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▶The Least-Squares Triangulation by SVD

• if D is full-rank we may minimize the algebraic least-squares error

ε2(X) = ∥DX∥2 s.t. ∥X∥ = 1, X ∈ R4

• let di be the i-th row of D reshaped as a column vector, then

∥DX∥2=
4∑

i=1

(d⊤
i X)2 =

4∑
i=1

X⊤did
⊤
i X= X⊤QX, where Q =

4∑
i=1

did
⊤
i = D⊤D ∈ R4,4

• we write the SVD of Q as Q =
4∑

j=1

σ2
j uju

⊤
j , in which [Golub & van Loan 2013, Sec. 2.5]

σ2
1 ≥ · · · ≥ σ2

4 ≥ 0 and u⊤
l um =

{
0 if l ̸= m

1 otherwise

• then min
q,∥q∥=1

q⊤Qq = σ2
4 and X= arg min

q,∥q∥=1
q⊤Qq = u4 u4 – the last column of U from SVD(Q)

Proof (by contradiction).

Let q̄ =
4∑

i=1

aiui s.t.
4∑

i=1

a2i = 1, then ∥q̄∥ = 1, as desired, and

q̄⊤Qq̄ =

4∑
j=1

σ2
j q̄⊤uj u

⊤
j q̄ =

4∑
j=1

σ2
j (u⊤

j q̄)2 = · · · =
4∑

j=1

a2jσ
2
j ≥

4∑
j=1

a2jσ
2
4 =

 4∑
j=1

a2j

σ2
4 = σ2

4

since σj ≥ σ4 ⊓⊔
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▶cont’d

• if σ4 ≪ σ3, there is a unique solution X= u4 with residual error (DX)2 = σ2
4

the quality (conditioning) of the solution may be expressed as q = σ3/σ4 (greater is better)

Matlab code for the least-squares solver:

[U,O,V] = svd(D);

X = V(:,end);

q = sqrt(O(end-1,end-1)/O(end,end));

⊛ P1; 1pt: Why did we decompose D here, and not Q = D⊤D?
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▶Numerical Conditioning

• The equation DX= 0 in (16) may be ill-conditioned for numerical computation,
which results in a poor estimate for X.

Why: on a row of D there are big entries together with small entries, e.g. of orders
projection centers in mm, image points in px

103 0 103 106

0 103 103 106

103 0 103 106

0 103 103 106


Quick fix:

1. re-scale the problem by a regular diagonal conditioning matrix S ∈ R4,4

0 = DX= DSS−1X= D̄ X̄

choose S to make the entries in D̂ all smaller than unity in absolute value, e.g.:

S = diag(10−3, 10−3, 10−3, 10−6) S = diag(1./max(abs(D), [], 1))

2. solve for X̄ as before
3. get the final solution as X= S X̄

• when SVD is used in camera resection from six points →62, conditioning is essential for success
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▶We Have Added to The ZOO (cont’d from →69)

problem given unknown slide

camera resection 6 world–img correspondences
{
(Xi, mi)

}6
i=1

P 62

exterior orientation K, 3 world–img correspondences
{
(Xi, mi)

}3
i=1

R, t 66

relative pointcloud
orientation

3 world-world correspondences
{
(Xi, Yi)

}3
i=1

R, t 70

fundamental matrix 7 img–img correspondences
{
(mi, m

′
i)
}7
i=1

F 85

relative camera
orientation

K, 5 img–img correspondences
{
(mi, m

′
i)
}5
i=1

R, t 89

triangulation P1, P2, 1 img–img correspondence (m, m′) X 90

A bigger ZOO at http://aag.ciirc.cvut.cz/minimal/
calibrated problems

• have fewer degenerate configurations
• can do with fewer points (good for geometry proposal generators →123)

• algebraic error optimization (SVD) makes sense in camera resection and triangulation only
• but it is not the best method; we will now focus on ‘optimizing optimally’
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Module V

Optimization for 3D Vision

5.1The Concept of Error for Epipolar Geometry
5.2The Golden Standard for Triangulation
5.3 Levenberg-Marquardt’s Iterative Optimization
5.4Optimizing Fundamental Matrix
5.5The Correspondence Problem
5.6Optimization by Random Sampling

covered by

[1] [H&Z] Secs: 11.4, 11.6, 4.7

[2] Fischler, M.A. and Bolles, R.C . Random Sample Consensus: A Paradigm for Model Fitting with Applications
to Image Analysis and Automated Cartography. Communications of the ACM 24(6):381–395, 1981

additional references

P. D. Sampson. Fitting conic sections to ‘very scattered’ data: An iterative refinement of the Bookstein algorithm. Computer Vision,

Graphics, and Image Processing, 18:97–108, 1982.

