Graph Neural
Networks

Alikhan Anuarbekov
anuarali@fel.cvut.cz

Outline

* What is a Geometrical Deep Learning
* Types of GNNS, their architecture

* Application of GNN on molecular data

Motivation: What is special about graphs?

Object detection and Instance segmentation

Convolutional neural network
(Qutput \

Probabilities

¥~ Decoder

[\ Fcf:::rd

i)
2 S horn Multi-Head

Feed Attention

Forward) Nx
| W
Nix Add & Norm
—>{_Add & Norm] Voored
Multi-Head Multi-Head
Attention Attention
\ — J I —_—,
Positional Positional
Encodi Q @ [
ncoding Encoding
Input Qutput
'* Embedding Embedding
Encoder f 1

\ Inputs / Outputs
J

@hifled right)

Figure 1: The Transformer - model architecture.

All of the previous approaches are so-called Euclidean

WHAT DOES NON EUCLIDEAN GEOMETRY MEAN??

Qw

Euclidean Spherlcal Hyperbolic

N

— Bl ™ cosai
Euclidean Non-Euclidean

Motivation: What is special about graphs?

All of the previous approaches and data are so-called Euclidean

 The data lies in some multidimensional linear vector space

 The distance between two points is a straight line and has a distance metric

Flattening

Pooled Feature Map

O RN (- T I S - e e

Motivation: What is special about graphs?

But there are data representations that do not follow the Euclidean
vector space representation

Bacteria Archaea Eucarya

Hyperbolic Euclidean

Networks Manifolds

Elliptic

Motivation: What is special about graphs?

The main concern here - the need for local distance preservation
* Manifold = local Euclidean distance relations
» But the global Euclidean distances aren’t fulfilled
* Problems: curse of dimensionality
* Too hard to learn such such complex shape

* Exponentially many examples
* Many layers of standard linear FC layers

* Machine learning alternative approaches
e Try dimension reduction: 3D -> 2D
* Not all manifolds can be reduced to lower dimensions!

Motivation: What is special about graphs?

-0.03

0.80

Exponentially complex shape

Motivation: What is special about graphs?

All of the previously learned Deep Learning concepts are not easily
applicable to non-Euclidean data

» Since we cannot efficiently represent the data

- = in vector space without the loss of information
A Q o
£ J o= = O s .)
3 o o o+ We need to define some new operations to
5 ’ © - © o gperate in this non-Euclidean space
= dz O @)
. : : :
— O 9,
1 @) .
w * To put it shortly:
"We want to use the topology as input as well”
5 ” * This is the domain of Geometrical Deep Learning
8 ()
O - O ? Q. O =P
CEes O =D
cE = 2
o O O
. o -

Graph Neural Networks (GNNs):

How to deal with non-Euclidean graphs?

GNNs: How to deal with non-Euclidean graphs?

First - we will define the framework for our upcoming

e GraphG=(V,E)
e Can be directed or undirected

e Each node has its own features in form of
vector > _
VEV_)XV_<X1’X2:")XH>

[]
!.‘) :iE *
i M, 1 L
e ol - T friend) P

— Movie 3 Actor 4 o /m'end ;e
@p t” Each edge can have its own feature vector
Actor 3(_) Albert () e
. e=(v,u)€E>x. =(x,,X,,..,%,)
Pro't.ein 1 Protein 2

Protein 5.

Protein 9

GNNs: How to deal with non-Euclidean graphs?
Second - we define the type of tasks that we want to solve

https://www.datacamp.com/tutorial/comprehensive-introduction-graph-neural-networks-gnns-tutorial

Graph Neural Networks (GNNs):

Recurrent GNN approach

GNNs: How to deal with non-Euclidean graphs?

General recurrent algorithm on Graphs (information diffusion/message passing)

-

— —> t—1 _>0
Z f Xv:Xv X by) Y v:h'” =randomly
uEN(v
hg,ﬁ,) Xyy s Z h) h,(lv) 26 (It can be applied to edge feature messages also)

WEN

» Regardless of number of neighbors aggregate (collect) their hidden states

* Run until equilibrium (convergence)

* F(.) satisfy conditions of contraction (convergence)

- Before Neural Networks (Label propagation): f (t T 1) =as f (t)+< 1- O{)Y

S =adjacency matrix
» Vector of classification probabilities per node . el
« Simple recurrent update algorithm Y =initial states of nodes

ac(0,1)

GNNs: How to deal with non-Euclidean graphs?

