 3 smallest eigenvectors
3. find closest rotation matrices per cam. using SVD because ||r¢|| = 1 is necessary but insufficient

S . R; =UV', where R; = UDV "
® global world rotation is arbitrary '
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Finding The Translation Component in Eq. (32)
From (32) and (33):

0 < d < 3 — rank of camera center set, p — #pairs, k — #cameras
(a): Riyti+siyty—t; =0,  (b): > t.=0, () > sy=p,

0,7

sij >0, tjeRd
® inrankd: d-p+ d + 1
N N

(@) (b) (c)
Ex: Chains, circuits

indep. eqns ford-k + p unknowns — p > % def (d, k)
ti Sij

construction of t; from sticks of known orientation t;

ij and unknown length s;; up to overall scale?
p=k—1 kp/“(3\1& k=p=4 k=p>4
?\ ﬂ
Q)t\jo @mL O——=0
k < 2 tor any d

3 > d > 2: non-collinear ok 3 > d > 3: non-planar ok

3>d >k — 1: impossible
® equations insufficient for chains, trees, or when d = 1

collinear cameras
® 3-connectivity implies sufficient equations for d = 3

cams. in general pos. in 3D
— s-connected graph has p > [%] edges for s > 2, hence p > [%] > Q(3,k) = % -2
® 4-connectivity implies sufficient eqns. for any k when d = 2 coplanar cams
— sincep > [2k] > Q(2,k) =2k —3
— maximal planar tringulated graphs have p = 3k — 6
and give a solution for k > 3

maximal planar triangulated graph example:

wa
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cont’d

Linear equations in (32) and (33) can be rewritten to
Dt =0,  t=[t{, b3, ..,t], s12,. .-, 85, -]
assuming measurement errors Dt = € and d = 3, we have
t e R¥**? D e R*P3* P gparse
and

t"=argmint DDt
t,s;;>0

® this is a quadratic programming problem (mind the constraints!)

z = zeros(3%k+p,1);
t = quadprog(D.’*D, z, diag([zeros(3*k,1); -ones(p,1)]), z);

® but check the rank first!

v
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