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»Representation Theorem for Fundamental Matrices
Def: F is fundamental when F ~ H’T[gl}x, where H is regular and e; ~ null F # 0.

Theorem: A 3 X 3 matrix A is fundamental iff it is of rank 2.

Proof.
Direct: H is full-rank, e1 # 0, rank [e1],, Hg/S 2 = H_T[gl}>< is a 3 X 3 matrix of rank 2.
Converse:

1. let A = UDV' be the SVD of A of rank 2; then D = diag(A1,A2,0), A1 > A2 >0

2. we write D = BC, where B = diag(\1, A2, A\3), C = diag(1,1,0), A3 >0

3. then A = UBCV' = UBCWW ' VT with W rotation matrix

1
4. we look for a rotation mtx W that maps C to a skew-symmetric S, i.e. S = CW (if it exists)

0 « O 1 0 0 0 a O
5. then W= |-a 0 O0f,|o/=1,andS=CW =0 1 Of |-a 0 O|=---=[s],, wheres=(0,0,1)
0 0 1 0 0 O 0 0 1
6. we write v3 — 3rd column of V, uz — 3rd column of U
@ UB[s|, WV = ' —UB(VW)T [va], <" [Hvs], H, (13)
~—~ N—— —— ~———
CW ~H-T 3rd col V ~[ug]y
T
7. H regular, Avz =0, ug3A =0 for v3 # 0, uz # 0, H W% ~ t/'ll ‘;1 =UB (VW) " ]

® we also got a (non-unique: «, A3) decomposition formula for fundamental matrices
® it follows there is no constraint on F except for the rank
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» Representation Theorem for Essential Matrices

Theorem

Let E be a 3 x 3 matrix with SVD E = UDV ". Then E is essential iff D ~ diag(1,1,0).
* we know that E & Roi[z], £ H;. "[z], for some z

Proof.

Direct:

If E is an essential matrix, then the epipolar homography matrix H. is a rotation minix (—79), hence
H, " ~ UB(VW)" in (13) must be (1) regular, and (2) (\-scaled) erthegonal. o7 thekov
)

B is diagonal by definition, it follows B = AL note this fixed the missing A3 in (13)

Then
Ry =H. ~UW'V ~UWV' note that Ry, = Ra1 (14)
Converse:
E is fundamental with
D = diag(A, A,0) = AI diag(1,1,0)
B D
then B = AL in (13) and U(VW) is orthogonal, as required. O
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»Essential Matrix Decompaosition
We are decomposing E to E = [uz] . H 2 [—t21] Ra: @ Roi[—Rg;to1],, = H™ "[vs], [H&Z, sec. 9.6]

1. compute SVD of E = UDV " and verify D = Adiag(1,1,0)
2. ensure U, V are rotation matrices by U — det(U)U, V — det(V)V

3. compute

0 a O
Ryy DU |-a 0 0|V, tu 2 —Bus, laf =1, B#0 (15)
0o 0 1

Notes —

® vy~ R;rltgl by (13), hence Ra1v3 =~ to1 =~ u3 since it must fall in left null space by E ~ [u3], Ra21

® to1 is recoverable up to scale 8 and direction sign

® the result for Ro; is unique up to a = £1 despite non-uniqueness of SVD
® the change of sign in « rotates the solution by 180° about t21
R(a) =UWV'T = R(-a)=UW'VT = T=R(-a)R"(a) = = Udiag(-1,-1,1)UT
which is a rotation by 180° about uz ~ to1: show that us is the rotation axis
-1 0 0] |0
Udiag(—1,—1,1) UT® =U|0 -1 0|0 =mus
— 0o 0 1|1
orthonormality(!)
® 4 solution sets for 4 sign combinations of «, (8 see next for geometric interpretation
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»Four Solutions to Essential Matrix Decomposition

Transform the world coordinate system so that the origin is in Camera 2. Then t2; = —b and W rotates about

the baseline b. =77
a, —f (baseline reversal) | back — back —a, —f (combination of both)
How to disambiguate?
® use the chirality constraint: all 3D points are in front of both cameras
® this singles-out the upper left case: front-front [H&Z, Sec. 9.6.3]
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»7-Point Algorithm for Estimating Fundamental Matrix

Problem: Given a set {(x;,1:)}"_, of k = 7 finite correspondences, estimate f. m. F.