O. Chum, J. Matas, and J. Kittler. Locally optimized RANSAC. In Proc DAGM, LNCS 2781:236–243. Springer-Verlag, 2003.

O. Chum, T. Werner, and J. Matas. Epipolar geometry estimation via RANSAC benefits from the oriented epipolar constraint. In Proc

ICPR, vol 1:112–115, 2004.
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▶Algebraic Error vs Reprojection Error

• algebraic error c – camera index, (uc, vc) – image coordinates →91

ε2(X) = ∥DX∥2 =
2∑

c=1

[(
uc(pc

3)
⊤X− (pc

1)
⊤X
)2

+
(
vc(pc

3)
⊤X− (pc

2)
⊤X
)2]

• reprojection error

e2(X) =

2∑
c=1

[(
uc − (pc

1)
⊤X

(pc
3)

⊤X

)2

+

(
vc − (pc

2)
⊤X

(pc
3)

⊤X

)2
]

• algebraic error zero ⇔ reprojection error zero σ4 = 0 ⇒ non-trivial null space

• epipolar constraint satisfied ⇒ equivalent results
• in general: minimizing algebraic error is cheap but it gives inferior results
• minimizing reprojection error is expensive but it gives good results
• the midpoint of the common perpendicular to both optical rays gives about 50% greater error in 3D
• the golden standard method – deferred to →108
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Algebraic Error vs Reprojection Error: Example

• forward camera motion
• error f/50 in image 2, orthogonal to epipolar plane

XT – noiseless ground truth position
Xr – reprojection error minimizer
Xa – algebraic error minimizer
m – measurement (mT with noise in v2)

• this demonstrates a difficult configuration (forward camera motion) and a random correspondence

• noise-free ground-truth triangulation from mT is XT

• reprojection error minimizer Xr has an error due to simulated noise in image detections (black m)

• algebraic error minimizer Xa essentially failed
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▶The Concept of Error for Epipolar Geometry

Background problems: (1) Given at least 8 matched points xi ↔ yj in a general position, estimate the most ‘likely’
fundamental matrix F; (2) given F triangulate 3D point from xi ↔ yj .

xi = (u1
i , v

1
i ), yi = (u2

i , v
2
i ), i = 1, 2, . . . , k, k ≥ 8 for (1) or k = 1 for (2)

F

x̂i

ŷi
xi

yi

image 1 image 2

• detected points (measurements) xi, yi
• we introduce matches Zi = (xi,yi) = (u1

i , v
1
i , u

2
i , v

2
i ) ∈ R4; and the set Z =

{
Zi

}k
i=1

• corrected points x̂i, ŷi; Ẑi = (x̂i, x̂i) = (û1
i , v̂

1
i , û

2
i , v̂

2
i ); Ẑ =

{
Ẑi

}k
i=1

are correspondences

• correspondences satisfy the epipolar geometry exactly ŷ⊤
i
F x̂i = 0, i = 1, . . . , k

• small correction is more probable
• let ei(·) be the ‘reprojection error’ (vector) per match i,

ei(xi, yi | x̂i, ŷi,F) =

[
xi − x̂i

yi − ŷi

]
= ei(Zi | Ẑi,F) = Zi − Ẑi(F)

∥ei(·)∥2
def
= e2

i (·) = ∥xi − x̂i∥2 + ∥yi − ŷi∥
2 = ∥Zi − Ẑi(F)∥2 ∈ R4

(17)
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▶cont’d

Consider the estimation of F

• the total reprojection error (of all data) is

L(Z | Ẑ,F) =

k∑
i=1

e2
i (xi, yi | x̂i, ŷi,F) =

k∑
i=1

e2
i (Zi | Ẑi,F)

• and the optimization problem is

(Ẑ∗,F∗) = argmin
F,Ẑ

L(Z | Ẑ,F) s.t. rankF = 2, ŷ⊤
i
F x̂i = 0, (x̂i, ŷi) ∈ Ẑi (18)

Possible approaches

• they differ in how the correspondences x̂i, ŷi are obtained:

