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▶Local Optimization for Fundamental Matrix Estimation

Summary so far

• Given a set X = {(xi, yi)}ki=1 of k ≫ 7 inlier correspondences, compute a statistically efficient estimate for
fundamental matrix F.

1. Find the conditioned (→93) 7-point F0 (→85) from a suitable 7-tuple

2. Improve the F∗
0 using the LM optimization (→110–111) and the Sampson error (→112) on all inliers, reinforce

rank-2, unit-norm F∗
k after each LM iteration using SVD

Partial conceptualization

• inlier = a correspondence (a true match)

• outlier = a non-correspondence

• binary inlier/outlier labels are hidden

• we can get their likely estimate only, with respect to a model

We are not yet done

• if there are no wrong correspondences (mismatches, outliers), this gives a local optimum given the 7-point initial
estimate

• the algorithm breaks under contamination of (inlier) correspondences by outliers

• the full problem involves finding the inliers!

• in addition, we need a mechanism for jumping out of local minima (and exploring the space of all fundamental matrices)
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Example Matching Results for the 7-point Algorithm with Random-Sampling Optimization

input images interest points (ca. 3600) tentative corresp. (416) matching (340)

• descriptors used to obtain tentative matches but no descriptors used in the final matching

• without local optimization the minimization is over a discrete set of epipolar geometries proposable from 7-tuples

• notice the mismatches (they have wrong depth, even negative) remember: hidden labels →113

• they are considered as random outliers to the epipolar model

• inlier matches will be treated as correspondences for the SfM problem
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▶A Preview: Optimization by Random Sampling of Geometric Primitives

Given an optimization problem, define:

• parameters θ ∈ domain(θ)

• primitive geometric element xi ∈ P
• generator q of random minimal proposal s-tuples S ∈ Ps of primitive elements

• minimal-problem solver computing θ from the s-tuples: solver : Ps → domain(θ)

• objective function π(P | θ)

Examples: θ primitive s solver π(·) terms

line fitting in 2D n ∈ R3 point 2 n≃ x1 × x2 point-to-line distances

plane fitting in 3D p ∈ R4 point 3 p≃ null
(
[x1, x2, x3]⊤

)
point-to-plane distances

fundamental matrix fitting F match 2D–2D 7 7-pt alg Sampson errors

exterior orientation (R, t) match 3D–2D 3 P3P alg projection errors

Algorithm sketch:

• propose a random s-tuple of primitives S using q(·)
• run the solver on S to obtain parameters θ

• compute the value of π(P | θ) on all primitives P
• remember the sample which gave the best π(P | θ)
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▶A Preview: RANSAC with Local Optimization and Early Stopping

Given: minimal configuration C definition, proposal distribution q(·), minimal-problem solver, objective π(·):
1. initialize the best parameters θbest := ∅, πbest :=−∞, and proposal index k := 0

2. estimate the total number of needed proposals as N :=
(n
s

)
n – No. of primitives, s – minimal config size

3. while k ≤ N :

a) propose a random s-tuple S from q(·)
Sb) solve the minimal problem on S to obtain θ

c) if π(P | θ) > πbest then accept

i) update the best θbest := θ π(S) marginalized as in (29); π(S) includes a prior ⇒ MAP

ii) threshold-out outliers using eT from (30)

2eT
S

iii) locally optimize θ from the inliers of θbest LM optimization with robustified (→121) Sampson error

possibly weighted by posterior π(mij) [Chum et al. 2003]

LO(θ)

iv) update θbest, update inliers using (30), re-estimate the stopping criterion N from inlier counts →117 for derivation

N =
log(1 − P )

log(1 − εs)
, ε =

| inliers(θbest)|
n

,

d) k := k + 1

4. output Cbest

• see the MPV course for RANSAC details see also [Fischler & Bolles 1981], [25 years of RANSAC]

3D Computer Vision: V. Optimization for 3D Vision (p. 116/199) R. Šára, CMP; rev. 14–Nov–2023
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▶Data-Driven Stopping Criterion

• The number of proposals N needed to hit the “true parameters” = an all-inlier configuration:
this will tell us nothing about the accuracy of the result

P . . . probability that the last proposal is an all-inlier for the first time 1 − P . . . all previous N proposals contained outlier(s)

ε . . . the fraction of inliers among primitives, ε ≤ 1
s . . . No. of primitives in a minimal configuration 2 in line fitting, 7 in 7-point algorithm, 4 in homography fitting,. . .