X:F&:Oa i:]-a-"akv known: Z(i:(uzlavilv]‘)’ yZ:(uf,vf,l)

terminology: correspondence = truth, later: match = algorithm’s result; hypothesized corresp.

Solution:
T —71 T T . .
vi Fx; = (yixi ): F= (Vec yzx1 ) vec(F), rotation property of matrix trace —71
T 9 .
VeC(F) = [fll for far ... f33] eR column vector from matrix
(vec( XT))T 12 12 1 21 12 1 2 2
vecly X1 . uju]  wivy uwy  wijvi wvivy wvi ui vy 1
(vec(y2x;r wiui  uivi  ud udvi wvivd vy w03 1
T 1,2 1,2 1 2,1 1,2 1 2 2
D= | (vec(ysxz)) | = | usuz wusvs wus wivs wv3vz vy uz vy 1| o ko
’ 12 1,2 1 2.1 1,2 1 2 2
(Vec(kakT))T Up U U Vi U U Vi Vi Vg Vi U Vi 1

Dvec(F) =0
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»7-Point Algorithm Continued

Dvec(F) =0, DeR"

¢ for k = 8 we have rank(D) = 8, then there is a non-trivial solution for F' but it is not necessarily a f. m.
® for k = 7 we have rank(D) = 7, the null-space of D is 2-dimensional

® but we know that det(F) = 0, hence
1. find a basis of the null space of D: Fy, Fa ¥ by SVD or QR factorization

_— %% ¥y

cubic equation in «

2. get up to 3 real solutions for o from

det(F) =|det(aF1 + (1 —a)F2) =0

3. get up to 3 fundamental matrices
4. if rank F; < 2 for all i = 1,2, 3 then fail

® the result may depend on image (domain) transformations

® normalization of D improves conditioning —93
® this gives a good starting point for the full algorithm —112
® dealing with mismatches need not be a part of the 7-point algorithm —115
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»Degenerate Configurations for Fundamental Matrix Estimation

When is F not uniquely determined from any number of correspondences? [H&Z, Sec. 11.9]

1. when images are related by homography
a) camera centers coincide to1 =0: H = K2R21K1_1 H - as in epipolar homography
b) camera moves but all 3D points lie in a plane (n,d): H = K>(Ra21 — tglnT/d)Kl_l

® in either case: epipolar geometry is not uniquely defined
® we get an arbitrary solution from the 7-point algorithm, in the form of F = [s], H note that [s], H ~ H'[s'],, —76

7 If H is a homography, then any correspondence satisfies X;r [s],Hx; = 0 for any s

® given (arbitrary, fixed) point s

and correspondence z; <> y;

y; is theimage of z;: y; ~ Hx;

li, Li~sxHx

a necessary condition: y;

(s x Hx;) =y [s] Hx; for any x;,yi,s (1)

i

2. both camera centers and all 3D points lie on a ruled quadric
. hyperboloid of one sheet, cones, cylinders, two planes
® there are 3 solutions for F

notes
® estimation of E can deal with planes: [s], H is essential, then H=R —tn" /d, and s ~ t not arbitrary
!
E=[s],R=[s],H=[s],(R—tn'/d) ~[t],R
® a complete treatment with additional degenerate configurations in [H&Z, sec. 22.2]
® a stronger epipolar constraint could reject some configurations (see next)
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A Note on Oriented Epipolar Constraint