General recurrent algorithm on Graphs (information diffusion/message
passing)

Label propagation = recurrent information diffusion algorithm

@ @
@

https://medium.com/@mohammadsharique.cse/a-classical-graph-neural-network-gnn-graphs-tell-stories-
b80152a725d9

https://makeagif.com/gif/network-diffusion-9

GNNs: How to deal with non-Euclidean graphs?

Recurrent Graph Neural Network (RecGNN) from General recurrent algorithm

-

= 2 f u,iu,hit_l),w) Y v:h'” =randomly

uEN

» Instead of probabilities = label output per node, use a feature vector
» Try to incorporate some weights and non-linearities in F(.) function:

W in our case is the weight matrix

Sigmoid/tanh/Softmax can be applied as the activation/output functions

Can have multiple weight matrices combined in layers

Should have specific regularization and normalization terms to satisfy convergence

* Training:
1) Run the recurrent chain until convergence
2) Use back-propagation on final converged output to update W

3) Repeat

GNNs: How to deal with non-Euclidean graphs?
Recurrent Graph Neural Network (RecGNN)

-

h)=F(w,h""+ > W,h")
UEN(v)
F =activation function =sigmoid/tanh/ReLU/ ...

« Single layer instead of constants e e T ou
neighbors
« Can be generalized to multiple layers oo .
"8 |
* Weights are shared across Lo o9y oo
time iterations . = . | :
E |
p-09 =
H

https://dmol.pub/dl/gnn.html

GNNs: How to deal with non-Euclidean graphs?

Recurrent Graph Neural Network (RecGNN), Training process

Step O
0
q@
0 / \0/25

https://blog.twitter.com/engineering/en_us/topics/insights/2022/graph-machine-learning-with-missing-node-features

GNNs: How to deal with non-Euclidean graphs?

Recurrent Graph Neural Network (RecGNN), Training process

JrEu

.-"_h__._______._ _________ ;_M.
]] |
®e ® . N]
p?® a6 N
0009 04 0g° %440

Graph Neural Network

https://medium.com/stanford-cs224w/wikinet-an-experiment-in-recurrent-graph-neural-networks-3f149676fbf3

GNNs: How to deal with non-Euclidean graphs?
Recurrent Graph Neural Network (RecGNN)

h=GRU (h Z W)

uEN

« Gated RecGNN - mstead of convergence just do a fixed number of different linear layers

 More parameters, more memory and computation requirement

* Less time to run, no need for global convergence guarantees/constraints

Reset gate Update gate

—— . h
1 3) r GRUL |
EEL] ayern |
h " L ® > L
=] | T S
: X f : D :
: I : :Ztl ! > X }‘;
' P | !
| oy, O l ¢
: | ! : i : LR GRU Layer 2
f __l ______ SR T I
GRULayer1 | see
X,

| —p

Yeai

Vi

Yin

-

- 88—

GRU Block =i

LEL R]

e

GRU Block

LL R

A

r

GRU Block ""—-

e

LA R

I 2
+

GRU Block L

GRU Block

h?

» GRU Block —+see

GRU Block s

GRU Block

hl

k

| —

GRU Block [t»ees

x-‘]

Xy
https://www.researchgate.net/figure/The-architecture-of-a-multi-layer-gated-recurrent- neural network figs 330723201

GNNs: How to deal with non-Euclidean graphs?
Recurrent Graph Neural Network (RecGNN)

h=GRU (h Z W)
uEN
« Gated RecGNN - mstead of convergence just do a fixed number of different linear layers

RN

02

0.5

https://towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Graph Neural Networks (GNNs):

Convolution GNNs

GNNs: How to deal with non-Euclidean graphs?