N ≥ log(1− P )

log(1− εs)

• εs . . . proposal is all-inlier
• 1− εs . . . proposal contains at least one outlier
• (1− εs)N . . .N previous proposals contained an outlier = 1− P

N for s = 7
P
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• N can be re-estimated using the current estimate for ε (if there is LO, then after LO)
the quasi-posterior estimate for ε is the average over all samples generated so far

• this shows we have a good reason to limit all possible matches to tentative matches only
• for ε → 0 we gain nothing over the standard MH-sampler stopping rule not covered in this course
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▶Towards π(·): The Full Problem of Matching and Fundamental Matrix Estimation

Problem: Given image keypoint sets X = {xi}mi=1 and Y = {yj}nj=1 and their descriptors D,
find the most probable
1. inlier keypoints SX ⊆ X, SY ⊆ Y
2. one-to-one perfect matching M : SX → SY perfect matching: 1-factor of the bipartite graph

3. fundamental matrix F such that rankF = 2
4. such that for each xi ∈ SX and yj = M(xi) it is probable that

a) the image descriptor D(xi) is similar to D(yj), and

b) the total reprojection error E =
∑

ij e2ij(F) is small note a slight change in notation: eij

5. inlier-outlier and outlier-outlier matches are improbableMSX YSYX
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(M∗,F∗) = argmax
M,F

π(E,D,F,M) (E,D) ∼ P, (F, M) ∼ θ (24)

• probabilistic model: an efficient language for problem formulation it also unifies 4.a and 4.b

• the (24) is a Bayesian probabilistic model there is a constant number of random variables!

• binary matching table Mij ∈ {0, 1} of fixed size m× n

• each row/column contains at most one unity
• zero rows/columns correspond to unmatched point xi/yj
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Deriving A Robust Matching Model by Approximate Marginalization

For algorithmic efficiency, instead of (M∗,F∗) = argmax
M,F

p(E,D,F,M) solve

F∗ = argmax
F

p(E,D,F) (25)

by marginalization of p(E,D,F,M) over the set of all matchings M s.t. M ∈ M this changes the problem!

drop the assumption that M is a 1:1 matching, assume correspondence-wise independence:

p(E,D,F,M) = p(E,D,F | M)P (M)=
m∏
i=1

n∏
j=1

pe(eij , dij ,F | mij)P (mij)

• eij represents (reprojection) error for match xi ↔ yi: e.g. eij(xi, yi,F)
• dij represents descriptor similarity for match xi ↔ yi: e.g. dij = ∥d(xi)− d(yj)∥

Approximate marginalization: take all the 2mn terms in place of M

p(E,D,F) ≈
∑

m11∈{0,1}

∑
m12

· · ·
∑
mmn

p(E,D,F | M)P (M) =

=
∑
m11

· · ·
∑
mmn

m∏
i=1

n∏
j=1

pe(eij , dij ,F | mij)P (mij) =
⊛ 1· · · =

=
m∏
i=1

n∏
j=1

∑
mij∈{0,1}

pe(eij , dij ,F | mij)P (mij)

︸ ︷︷ ︸
we will continue with this term

(26)
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Robust Matching Model (cont’d)∑
mij∈{0,1}

pe(eij , dij ,F | mij)P (mij) =

= pe(eij , dij ,F | mij = 1)︸ ︷︷ ︸
p1(eij ,dij ,F)

P (mij = 1)︸ ︷︷ ︸
1−P0

+ pe(eij , dij ,F | mij = 0)︸ ︷︷ ︸
p0(eij ,dij ,F)

P (mij = 0)︸ ︷︷ ︸
P0

=

= (1− P0) p1(eij , dij ,F) + P0 p0(eij , dij ,F) (27)

• the p0(eij , dij ,F) is a penalty for ‘missing a correspondence’ but it should be a p.d.f. (cannot be a constant)
→121 for a simplification

choose P0 → 1, p0(·) → 0 so that
P0

1− P0
p0(·) ≈ const

• the p1(eij , dij ,F) is typically an easy-to-design term: assuming independence of reprojection error and descriptor
similarity:

p1(eij , dij ,F) = p1(eij | F) pF (F) p1(dij)

• we choose, e.g.

p1(eij | F) =
1

Te(σ1)
e
−

e2ij(F)

2σ2
1 , p1(dij) =

1

Td(σd, dimd)
e
−

∥d(xi)−d(yj)∥
2

2σ2
d (28)

• F is a random variable and σ1, σd, P0 are parameters

• the form of Te(σ1) depends on the error definition, it may depend on xi, yj but not on F

