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»Local Optimization for Fundamental Matrix Estimation

Summary so far

® Given a set X = {(x;,¥:) k_| of k> 7 inlier correspondences, compute a statistically efficient estimate for
fundamental matrix F.

1. Find the conditioned (—93) 7-point F (—85) from a suitable 7-tuple

2. Improve the F{j using the LM optimization (—110-111) and the Sampson error (—112) on all inliers, reinforce
rank-2, unit-norm F} after each LM iteration using SVD

Partial conceptualization
® inlier = a correspondence (a true match)
® outlier = a non-correspondence

® binary inlier/outlier labels are hidden

® we can get their likely estimate only, with respect to a model

We are not yet done

® if there are no wrong correspondences (mismatches, outliers), this gives a local optimum given the 7-point initial
estimate

® the algorithm breaks under contamination of (inlier) correspondences by outliers

® the full problem involves finding the inliers!

® in addition, we need a mechanism for jumping out of local minima (and exploring the space of all fundamental matrices)
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Example Matching Results for the 7-point Algorithm with Random-Sampling Optimization

input images interest points (ca. 3600) tentative corresp. (416) matching (340)

® descriptors used to obtain tentative matches but no descriptors used in the final matching
® without local optimization the minimization is over a discrete set of epipolar geometries proposable from 7-tuples
® notice the mismatches (they have wrong depth, even negative) remember: hidden labels —113

® they are considered as random outliers to the epipolar model

® inlier matches will be treated as correspondences for the SfM problem
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»A Preview: Optimization by Random Sampling of Geometric Primitives

Given an optimization problem, define:
® parameters @ € domain(6)
® primitive geometric element z; € P
® generator g of random minimal proposal s-tuples S € P? of primitive elements
® minimal-problem solver computing @ from the s-tuples: solver : P° — domain(0)
® objective function 7 (P | 0)

Examples: 7] primitive s solver 7(-) terms
line fitting in 2D neR3  point 2 n~ xj X Xo point-to-line distances
plane fitting in 3D peR?  point 3 p~null([x1, X2, x3]7)  point-to-plane distances
fundamental matrix fitting | F match 2D-2D 7 7-pt alg Sampson errors
exterior orientation (R, t) match 3D-2D 3 P3P alg projection errors
Algorithm sketch:
® propose a random s-tuple of primitives S using q(-) °.
® run the solver on S to obtain parameters 6 * . S
/
® compute the value of 7(P | @) on all primitives P . ® <,

® remember the sample which gave the best w(P | )
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»A Preview: RANSAC with Local Optimization and Early Stopping

Given: minimal configuration C' definition, proposal distribution ¢(-), minimal-problem solver, objective 7(-):

1. initialize the best parameters Oy st := ), Thest := —00, and proposal index k := 0
2. estimate the total number of needed proposals as N := (751) n — No. of primitives, s — minimal config size
3. while £k < N: e
a) propose a random s-tuple S from ¢(-) . .
b) solve the minimal problem on S to obtain — . s
c) if (P | @) > mpest then accept . .
i) update the best Oyest 1= 6 7(S) marginalized as in (29); m(.S) includes a prior = MAP
i) threshold-out outliers using e from (30) e
5
2er . .
iii) locally optimize 6 from the inliers of Opest LM optimization with robustified (—121) Sampson error

possibly weighted by posterior (1 ;) [Chum et al. 2003]

iv) update Opcst, update inliers using (30), re-estimate the stopping criterion N from inlier counts —+117 for derivation
_ log(1 — P) _ | inliers(@pest )|
" log(1 —e®)’ °= n ’
d) ki=k+1

4. output Chest

® see the € MPV course for RANSAC details see also [Fischler & Bolles 1981], [25 years of RANSAC]
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»Data-Driven Stopping Criterion

e The number of proposals N needed to hit the “true parameters’” = an all-inlier configuration:

this will tell us nothing about the accuracy of the result
P ... probability that the last proposal is an all-inlier for the first time

1 — P ...all previous N proposals contained outlier(s)
e ...the fraction of inliers among primitives, ¢ < 1
s ...No. of primitives in a minimal configuration 2 in line fitting, 7 in 7-point algorithm, 4 in homography fitting,. ..
log(1 — P) ® ¢% ... proposal is all-inlier
2 log(1 — &%) ® 1 — g% ... proposal contains at least one outlier
° (1— ES)N ... N previous proposals contained an outlier =1 — P
s=7
N fors=7
L )
e || 0.8 [ 0.99 g
0.5 205 590 k=
0.2 || 1.3-10° | 3.5-10° =
0.1 || 1.6-107 | 4.6-107