Convolution Neural Network (CNN) on image data (Spatial-based)

b d
X*QIQZY yij:O(Z Z Wzlnnxi+m,j+n+b§j>

m

» Locality, Shift invariance, highly reduce parameter count
 Need to generalize this approach to graphs
* Since graphs have different number of neighbors

» There exists two approaches to it:

1) Spectral-based Convolution Neural Networks

2) Spatial-based Convolution Neural Networks

https://www.analyticssteps.com/blogs/convolutional-neural-network-cnn-graphical-visualization-code-explanation

GNNs: How to deal with non-Euclidean graphs?
Convolution on S|gnal analysis (Spectral-based)

(fxg)(s,t)= ffst s—x,t—y)dxdy €O(|fllgl)

1) First convert to Frequency Space

e o pE(fxg)=F ' (F(f)oF (f))<0(f log f])

2) Do simple element-wise multiplication

W

3) Convert back to image space

\J

X —»

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

Labeled graph Degree matrix _1/2 _1/2
10 0 0 0 0] L=1 —-D ""AD
0 3 0 0 0 0 _ .
W D=Degree matrix
(5 0 0 2 0 0 0 .)
© N 0 0 0 3 0 0 A= Adjacency matrix
O—© ¢ 0oeBs 0 I = Identity matrix
0 0 0 0 0 2 _
Adjacency matrix Laplacian matrix * Assume undirected graphs only
00000 : e ? 0 0 * L = real, symmetric, semi-definite
1 01 0 10 =k ¥ =1 0 =1 0 (all eigenvalues are >= 0)
01 0 1 0 0 0 -1 2 -1 0 0
00 1 0 1 1 6 =y 4 =i = . Has_a property of I_Eigen decomposition
» Diagonalization in orthonormal space
01 0 1 0 1 0 =1 0 =1 3 -l
0 0 0 1 1 0] 0o 0 o0 -1 -1 2

https://www.researchgate.net/figure/Example-of-degree-adjacency-and-Laplacian-matrices-for-an-undirected-
graph_fig3_ 362345733

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

Labeled graph Degree matrix
(1 0 0 0 0
o o 0O 3 0 0 0
0 0 2 0 0
‘ 0 0 0 3 0
e o 0 0 0 0 3
(0 0 0 0 0
Adjacency matrix Laplacian matrix
001 0 0 0 0] 1 -1 0
1 01 0 1 0 -1 3 -1
01 0 1 0 0 0 -1 2 -1
00 1 0 1 1 0 0 -1
o 1 0 1 0 1 0 -1 0 -1
0 0 0 1 1 O] L 0 0 0 -1

0
-1
0
-1

o o O o o
1 J

L=UAU"
U =orthonormal matrix
A =Diagonal matrix, A,>0

* This orthonormal space is exactly the Spectral Space!
—> T —
F(x)=U"%
—1/-> -
F(x)=UX

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

Structure = Graph Signal
Adjacency matrix (feature matrix)
A BN X e R™
- 1 0 1 0 node's feature vector
0) 0 0
: ” . : -
0 i] 1 1 -

g =filter/kernel € R"
xxg,=F (F(X)oF(g,))=UU %0U g,=Udiag(U" g,)U" X

https://theaisummer.com/graph-convolutional-networks/

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach
fin
(k) _ k T y7(k—1) .
H:,j_a(z U@i,jU H.) J=12, ., f o
i=0

o
)

®=diag(U" g,)

H(O): X , H<k>€ RfoutXN, H(k_l)e RmeN |
Graph Signal

« So, we are apply the same kernel across the feature axis (feature matrix)
X R

node's feature vector

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

out

fin
HY=o(> ue! u"H"") j=1.2,..f
=0

O=diag(U" g,)

H(O): X , H(k)e RfoutXN, H(k—l)e RmeN |
Graph Signal

« So, we are apply the same kernel across the feature axis (feature matrix)
X R

node's feature vector

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach
fin
(k) _ k T y7(k—1) .
H:,j_a(z U@i,jU H.) J=12, ., f o
i=0

o
)

®=diag(U" g,)

H(O): X , H<k>€ RfoutXN, H(k_l)e RmeN |
Graph Signal

« So, we are apply the same kernel across the feature axis (feature matrix)
Xl B

node's feature vector

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach
fin

Hlj=o(3 U6 U'H") j=12,..f,,
i=0

o
)

©=diag(U" g,)
H(O):X, H(k>€RfoutXN, H(k—l)ERmeN |
Graph Signal
. But: (feature matrix)
Xl B

» After every change to structure - train all over

« Convolution not local, a global sliding window nodds feature. veetor

» Eigen-decomposition is O(n"3) :

* Not practical, just a theory.....