1. direct optimization of reprojection error over all variables Ẑ, F needs a good parameterization for F →100

2. Sampson optimal correction = partial correction of Zi towards Ẑi used in an iterative minimization over F →102
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Method 1: Reprojection Error Optimization: Idea

• we need to encode the constraints ŷ
i
F x̂i = 0, rankF = 2

• idea: reconstruct 3D point via equivalent projection matrices and use reprojection error

• the equivalent projection matrices are see [H&Z,Sec. 9.5] for a complete characterization

P1 =
[
I 0

]
, P2(F) =

[
[e2]×F+ e2e

⊤
1 e2

]
, s.t. Fe1 = 0, e⊤

2 F = 0 (19)

⊛ H3; 2pt: Given rank-2 matrix F, let e1, e2 be the right and left nullspace basis vectors of F, respectively. Verify that such F is a

fundamental matrix of P1, P2 from (19).

Hints:

(1) consider x̂i = P1Xi and ŷ
i
= P2Xi

(2) A is skew symmetric iff x⊤Ax = 0 for all vectors x.
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(cont’d) Reprojection Error Optimization: Algorithm

1. compute F(0) by the 7-point algorithm →85; construct camera P
(0)
2 from F(0) using (19)

2. triangulate 3D points X̂
(0)

i from matches (xi, yi) for all i = 1, . . . , k by the SVD alg. →90

3. starting from P
(0)
2 , X̂

(0)

1:k minimize the reprojection error (17)

(X̂
∗
1:k,F

∗) = arg min
F, X̂1:k

k∑
i=1

e2
i (Zi | Ẑi(X̂i,P2(F)))

where
Ẑi = (x̂i, ŷi) (Cartesian), x̂i ≃ P1X̂i, ŷi ≃ P2(F) X̂i (homogeneous)

• non-linear, non-convex problem
• solves F estimation and triangulation of all k points jointly
• the solver would be quite slow
• 3k + 7 parameters to be found: latent: X̂i, for all i (correspondences!), non-latent: F

• we need minimal representations for X̂i and F →153 or introduce constraints
• there are other pitfalls; this is essentially bundle adjustment; we will return to this later →141
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▶Method 2: First-Order Error Approximation

An elegant method for solving problems like (18):

• we will get rid of the latent parameters X̂ needed for obtaining the correction
[H&Z, p. 287], [Sampson 1982]

• we will recycle the algebraic error ε = y⊤Fx from →85

• consider matches Zi, correspondences Ẑi, and reprojection error ei = ∥Zi − Ẑi∥2

• correspondences satisfy ŷi
⊤F x̂i = 0, x̂i = (û1, v̂1, 1), ŷi = (û2, v̂2, 1)

• this is a manifold VF ∈ R4: a set of points Ẑ = (û1, v̂1, û2, v̂2) ∈ R4 consistent with F

• algebraic error vanishes for Ẑi: 0 = εi(Ẑi) = ŷi
⊤F x̂i ε(Z) is a function of Z

L

VF

ei(Ẑi,Zi)
Ẑi

Zi Sampson’s idea: Linearize the algebraic error ε(Z) at Zi (where it is non-zero) and

evaluate the resulting linear function at Ẑi (where it is zero). The zero-crossing
replaces VF by a linear manifold L. The point on VF closest to Zi is replaced by the
closest point on L.

L : 0 = εi(Ẑi) ≈ εi(Zi) +
∂εi(Zi)

∂Zi
(Ẑi − Zi) linear in Ẑi
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▶Sampson’s Approximation of Reprojection Error

• linearize ε(Z) at match Zi, evaluate it at correspondence Ẑi

εi(Zi) +
∂εi(Zi)

∂Zi︸ ︷︷ ︸
Ji(Zi)

(Ẑi − Zi)︸ ︷︷ ︸
ei(Ẑi,Zi)

def
= εi(Zi)︸ ︷︷ ︸

given

+Ji(Zi) ei(Ẑi,Zi)︸ ︷︷ ︸
wanted

= εi(Ẑi)
!
= 0

• goal: compute function ei(·) from εi(·), where ei(·) is the distance of Ẑi from Zi

• we have a linear underconstrained equation for ei(·) e.g. εi ∈ R, ei ∈ R4

• we look for a minimal ei(·) per match i

ei(·)∗ = argmin
ei(·)