¢ (inlier fraction)

® N can be re-estimated using the current estimate for e (if there is LO, then after LO)
the quasi-posterior estimate for € is the average over all samples generated so far
® this shows we have a good reason to limit all possible matches to tentative matches only

® for ¢ — 0 we gain nothing over the standard MH-sampler stopping rule not covered in this course
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»Towards 7(-): The Full Problem of Matching and Fundamental Matrix Estimation

Problem: Given image keypoint sets X = {z;};~; and Y = {y;}7_; and their descriptors D,
find the most probable
1. inlier keypoints Sx C X, Sy CY
2. one-to-one perfect matching M : Sx — Sy perfect matching: 1-factor of the bipartite graph
3. fundamental matrix F' such that rank F = 2
4. such that for each ; € Sx and y; = M(x;) it is probable that
a) the image descriptor D(x;) is similar to D(y;), and
b) the total reprojection error E = 3, e?j (F) is small note a slight change in notation: e; ;
5. inlier-outlier and outlier-outlier matches are improbable

M : Y
12345678

1
2 []=0
3
X 4 [] =1 (matched)
5
6
(M*,F") :arg%a%(ﬂ'(E,D,F,]\/[) (E,D)~P, (F, M) ~80 (24)
® probabilistic model: an efficient language for problem formulation it also unifies 4.a and 4.b
® the (24) is a Bayesian probabilistic model there is a constant number of random variables!

® binary matching table M;; € {0,1} of fixed size m x n

® each row/column contains at most one unity
® zero rows/columns correspond to unmatched point x; /y;
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Deriving A Robust Matching Model by Approximate Marginalization

For algorithmic efficiency, instead of (M™,F*) = arg Ij{}a}g(p(E, D,F, M) solve
F* = arg mligmxp(E7 D,F) (25)

by marginalization of p(E, D, F, M) over the set of all matchings M s.t. M € M this changes the problem!

drop the assumption that M is a 1:1 matching, assume correspondence-wise independence:

m n
p(E’ D7 F7 ]\[) = p(E7 D7 F | ]\[) (j\[ H Hpe el]? d’b]? F ‘ ’nlJ) (77L’i.7)
i=1j=1
® ¢;; represents (reprojection) error for match z; <> y;: e.g. ejj(zi, yi, F)
® d;; represents descriptor similarity for match z; <> y;: e.g. d;; = [|d(z;) — d(y;)||

Approximate marginalization: take all the 2™" terms in place of M
p(E,D,F) ~ > > ---> p(E,D,F|M)P(M)=
m11€{0,1} mi2 Mmmn
m n @ 1
= Z e Z HHpe(Eij7dij7F | mi;)P(mij) = -+ =
mi1 Mmn t=175=1

=1111 Pe(€ij, dig, F | mij)P(mi;)  (26)

i=1j=1m,;€{0,1}

we will continue with this term
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Robust Matching Model (cont'd)

> pelei,dig, F | mi)P(my) =

m;;€{0,1}
= pe(eij, dig, F [ miy = 1) P(mij = 1) + pe(€ij, dij, F | mi; = 0) P(my; =0) =
pi(eij,dij,F) 1-Py po(eij,dij,F) Py

= (1 - Po)pi(eij,dij, F) + Popo(eij, dij, F)  (27)

® the po(eij,di;, F) is a penalty for ‘missing a correspondence’ but it should be a p.d.f. (cannot be a constant)
—121 for a simplification

Py
1- P

choose Py — 1, po(-) — 0 so that po(+) ~ const

® the p1(e;j,di;, F) is typically an easy-to-design term: assuming independence of reprojection error and descriptor
similarity:
p1(eij, dij, F) = pi(eij | F) pr(F) p1(dij)
® we choose, e.g.
A —d(yy) 12

263 (28)

e (F)

1
Ta(og,dimd)

1 - 2
202

pi(ei; | F) = Toon) © o pi(diy) =

® Fis a random variable and o1, o4, Py are parameters
® the form of Tt (01) depends on the error definition, it may depend on z;, y; but not on F