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

« Chebyshev Spectral CNN (ChebNet):
« If Laplacian is sparse, can decompose it
» Use decomposition by Chebyshev polynomials instead of Eigen

* No need for O(n”™3), but only approximately for O(n)
* Further layers are reduced even to O(1) K -
0= 6T ,(A)
i=0
- Graph Convolution Network (GCN, 2018): N — .
A=2AIA,,.—1,
* Use even more approximation
 Same principle as computing first elements of Taylor series
« Adding up to K is exact value, compute only i=0, i=1

» First successful Spectral-based ConvGNN

» Both methods are still unusable for directed or changeable graphs

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spatial-based approach
Neural Network for Graphs (NN4G)

* Finally, the same approach as in standard ConvNN, by applying a sliding window
» Different number of neighbors per node is solved by Aggregation

Tk) W) T_» k « Efficient to compute

. 1)

hv — f(X T Z @) « Can be applied to directed graphs
uEN

 Can change a graph as long as nodes

H(k):f(X W(>+AH<k) @(k>) are the same/shared

-

h'=0

\%

f = activation function

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spatial-based approach
Neural Network for Graphs (NN4G)

* Finally, the same approach as in standard ConvNN, by applying a sliding window
» Different number of neighbors per node is solved by Aggreggtion

w3 o)

UEN (v)

H(k):f(XW(k/+AH\'\) @\"}m)

-

h"'=0

1%

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spatial-based approach

Neural Network for Graphs (NN4G)

* Finally, the same approach as in standard ConvNN, by applying a sliding window
» Different number of neighbors per node is solved by Aggregation
« Can also enhance - introduce Skip connection (ResNet)

hY=f(w" X +Z Z e hlr~1)
p= 1u€N
H(vk) f(X W + Z A H p 1) ®(p)T Without Skip Connection
- p:1 Q 1+1
h'=0 5

https://www.pluralsight.com/guides/introduction-to-resnet

Linear= RelU

Linear— RelU

Main path

00
P

With Skip Connection

) . Shortcut/Skipped

H[[].":‘ 8 a[1+1] 8 a[Hz]
@ O

- Shortcut added before non-linearity (ReLU) to the main path
- Stack these Residual blocks to form much deeper neural network

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spatial-based approach
Message Passing Neural Network (MPNN)

» Generalizes all of preivous Spatial-based ConvGNNs (Not really, a lot of extensions afterward)

« Same mechanism as in RecGNNSs, but implemented as Spatial Graph Convolution layer

-

(k) _ k 1) k 1) 7.(k—1) —e .
h Uk + Z Mk 3hu)Xuv)) (-)h,,g
UEN (“131{
(0)_ 0 h,,
hV — O atl/)’ (5+&14
« Particular implementations are then choosing the U k and M_k C)h hw()
- Graph Attention Network (GAT) . y<§ h,,
12 ® 2 &
‘ : — B)
W) =o(3 ol WHn{Y) -

(b) GAT [43] implicitly captures
the weight a;; via an end-to-end

k T k kE—1) kE—1 neural network architecture, so
() — = S Of?f'nlflﬂf (g (a [W() hgj) ‘ ‘W() hg,t))) that more important nodes receive

TJTL :
larger weights.

weN (v)Uv

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spatial-based approach

But isn't the MPNN ConvGNN the same as Gated RecGNN?

Rec-GNN Cony-GNN

W,=W,=W,=w w,'=w, I=w,
y, = fiw) Y. =fiw)
f=relu

Drug Discovery Today: Technologies

* Rec-GNN apply the same set of weights until a criterion is met, whereas Conv-GNNs apply
different weights at each iteration

* So, the index (k) means layers in ConvGNN, whereas in Gated RecGNN it is a time/iteration!

https://www.researchgate.net/figure/Difference-between-recurrent-Rec-GNN-and-convolution-Conv-GNN-
based-graph-neural _fig2 347681450

Gconv Gconv

Graph A o
—) LA, A Outputs
| : RelLu AN RelLu >
- [T =T] el ™
X

(a) A ConvGNN with multiple graph convolutional layers. A graph convo-
lutional layer encapsulates each node’s hidden representation by aggregating
feature information from its neighbors. After feature aggregation, a non-linear
transformation 1s applied to the resulted outputs. By stacking multiple layers,
the final hidden representation of each node receives messages from a further
neighborhood.