∥ei(·)∥2 subject to εi(·) + Ji(·) ei(·) = 0

• which has a closed-form solution note that Ji(·) is not invertible! ⊛ P1; 1pt: derive e∗i (·)

e∗
i (·) = −J⊤

i (JiJ
⊤
i )

−1εi(·) pseudo-inverse

∥e∗
i (·)∥2 = ε⊤

i (·)(JiJ
⊤
i )

−1εi(·)
(20)

• this maps εi(·) to an estimate of ei(·) per correspondence
• we need ∥ei∥2 for the F estimation, we will need ei for triangulation in the golden-standard alg. →108

• the unknown parameters F are inside: ei = ei(F), εi = εi(F), Ji = Ji(F)
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▶Example: Fitting A Circle To Scattered Points

Problem: Fit an origin-centered circle C : ∥x∥2 − r2 = 0 to a set of 2D points Z = {xi}ki=1

1. consider radial error as the ‘algebraic error’ ε(x) = ∥x∥2 − r2 ‘arbitrary’ choice

2. linearize it at x̂ we are dropping i in εi, ei etc for clarity

ε(x̂) ≈ ε(x) +
∂ε(x)

∂x︸ ︷︷ ︸
J(x)=2x⊤

(x̂− x)︸ ︷︷ ︸
e(x̂,x)

= · · · = 2x⊤x̂− (r2 + ∥x∥2) def
= εL(x̂)

εL(x̂) = 0 is a line with normal x
∥x∥ and intercept r2+∥x∥2

2∥x∥ not tangent to C, outside!

3. using (20), express error approximation e∗ as

∥e∗∥2 = ε⊤(JJ⊤)−1ε =
(∥x∥2 − r2)2

4∥x∥2

4. fit circle

x2

x1

ε(x) = 0

VC

εL1(x) = 0

εL2(x) = 0

x̂1

r∗ = argmin
r

k∑
i=1

(∥xi∥2 − r2)2

4∥xi∥2
= · · · =

(
1

k

k∑
i=1

1

∥xi∥2

)− 1
2

• this example results in a convex quadratic optimization problem

• note that the ‘algebraic error’ minimizer is different:

argmin
r

k∑
i=1

(∥xi∥2 − r2)2 =

(
1

k

k∑
i=1

∥xi∥2
) 1

2
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Circle Fitting: Some Results

medium radial noise big radial noise medium isotropic noise big isotropic noise

opt: 1.8, Smp: 1.9, dir: 2.3 1.6, 1.8, 2.6 1.8, . . .2.0, 2.2 1.6, . . .2.0, 2.4

mean ranks over 10 000 random trials with k = 32 samples; smaller is better

solid green – ground truth

solid red – Sampson error e minimizer

solid blue – direct algebraic radial error ε minimizer

dashed black – optimal estimator for isotropic error

optimal estimator for isotropic error (black, dashed):

r ≈ 3

4k

k∑
i=1

∥xi∥ +

√√√√( 3

4k

k∑
i=1

∥xi∥
)2

− 1

2k

k∑
i=1

∥xi∥2

which method is better?
• error should model noise, radial noise and isotropic noise behave differently

• ground truth: Normally distributed isotropic error, Gamma-distributed radial error (!) the devil is hiding there

• Sampson: better for the radial distribution model; Direct: . . . . . .better for the isotropic model

• no matter how corrected, the algebraic error minimizer is not an unbiased parameter estimator
Cramér-Rao bound tells us how close one can get with unbiased estimator and given k
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Discussion: On The Art of Probabilistic Model Design. . .

• a few probabilistic models for fitting zero-centered circle C of radius r to points in R2

marginalized over C orthogonal deviation from C Sampson approximation
er
ro
r
m
o
d
el x

N(0, σ2I)
x

Γ(·, ·) x
N(0, σ2I)

ra
d
ia
l
p
.d
.f
.

