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▶Optical Plane

A spatial plane with normal p containing the projection center C and a given image line n.

� d0 pCm0 n mX d�
optical ray given by m d ≃ Q−1m

optical ray given by m′ d′ ≃ Q−1m′

p ≃ d× d′ = (Q−1m)× (Q−1m′)
⊛ 1
= Q⊤(m×m′) = Q⊤n

• note the way Q factors out!

hence, 0 = p⊤(X−C) = n⊤ Q(X−C)︸ ︷︷ ︸
→30

= n⊤PX= (P⊤n)⊤X for every X in plane ρ

optical plane is given by n: ρ≃ P⊤n ρ are the plane’s parameters: ρ1 x+ ρ2 y + ρ3 z + ρ4 = 0
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Cross-Check: Optical Ray as Optical Plane Intersection

m

π

n′

n

d
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optical plane normal given by n is p = Q⊤n

optical plane normal given by n′ is p′ = Q⊤n′

The optical ray through their intersection is then

d = p× p′ = (Q⊤n)× (Q⊤n′) = Q−1(n× n′) = Q−1m
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▶Summary: Projection Center; Optical Ray, Axis, Plane

General (finite) camera

P =
[
Q q

]
=

q
⊤
1 q14

q⊤
2 q24

q⊤
3 q34

 = K
[
R t

]
= KR

[
I −C

]

C≃ rnull(P), C = −Q−1q projection center (world coords.) →35

d = Q−1 m optical ray direction (world coords.) →36

o = det(Q)q3 outward optical axis (world coords.) →37

m0 ≃ Qq3 principal point (in image plane) →38

ρ= P⊤ n optical plane (world coords.) →39

K =

a f −a f cot θ u0

0 f/ sin θ v0
0 0 1

 camera (calibration) matrix (f , u0, v0 in pixels) →31

R 3D rotation matrix (cam coords.) →30

t 3D translation vector (cam coords.) →30
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What Can We Do with An ‘Uncalibrated’ Perspective Camera?

How far is the engine from a given point on the tracks?

the distance between sleepers (ties) is 0.806m but we cannot count them, the image resolution is too low

We will review some life-saving theory. . .
. . . and build a bit of geometric intuition. . .

In fact

• ‘uncalibrated’ = the image contains a ‘calibrating object’ that suffices for the task at hand
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▶Vanishing Point

Vanishing point (V.P.): The limit m∞ of the projection of a point X(λ) that moves along a space line
X(λ) = X0 + λd infinitely in one direction. the image of the point at infinity on the line

X0X0 + �d d Cd m m1
�

m∞ ≃ lim
λ→±∞

P

[
X0 + λd

1

]
= · · · ≃ Qd

⊛ P1; 1pt: Prove (use Cartesian

coordinates and L’Hôpital’s rule)

• the V.P. of a spatial line with directional vector d is m∞ ≃ Qd

• V.P. is independent on line position X0, it depends on its directional vector only

• all parallel (world) lines share the same (image) V.P., including the optical ray defined by m∞
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Some Vanishing Point “Applications”

where is the sun? what is the wind direction? fly above the lane,
(must have video) at constant altitude!
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▶Vanishing Line

Vanishing line (V.L.): The set of vanishing points of all lines in a plane the image of the line at infinity in the plane

and in all parallel planes (!)v1 n | plane normal

m | line orientation ve
tor
v2
• any box with parallel edges

• top (blue) and bottom (black) box planes are parallel,
hence they share V.L. n

• V.L. n corresponds to spatial plane of normal vector p = Q⊤n
because this is the normal vector of a parallel optical plane (!) →39

• a spatial plane of normal vector p has a V.L. represented by n= Q−⊤p.
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▶Cross Ratio

Four distinct collinear spatial points R,S, T, U define cross-ratio

[RSTU ] =
|
−→
RT |
|
−→
SR|

|
−→
US|
|
−→
TU |

R S T U

a mnemonic (∞)

• |−→RT | – signed distance from R to T in the arrow direction

• each point X is once in numerator and once in denominator

• if X is 1st in a numerator term, it is 2nd in a denominator term

• there are six cross-ratios from four points:

[SRUT ] = [RSTU], [RSUT ] =
1

[RSTU]
, [RTSU] = 1 − [RSTU], · · · �

v s tn
u

r p

S

R

N

C

U

T

v /∈ n

Obs: [RSTU ] =

∣∣r t v
∣∣∣∣s r v
∣∣ ·

∣∣u s v
∣∣∣∣t u v
∣∣ , ∣∣r t v

∣∣ = det
[
r t v

]
= (r× t)⊤v mixed product (1)

Corollaries:
• cross ratio is invariant under homographies x′ ≃ Hx proof: plug Hx in (1): (H−⊤(r× t))⊤Hv

• cross ratio is invariant under perspective projection: [RSTU ] = [ r s t u ]

• 4 collinear points: any perspective camera will “see” the same cross-ratio of their images
• we measure the same cross-ratio in image as on the world line
• one of the points R, S, T , U may be at infinity (we take the limit, in effect ∞

∞ = 1)
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▶1D Projective Coordinates

The 1-D projective coordinate of a point P is defined by the following cross-ratio:

[P ] = [P0 P1 P P∞] = [p0 p1 p p∞] =
|−−→p0 p|
|−−→p1 p0|

|−−−→p∞ p1|
|−−→p p∞|

= [p]

naming convention:

P0 – the origin [P0] = 0

P1 – the unit point [P1] = 1

P∞ – the supporting point [P∞] = ±∞

[P ] = [p]