® we will continue with the result from (27)

3D

Computer Vision: V. Optimization for 3D Vision (p. 120/199) ¥ac R. Sara, CMP; rev. 14-Nov—2023 [Eill



Simplified Robust Energy (Error) Function

® assuming the choice of p1 as in (28), we are simplifying (26) to

p(E, D, F) = p(E, D | F)pp(F) = pr(F) [T [T[(1 = Po) pa(esg dij | F) + Popoless, dig | F)]
i=1j=1

® we choose oo > o1 and omit d;; for simplicity; then the square-bracket term is

) )
1-Py ——2 Py sy
e 1 e 0 =
Te(o1) Te(o0)
® we define the ‘error function’ as: V(z) = —log p(z)
" 1- P v
V(E,D|F)= ~log - log(e 207
22| 1o
—_———

A = const

® the terms in (29) are: (constant) + (total robust error for all pairs in M)

e2.(F) e?.(F)
1-R [~z Telo) P~z
Te(o1) 1— Py Te(00)
smaller V' is better
efj(F)
Py Telo1) =557 ) _
1— Py Te(oo)
t = const
m n _ 67,2]. (E)
= mnAJrZZflog(e 255 +t) (29)
i=1j=1 -
V(eij)

expensive but explicit matching is avoided

® note we are summing over all mn matches (m, n are constant!)

® when ¢t = 0 we have quadratic inlier error function V(eij) =e2(F)/(20%)

g
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»The Action of the Robust Matching Model on Data
Ex: Error function V(ei;) (29):

o, =1 ~
4 s red — the (non-robust) quadratic error V(eij) when t =0
whent=
35 V when t = 0.25 blue — the rejected match penalty ¢
——t=025 N
8 green — robust V'(e;;) from (29)
25
5 ® if the error of a correspondence exceeds a limit, it is ignored
>

15 ® then f/(eij) = const and we just count outliers in (29)

1 : v 1 ® ¢ controls the ‘turn-off’ point
05 1 ® the inlier/outlier threshold is ez — the error for which
0 \\_// ] (1= Po)pi(er) = Popoler): note that ¢ ~ 0
-05

%4 3 2eT1 0 1 eT2 3 4 -
. er =01\ —logt?, t=ce¢

The full optimization problem (25) uses (29):

C - N 4
1/ eg. ep =401 — t~3.4-107% (30)

=

data model prior
e N 7 N m n ez.(F)
p(E,D|F) -p(F) . 5T
F* =argmax —>———~ 27 ~ argmin |V (F lo (e 297 t)
& »(E, D) gmin | V( HZZ & -
A\ , =1 j=1
evidence
® typically we take V(F) = —log p(F) = 0 unless we need to stabilize a computation, e.g. when video camera moves

smoothly (on a high-mass vehicle) and we have a prediction for F
® the evidence is not needed unless we want to compare different models (e.g. homography vs. epipolar geometry)
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How To Find the Global Maxima (Modes) of a PDF?

15
=
= 1
0.5 : 3 :
0
0 0.2 0.4 0.6 0.8 1
exnaustve _
randomized
MH_crawl

1000 2000 3000 4000 5000
iterations

® number of proposals before
‘m - Itruel < step
® averaged over 10* trials

® given a toy probability distribution p(z) at left
consider several methods:

1. exhaustive search
step = 1/(iterations-1);
for x = O:step:1
if p(x) > bestp
bestx = x; bestp = p(x);
end
end

2. randomized search with uniform sampling
while t < iterations
x = rand(1);
if p(x) > bestp
bestx = x; bestp = p(x);
end
t = t+1l; % time
end

3. random sampling from p(z) (Gibbs sampler)

6 = z, p.d.f. on [0, 1], mode at 0.1

® slow algorithm
(definite quantization)

® fast to implement

® equally slow algorithm

® fast to implement

e faster algorithm e fast to implement but often infeasible (e.g. when p(x) is data

dependent (our case in correspondence prob.))

4. Metropolis-Hastings sampling

® almost as fast (with care) e not so fast to implement

e rarely infeasible ¢ RANSAC belongs here

e simpler (unimodal) distributions result in faster convergence
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How To Generate Random Samples from a Complex Distribution?

target (red) and scaled proposal (blue) distributions

1.5}
°
s
x
T 17
=
a
05

0

0 0.2 0.4 0.6 0.8 1
X

® red: probability density function 7 (x) of the toy distribution on

the unit interval target distribution

4 4
m(z) = wiBe(w;ai,B), Y =17 >0
=1

i=1
b
B(a, 8)

® alg. for generating samples from Be(z; «, ) is known

Be(w;a, ) = 21— ) 20

® = we can generate samples from 7(z) how?