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

||x||

p
(|

|x
||
 |
 r

 =
 1

)

 

 
σ = 0.25

σ = 0.5

σ = 1

σ = 2
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p
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 |
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 1
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p
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|x
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 r
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)
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σ = 1
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n
d
o
m
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m
p
le

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

p
(x

|r
)

≈ 1

σ
√

(2π)3r ∥x∥
e
− (∥x∥−r)2

2σ2 1

2πΓ( r2

σ
)

1
∥x∥2

(
r∥x∥
σ

) r2

σ
e−

r∥x∥
σ 1

rσ
√

(2π)3
e
− e2(x;r)

2σ2

•mode inside the circle • peak at the center •mode at the circle
•models the inside well • unusable for small radii • hole at the center
• tends to normal distribution • tends to Dirac distribution • tends to normal distribution
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▶Sampson Error for Fundamental Matrix Manifold

The (signed) epipolar algebraic error is assuming finite points

εi(F) = y⊤
i Fxi, xi = (u1

i , v
1
i , 1), yi = (u2

i , v
2
i , 1), εi ∈ R

Let F =
[
F1 F2 F3

]
(per columns) =

(F1)⊤

(F2)⊤

(F3)⊤

 (per rows), S =

[
1 0 0
0 1 0

]
, then

Sampson

Ji(F) =

[
∂εi(F)

∂u1
i

,
∂εi(F)

∂v1i
,
∂εi(F)

∂u2
i

,
∂εi(F)

∂v2i

]
Ji ∈ R1,4 derivatives over

point coordinates

=
[
(F1)

⊤yi, (F2)
⊤yi, (F1)⊤xi, (F2)⊤xi

]
=

[
SF⊤yi

SFxi

]⊤
ei(F) = −

J⊤
i (F) εi(F)

∥Ji(F)∥2
ei(F) ∈ R4 Sampson error vector

ei(F)
def
= ∥ei(F)∥ =

εi(F)

∥Ji(F)∥
=

y⊤
i Fxi√

∥SFxi∥2 + ∥SF⊤yi∥2
ei(F) ∈ R scalar Sampson error

• generalization for infinite points is easy
• Sampson error ‘normalizes’ the algebraic error
• automatically copes with multiplicative factors F 7→ λF
• the actual optimization not yet covered →112
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▶Sampson Error for Triangulation: The Golden Standard Triangulation Method

Given P1, P2 and a correspondence x ↔ y, look for 3D point X projecting to x and y →90

Idea:
1. if not given, compute F from P1, P2, e.g. F = (Q1Q

−1
2 )⊤[q1 − (Q1Q

−1
2 )q2]× →77

2. correct the measurement by the linear estimate of the correction vector ei(F) →103
û1

v̂1

û2

v̂2

 ≈


u1

v1

u2

v2

−
ε

∥J∥2
J⊤︸ ︷︷ ︸

ei(F)

=


u1

v1

u2

v2

−
y⊤Fx

∥SFx∥2 + ∥SF⊤y∥2


(F1)⊤y

(F2)⊤y

(F1)⊤x
(F2)⊤x


3. use the SVD triangulation algorithm with numerical conditioning →91

Ex (cont’d from →97):

XT – noiseless ground truth position
• – reprojection error minimizer

Xs – Sampson-corrected algebraic error minimizer
Xa – algebraic error minimizer
m – measurement (mT with noise in v2)
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▶Back to Fundamental Matrix Estimation

Goal: Given a set X = {(xi, yi)}ki=1 of k ≫ 7 inlier correspondences, compute a statistically efficient estimate for
fundamental matrix F (or essential matrix E).

What we have so far

• 7-point algorithm for F (5-point algorithm for E) →85

• definition of Sampson error per correspondence ei(F | xi, yi) →107

• triangulation requiring an optimal F

What we need

• correspondence recognition see later →116

• an optimization algorithm for many (k ≫ 7) correspondences comes next

F∗ = argmin
F

k∑
i=1

e2i (F | X)

• the 7-point estimate is a good starting point F0
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Levenberg-Marquardt (LM) Iterative Optimization in a Nutshell

Consider error function ei(θ) = f(xi,yi,θ) ∈ Rm, with xi,yi given, θ ∈ Rq unknown
θ = F, q = 9, m = 1 for f.m. estimation

Our goal: θ∗ = argmin
θ

k∑
i=1

∥ei(θ)∥2

Idea 1 (Gauss-Newton approximation): proceed iteratively for s = 0, 1, 2, . . .