[P ] is equal to Euclidean coordinate along N

[p] is its measurement in the image plane

if the sign is not of interest, any cross-ratio containing |p0 p| does the job

p∞p0 p1 p

p0

p1

p∞

n′n

p

N ′‖N in 3D

Applications
• Given the image of a 3D line N , the origin, the unit point, and the vanishing point, then the Euclidean

coordinate of any point P ∈ N can be determined →48

• Finding V.P. of a line through a regular object →49
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Application: Counting Steps

p∞
p

p0

p1

su
p
p
o
rtin

g
 lin

e

• Namesti Miru underground station in Prague

p

p∞

detail around the vanishing point (w/ strong aliasing)

Result: [P ] = 214 steps (correct answer is 216 steps) 4Mpx camera
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Application: Finding the Horizon from Repetitions

p

p∞

p0

p1

P1

P

P0

in 3D: |P0P | = 2|P0P1| then [H&Z, p. 218]

[P0P1PP∞] =
|P0P |
|P1P0|

= 2 ⇒ x∞ =
x0 (2x− x1)− xx1

x+ x0 − 2x1

• x – 1D coordinate along the yellow line, positive in the arrow direction
• could be applied to counting steps (→48) if there was no supporting line

⊛ P1; 1pt: How high is the camera above the floor?
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Homework Problem

⊛ H2; 3pt: What is the ratio of heights of Building A to Building B?
• expected: conceptual solution; use notation from this figure
• deadline: LD+2weeks

B

A

tA

u

z

p

h

n∞

fB

tB
m

fA

Hints

1. What are the interesting properties of line h connecting the top tB of Buiding B with the point m at which the horizon intersects the
line p joining the foots fA, fB of both buildings? [1 point]

2. How do we actually get the horizon n∞? (we do not see it directly, there are some hills there. . . ) [1 point]

3. Give a formula for measuring the length ratio. Make sure you distinguish points in 3D from their images. [formula = 1 point]
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2D Projective Coordinates

V.P.

locate on the plane
pt we want to

origin in 3D

y-coordinate axis in 3D

unit pt

x-coordinate axis in 3D unit pt

V.P.

p0 px1 px px∞

p1

p

py∞

py

py1

[Px] = [P0 Px1 Px Px∞] [Py] = [P0 Py1 Py Py∞]
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Application: Measuring on the Floor (Wall, etc)

San Giovanni in Laterano, Rome

• measuring distances on the floor in terms of tile units
• what are the dimensions of the seal? Is it circular (assuming square tiles)?
• needs no explicit camera calibration

because we can see the calibrating object (vanishing points)
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Module III

Computing with a Single Camera

3.1Calibration: Internal Camera Parameters from Vanishing Points and Lines

3.2Camera Resection: Projection Matrix from 6 Known Points

3.3Exterior Orientation: Camera Rotation and Translation from 3 Known Points

3.4Relative Orientation Problem: Rotation and Translation between Two Point Sets

covered by

[1] [H&Z] Secs: 8.6, 7.1, 22.1

[2] Fischler, M.A. and Bolles, R.C . Random Sample Consensus: A Paradigm for Model Fitting with Applications
to Image Analysis and Automated Cartography. Communications of the ACM 24(6):381–395, 1981

[3] [Golub & van Loan 2013, Sec. 2.5]
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Obtaining Vanishing Points and Lines

• orthogonal direction pairs can be collected from multiple images by camera rotation

• vanishing line can be obtained from vanishing points and/or regularities (→49)
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▶Camera Calibration from Vanishing Points and Lines

Problem: Given finite vanishing points and/or vanishing lines, compute K

d3n31 n12d1d2
v3 n23 v2

v1

di = λiQ
−1vi, i = 1, 2, 3 →43

pij = µijQ
⊤nij , i, j = 1, 2, 3, i ̸= j →39

(2)

• method: eliminate λi, µij , R from (2) and solve for K.

Configurations allowing elimination of R

1. orthogonal rays d1 ⊥ d2 in space then

0 = d⊤
1 d2 = v⊤

1 Q
−⊤Q−1v2 = v⊤

1 (KK⊤)−1︸ ︷︷ ︸
ω (IAC)

v2

2. orthogonal planes pij ⊥ pik in space

0 = p⊤
ijpik = n⊤

ij QQ⊤nik = n⊤
ij ω

−1nik

3. orthogonal ray and plane dk ∥ pij , k ̸= i, j normal parallel to optical ray

pij ≃ dk ⇒ Q⊤nij = λi
µij

Q−1vk ⇒ nij = κQ−⊤Q−1vk = κω vk, κ ̸= 0

• nij may be constructed from non-orthogonal vi and vj , e.g. using the cross-ratio
• ω is a homogeneous, symmetric, definite 3× 3 matrix (5 DoF) IAC = Image of Absolute Conic

• equations are quadratic in K but linear in ω
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▶cont’d

configuration equation # constraints

(3) orthogonal vanishing points v⊤
i ω vj = 0 1

(4) orthogonal vanishing lines n⊤
ij ω

−1nik = 0 1

(5) vanishing points orthogonal to vanishing lines nij = κω vk 2

(6) orthogonal image raster θ = π/2 ω12 = ω21 = 0 1

(7) unit aspect a = 1 when θ = π/2 ω11 − ω22 = 0 1

(8) known principal point u0 = v0 = 0 ω13 = ω31 = ω23 = ω32 = 0 2

• These are homogeneous linear equations for the 5 parameters in ω or ω−1 κ can be eliminated from (5)

• When w = vec(ω) ∈ R6, it has the form of Dw = 0, D ∈ Rk×5

• With k = 5 constraints, we have rank(D) = 5, hence there is a unique solution for the homogeneous w.

• We get K from ω−1 = KK⊤ by Choleski decomposition
the decomposition returns a positive definite upper triangular matrix

one avoids solving an explicit set of quadratic equations for the parameters in K
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Thank You
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