® suppose we cannot sample from 7(x) but we can sample from some ‘simple’ proposal distribution ¢(z | o),

given the previous sample zq (blue)

Uo,1(x)
Be(z; 72 +1,

(z)

q(z | o) =

7 1)

(independent) uniform sampling = Be(z,1,1)
‘beta’ diffusion (crawler) T — temperature
(independent) Gibbs sampler

® note we have unified all the random sampling methods from the previous slide

® how to redistribute proposal samples g(z | o) to target distribution 7(z) samples?
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»Metropolis-Hastings (MH) Sampling
C, S — configurations: carry information about 6 eg. C=60=uxin —124, C - s-tuple on —115

Goal: Generate a sequence of random samples {C;} from target distribution 7(C')
Idea: Setup a Markov chain with a suitable transition probability to generate the sequence
Sampling procedure
1. given current configuration C;, propose (draw a random) configuration sample S from ¢(S | Ct)
g may use some information from C; (Hastings)

2. compute acceptance probability the redistribution filter; note the evidence term drops out
Ciy1 =35
: { w(S) q(Cy | S)} Ci—1 C;, a
a=min< 1, L o ____ N
7(Cy) 4(S]Cr) o{\a:
Ciy1=Ct

3. accept S with probability a
a) draw a random number u from unit-interval uniform distribution Ug,1
b) if u < a then Ct+1 = S else Ct+1 =C4

‘Programming’ an MH sampler
1. design a proposal distribution (mixture) ¢ and a sampler from ¢

2. express functions ¢(Ct | S) and ¢(S | C¢) as proper distributions not always simple
Finding the mode

® remember the best sample fast implementation but must wait long to hit the mode

® use simulated annealing very slow

® use the sampler as an explorer and do local optimization from the accepted sample a trade-off between speed and accuracy
an optimal algorithm does not use just the best sample: a Stochastic EM Algorithm (e.g. SAEM)
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MH Sampling Demo

)

initial sample

= 99768 i, = 80644

0 L n L 1 L 1 1 1 L
0 01 n2 03 04 05 0K 07 08 0% 1

sampling process (100k samples; video, 7:33) click for video

® blue point: current sample

® green circle: best sample so far quality = 7(z)

® histogram: current distribution of visited states

® the vicinity of modes are the most often visited states final distribution of visited states
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Demo Source Code (Matlab)

function x = proposal_gen(x0)
% proposal generator q(x | x0)

T = 0.01; 7 temperature
x = betarnd(x0/T+1, (1-x0)/T+1);

function p = proposal_q(x, x0)
% proposal distribution q(x | x0)

T = 0.01;
p = betapdf(x, x0/T+1, (1-x0)/T+1);
end

function p = target_p(x)
% target distribution p(x)

% shape parameters:
a=[2 40 100 6];
= [10 40 20 1];

o

% mixing coefficients:
w=[10.40.2563 0.50]; w = w/sum(w);
p=0;
for i = 1:length(a)
p = p + w(i)*betapdf(x,a(i),b(i));
end
end

%% DEMO script

k = 10000; % number of samples
X = NaN(1,k); % list of samples

x0 = proposal_gen(0.5);
for i = 1:k
x1 = proposal_gen(x0);
a = target_p(x1)/target_p(x0) * ...
proposal_q(x0,x1) /proposal_q(x1,x0);
if rand(1) < a
X(i) = x1; x0 = x1;
else
X(i) = x0;
end
end

figure(1)

x = 0:0.001:1;

plot(x, target_p(x), ’r’, ’linewidth’,2);

hold on

binw = 0.025; % histogram bin width

n = histc(X, O:binw:1);

h = bar(0:binw:1, n/sum(n)/binw, ’histc’);
set(h, ’facecolor’, ’r’, ’facealpha’, 0.3)
x1im([0 11); ylim([0 2.5])

xlabel ’x’

ylabel ’p(x)’

title ’MH demo’

hold off
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Thank You
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N (proposals)
o

—_
o

10

€ (inlier fraction)
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