θs+1 := θs + ds , where ds = argmin
d

k∑
i=1

∥ei(θ
s + d)∥2 (21)

ei(θ
s + d) ≈ ei(θ

s) + Li d,

(Li)jl =
∂
(
ei(θ)

)
j

∂(θ)l
, Li ∈ Rm,q

typically a ‘long’ matrix, m ≪ q

Then the solution to Problem (21) is a set of ‘normal eqs’

−
k∑

i=1

L⊤
i ei(θ

s)︸ ︷︷ ︸
e∈Rq,1

=

(
k∑

i=1

L⊤
i Li

)
︸ ︷︷ ︸

L∈Rq,q

ds, (22)

• ds can be solved for by Gaussian elimination using Choleski decomposition of L
L (large) symmetric PSD ⇒ use Choleski, almost 2× faster than Gauss-Seidel, see bundle adjustment →144

• beware of rank defficiency in L when k is small
• such updates do not lead to stable convergence −→ ideas of Levenberg and Marquardt
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LM (cont’d)

Idea 2 (Levenberg): replace
∑

i L
⊤
i Li with

∑
i L

⊤
i Li + λ I for some damping factor λ ≥ 0

Idea 3 (Marquardt): replace λ I with λ
∑

i diag(L
⊤
i Li) to adapt to local curvature:

−
k∑

i=1

L⊤
i ei(θ

s) =

(
k∑

i=1

(
L⊤

i Li + λdiag(L⊤
i Li)

))
ds

Idea 4 (Marquardt): adaptive λ small λ → Gauss-Newton, large λ → gradient descend

1. choose λ ≈ 10−3 and compute ds

2. if
∑

i ∥ei(θ
s + ds)∥2 <

∑
i ∥ei(θ

s)∥2 then accept ds and set λ := λ/10, s := s+ 1 better: Armijo’s rule

3. otherwise set λ := 10λ and recompute ds

• sometimes different constants are needed for the 10 and 10−3

• note that Li ∈ Rm,q (long matrix) but each contribution L⊤
i Li is a square singular q × q matrix (always singular for

k < q)

• λ helps avoid the consequences of gauge freedom →146

• the error function can be made robust to outliers →117

• we have approximated the least squares Hessian by ignoring second derivatives of the error function (Gauss-Newton
approximation) See [Triggs et al. 1999, Sec. 4.3]

• a good book on convex optimization: [Boyd and Vandenberghe(2009)]
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LM with Sampson Error for Fundamental Matrix Estimation

Sampson (derived by linearization over point coordinates u1, v1, u2, v2)

ei(F) =
εi

∥Ji∥
=

y⊤
i Fxi√

∥SFxi∥2 + ∥SF⊤yi∥2
where S =

[
1 0 0
0 1 0

]

LM (by linearization over parameters F)

Li =
∂ei(F)

∂F
= · · · = 1

2∥Ji∥

[(
yi −

2ei(F)

∥Ji∥
SFxi

)
x⊤
i + yi

(
xi −

2ei(F)

∥Ji∥
SF⊤yi

)⊤
]

(23)

• Li in (23) is a 3× 3 matrix, must be reshaped to dimension-9 vector vec(Li) to be used in LM

• xi and yi in Sampson error are normalized to unit homogeneous coordinate (23) relies on this

• reinforce rankF = 2 after each LM update to stay on the fundamental matrix manifold and ∥F∥ = 1 to avoid gauge
freedom by SVD →113

• LM linearization could be done by numerical differentiation (we can afford it, we have a small dimension here)
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▶Local Optimization for Fundamental Matrix Estimation

Summary so far

• Given a set X = {(xi, yi)}ki=1 of k ≫ 7 inlier correspondences, compute a statistically efficient estimate for
fundamental matrix F.

1. Find the conditioned (→93) 7-point F0 (→85) from a suitable 7-tuple

2. Improve the F∗
0 using the LM optimization (→110–111) and the Sampson error (→112) on all inliers, reinforce

rank-2, unit-norm F∗
k after each LM iteration using SVD

Partial conceptualization

• inlier = a correspondence (a true match)

• outlier = a non-correspondence

• binary inlier/outlier labels are hidden

• we can get their likely estimate only, with respect to a model

We are not yet done

• if there are no wrong correspondences (mismatches, outliers), this gives a local optimum given the 7-point initial
estimate

• the algorithm breaks under contamination of (inlier) correspondences by outliers

• the full problem involves finding the inliers!

• in addition, we need a mechanism for jumping out of local minima (and exploring the space of all fundamental matrices)
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Thank You
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3D Computer Vision: enlarged figures R. Šára, CMP; rev. 7–Nov–2023
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0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

||x||

p
(|

|x
||
 |
 r

 =
 1

)

 

 
σ = 0.25

σ = 0.5

σ = 1

σ = 2

3D Computer Vision: enlarged figures R. Šára, CMP; rev. 7–Nov–2023
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