• we will continue with the result from (27)
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Simplified Robust Energy (Error) Function

• assuming the choice of p1 as in (28), we are simplifying (26) to

p(E,D,F) = p(E,D | F) pF (F) = pF (F)
m∏
i=1

n∏
j=1

[
(1− P0) p1(eij , dij | F) + P0 p0(eij , dij | F)

]
• we choose σ0 ≫ σ1 and omit dij for simplicity; then the square-bracket term is

1− P0

Te(σ1)
e
−

e2ij(F)

2σ2
1 +

P0

Te(σ0)
e
−

e2ij(F)

2σ2
0 =

1− P0

Te(σ1)

e
−

e2ij(F)

2σ2
1 +

Te(σ1)

1− P0

P0

Te(σ0)
e
−

e2ij(F)

2σ2
0


• we define the ‘error function’ as: V (x) = − log p(x) smaller V is better

V (E,D | F) =
m∑
i=1

n∑
j=1

− log
1− P0

Te(σ1)︸ ︷︷ ︸
∆ = const

− log
(
e
−

e2ij(F)

2σ2
1 +

P0

1− P0

Te(σ1)

Te(σ0)
e
−

e2ij(F)

2σ2
0︸ ︷︷ ︸

t ≈ const

) =

= mn∆+
m∑
i=1

n∑
j=1

− log
(
e
−

e2ij(F)

2σ2
1 + t

)
︸ ︷︷ ︸

V̂ (eij)

(29)

• the terms in (29) are: (constant) + (total robust error for all pairs in M) expensive but explicit matching is avoided

• note we are summing over all mn matches (m, n are constant!)

• when t = 0 we have quadratic inlier error function V̂ (eij) = e2ij(F)/(2σ2
1)
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▶The Action of the Robust Matching Model on Data

Ex: Error function V̂ (eij) (29):

−4 −3 −2eT −1 0 1 eT2 3 4
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

σ
1
 = 1

e

V

 

 

V when t = 0

V when t = 0.25

t = 0.25

red – the (non-robust) quadratic error V̂ (eij) when t = 0

blue – the rejected match penalty t

green – robust V̂ (eij) from (29)

• if the error of a correspondence exceeds a limit, it is ignored

• then V̂ (eij) = const and we just count outliers in (29)
• t controls the ‘turn-off’ point
• the inlier/outlier threshold is eT – the error for which

(1− P0) p1(eT ) = P0 p0(eT ): note that t ≈ 0

eT = σ1

√
− log t2, t = e

− 1
2

(
eT
σ1

)2
e.g. eT = 4σ1 → t ≈ 3.4 · 10−4 (30)

The full optimization problem (25) uses (29):

F∗ = argmax
F

data model︷ ︸︸ ︷
p(E,D | F) ·

prior︷︸︸︷
p(F)

p(E,D)︸ ︷︷ ︸
evidence

≈ argmin
F

V (F) +
m∑
i=1

n∑
j=1

log
(
e
−

e2ij(F)

2σ2
1 + t

)
• typically we take V (F) = − log p(F) = 0 unless we need to stabilize a computation, e.g. when video camera moves

smoothly (on a high-mass vehicle) and we have a prediction for F
• the evidence is not needed unless we want to compare different models (e.g. homography vs. epipolar geometry)

3D Computer Vision: V. Optimization for 3D Vision (p. 122/199) R. Šára, CMP; rev. 14–Nov–2023



How To Find the Global Maxima (Modes) of a PDF?
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• number of proposals before
|x − xtrue| ≤ step

• averaged over 104 trials

• given a toy probability distribution p(x) at left θ = x, p.d.f. on [0, 1], mode at 0.1

consider several methods:

1. exhaustive search
step = 1/(iterations-1);
for x = 0:step:1
if p(x) > bestp
bestx = x; bestp = p(x);

end
end

• slow algorithm
(definite quantization)

• fast to implement

2. randomized search with uniform sampling
while t < iterations
x = rand(1);
if p(x) > bestp
bestx = x; bestp = p(x);

end
t = t+1; % time

end

• equally slow algorithm

• fast to implement

3. random sampling from p(x) (Gibbs sampler)

• faster algorithm • fast to implement but often infeasible (e.g. when p(x) is data

dependent (our case in correspondence prob.))