® a tighter epipolar constraint that preserves orientations

® requires all points and cameras be on the same side of the plane at infinity

® oriented epipolars
® notation: m ¥ nmeans m=An, A >0

® then we define

(e2xmn) + H ' (e1 xm) = Fmy

ly
b z
2 yl /;2 o (2 xmz) £ Fmy
=
® note that the constraint is not invariant to the change of either sign of m;
® all 7 correspondence in 7-point alg. must have the same sign see later
® this may help reject some wrong matches, see —115 [Chum et al. 2004]
® an even more tight constraint: scene points in front of both cameras expensive

this is called chirality constraint
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»5-Point Algorithm for Relative Camera Orientation

Problem: Given {m;, m}};_; corresponding image points and calibration matrix K, recover the camera motion
R, t.

Obs:
1. E — homogeneous 3 X 3 matrix; 9 numbers up to scale
2. R - 3DOF, t — 2DOF only, in total 5DOF — we need 9 — 1 — 5 = 3 constraints on E
3. idea: E essential iff it has two equal singular values and the third is zero —82

This gives an equation system:

vi EV,=0 5 linear constraints (v ~ Kﬁlm)

242 >L, >\3:—O T = detE=0 1 cubic constraint

1 . . .
> EE'E — 3 tr(EE")E =0 9 cubic constraints, 2 independent
® P1; 1pt: verify the last equation from E = UDV ', D = Adiag(1,1,0)

1. estimate E by SVD from v/ E v} = 0 by the null-space method 4D null space
2. this gives E ~ zE; + yE> + 2E3 + E4
3. at most 10 (complex) solutions for x, y, z from the cubic constraints

® when all 3D points lie on a plane: at most 2 real solutions (twisted-pair) can be disambiguated in 3 views
or by chirality constraint (—84) unless all 3D points are closer to one camera
® 6-point problem for unknown f [Kukelova et al. BMVC 2008]

® resources at http://aag.ciirc.cvut.cz/minimal/
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» The Triangulation Problem

Problem: Given cameras P, P2 and a correspondence = <+ y compute a 3D point X projecting to = and y

X ul u? (Pi)T
Mx=PiX, Aoy = P2X, x=[v'], y=[v"], P; = (Pé)T
% %y 1 1 (p3)"
Linear triangulation method after eliminating A1, A2
u' (p3) X = (p1)' X, u? (p3) X = (p]) " X,
o' (py) X = (p3) ' X, v? (p3) X =(p3)'X
Gives
u' (py)" —(p1)"
1 1\ T I\ T
v
px-o0, p=|®) ~®) | 5 g g g (16)
u (p3) - (pl)
v (p3)" - (P3)"

® typically, D has full rank (1)
® what else: back-projected rays will generally not intersect due to image error, see next
® what else: using Jack-knife (—63) not recommended sensitive to small error
® idea: we will grind our teeth and use SVD (comes next: —91)
® but the resulfm—gmﬁiant to projective frame

replacing P — P1H, Py — PyH does not always result in X — H™ !X
® note the homogeneous form in (16) can represent points X at infinity
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» The Least-Squares Triangulation by SVD

® if D is full-rank we may minimize the algebraic least-squares error

Z,
e (X) = IDX|* st |X[[=1,

® let d; be the i-th row of D reshaped as a column vector, then
4 4

IDX|*=> "(d] X)?
i=1 ( "'(rﬂr@(,"\%

1l
Wiw
® we write the SVD of Q as Q = a; ujuT, in which
j=1
Q= Ub(ﬂ” 2 2 T
o >--+>042>0 and u; uy, =
® then IHann a'Qq and X =arg min q Qq=uy
q,[[ql[=1

a,llall=1

Proof (by contradictio

i=1

since o > 04

X e R*

X'did! X = X'QX, whereQ = » "d;d; =D'D eR"*

i=1
[Golub & van Loan 2013, Sec. 2.5]
0 ifl#m
1 otherwise

uy — the last column of U from SVD(Q)
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Thank You
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