4. Metropolis-Hastings sampling
• almost as fast (with care) • not so fast to implement

• rarely infeasible • RANSAC belongs here

• simpler (unimodal) distributions result in faster convergence
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How To Generate Random Samples from a Complex Distribution?
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target (red) and scaled proposal (blue) distributions • red: probability density function π(x) of the toy distribution on
the unit interval target distribution

π(x) =
4∑

i=1

γi Be(x;αi, βi),
4∑

i=1

γi = 1, γi ≥ 0

Be(x;α, β) =
1

B(α, β)
· xα−1(1− x)β−1, α, β ≥ 0

• alg. for generating samples from Be(x;α, β) is known

• ⇒ we can generate samples from π(x) how?

• suppose we cannot sample from π(x) but we can sample from some ‘simple’ proposal distribution q(x | x0),
given the previous sample x0 (blue)

q(x | x0) =


U0,1(x) (independent) uniform sampling = Be(x, 1, 1)

Be(x; x0
T

+ 1, 1−x0
T

+ 1) ‘beta’ diffusion (crawler) T – temperature

π(x) (independent) Gibbs sampler

• note we have unified all the random sampling methods from the previous slide
• how to redistribute proposal samples q(x | x0) to target distribution π(x) samples?
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▶Metropolis-Hastings (MH) Sampling

C, S – configurations: carry information about θ e.g. C = θ = x in →124, C - s-tuple on →115

Goal: Generate a sequence of random samples {Ct} from target distribution π(C)
Idea: Setup a Markov chain with a suitable transition probability to generate the sequence

Sampling procedure
1. given current configuration Ct, propose (draw a random) configuration sample S from q(S | Ct)

q may use some information from Ct (Hastings)

2. compute acceptance probability the redistribution filter; note the evidence term drops out

a = min

{
1,

π(S)

π(Ct)
· q(Ct | S)
q(S | Ct)

}
a

1− a

Ct−1 Ct

Ct+1 = S

Ct+1 = Ct
3. accept S with probability a

a) draw a random number u from unit-interval uniform distribution U0,1

b) if u ≤ a then Ct+1 := S else Ct+1 := Ct

‘Programming’ an MH sampler
1. design a proposal distribution (mixture) q and a sampler from q

2. express functions q(Ct | S) and q(S | Ct) as proper distributions not always simple

Finding the mode
• remember the best sample fast implementation but must wait long to hit the mode

• use simulated annealing very slow

• use the sampler as an explorer and do local optimization from the accepted sample a trade-off between speed and accuracy

an optimal algorithm does not use just the best sample: a Stochastic EM Algorithm (e.g. SAEM)
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MH Sampling Demo

sampling process (100k samples; video, 7:33) click for video

• blue point: current sample

• green circle: best sample so far quality = π(x)

• histogram: current distribution of visited states

• the vicinity of modes are the most often visited states

initial sample

final distribution of visited states
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Demo Source Code (Matlab)

function x = proposal_gen(x0)

% proposal generator q(x | x0)

T = 0.01; % temperature

x = betarnd(x0/T+1,(1-x0)/T+1);

end

function p = proposal_q(x, x0)

% proposal distribution q(x | x0)

T = 0.01;

p = betapdf(x, x0/T+1, (1-x0)/T+1);

end

function p = target_p(x)

% target distribution p(x)

% shape parameters:

a = [2 40 100 6];

b = [10 40 20 1];

% mixing coefficients:

w = [1 0.4 0.253 0.50]; w = w/sum(w);

p = 0;

for i = 1:length(a)

p = p + w(i)*betapdf(x,a(i),b(i));

end

end

%% DEMO script

k = 10000; % number of samples

X = NaN(1,k); % list of samples

x0 = proposal_gen(0.5);

for i = 1:k

x1 = proposal_gen(x0);

a = target_p(x1)/target_p(x0) * ...

proposal_q(x0,x1)/proposal_q(x1,x0);

if rand(1) < a

X(i) = x1; x0 = x1;

else

X(i) = x0;

end

end

figure(1)

x = 0:0.001:1;

plot(x, target_p(x), ’r’, ’linewidth’,2);

hold on

binw = 0.025; % histogram bin width

n = histc(X, 0:binw:1);

h = bar(0:binw:1, n/sum(n)/binw, ’histc’);

set(h, ’facecolor’, ’r’, ’facealpha’, 0.3)

xlim([0 1]); ylim([0 2.5])

xlabel ’x’

ylabel ’p(x)’

title ’MH demo’

hold off
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Thank You
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3D Computer Vision: enlarged figures R. Šára, CMP; rev. 14–Nov–2023
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