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spatial-based approach
Message Passing Neural Network (MPNN)

» Generalizes all of the Spatial-based ConvGNNs

1) Readout function to convert multiple node features into single vector for non-graph

output N
h.=R(h'"|veG)

» 2) Pooling function to reduce the number of nodes in a graph - convert to subgraph

« Convert feature matrices by matrix S S=S (A ’ X)
S function can either be a deterministic algorithm T
or a trainable layer Hpooled =S H

Apooled — ST A S

Gconv Gconv

Pooling u' Readout MLP

Softmax

-

o

= T > - |= X |-

\..L.LL.&.&."Q‘:

oo e
L™

(b) A ConvGNN with pooling and readout layers for graph classification
[21]. A graph convolutional layer i1s followed by a pooling layer to coarsen
a graph into sub-graphs so that node representations on coarsened graphs
represent higher graph-level representations. A readout layer summarizes the
final graph representation by taking the sum/mean of hidden representations
of sub-graphs.

Graph Neural Networks (GNNs):

Graph Autoencoders

GNNs: How to deal with non-Euclidean graphs?

But what about the topology inference?

* Previous approaches were targeting the node/edge/vector feature extraction from a graph
and used topology as a feature.

« But what about topology prediction/generation?

» Use latent space and AutoEncoders to do it!

GNNs: How to deal with non-Euclidean graphs?

Standard AutoEncoders in Deep Learning

« When the task is given as a generative one - e.g. to operate with something between given
training examples
* To create meaningful sentences from words
» To generate images that combine concepts from training samples

» |nstead of trying to accomplish it with complex mapping input to output, we introduce:

« The latent space of embeddings ‘ Encoder Decoder '
(remember vector embedding logic? BEEIBEEER
A
& N0~ ®
=5 L) I OUTPUT :
“e.. voman INPUT . ‘A’é)“' ,. Reconstructed
& O "}‘Q‘ \%‘_ input
king 11“‘=L. . ' /‘
gueen

Compressed
data

Q4
\

X

/l_-_-_-_-___-_'_'_'_‘—‘—')*
https://www.researchgate.net/figure/Basic-architecture-of-a-single-layer-autoencoder-made-of-an-encoder-going-

from-the-input_fig3 333038461
https://medium.com/@krithigkrish/from-words-to-vectors-decoding-the-intuition-behind-word-embedding-5a4f83fbf920

GNNs: How to deal with non-Euclidean graphs?
Apply AutoEncoders to Graph data

Deep Neural Network for Graph Representations (DNGR)

Labeled graph

Adjacency matrix
1 0 0 0

r 1
o o o o = O

0 0
1 1
0 0
1 1
0 1

(=R — T I =R
— D b D e

o = = o O O
L I

INPUT

&

&
o

®

Z in Z out
Encoder Decoder '
\ Bottfene_ck /
o OIS —0
Comdzrteas#ed \ '

* Use simple FC linear layers

 Or maybe some Convolution

OUTPUT :
Reconstructed
input

Add some noise for different output:

Zow~N(z

+ train to denoise

-

in»

I)

GNNs: How to deal with non-Euclidean graphs?
Apply AutoEncoders to Graph data

Structural Deep Network Embedding (SDNE) * Stack multiple layers

Labeled graph

LN

Adjacency matrix
1 0 0 0

0 0
1 1
0 0
1 1
0 |

o O = O
T e D

o = = o O O
L J

Input layer

 More complex latent space

Encoded

Layer2
Layer1 Layer2 Layer Layerl 4 Decoded

Output layer

https://medium.com/@evertongomede/unveiling-the-power-of-stacked-autoencoders-675de2ce4273

GNNs: How to deal with non-Euclidean graphs?
Apply AutoEncoders to Graph data

Variational Autoencoders

* Generalize the AutoEncoders Input Image Reconstructed Image
« What optimal loss function to use
Encoder Decoder
: : Latent Spac

- What type of noise to introduce _..|}Ix % ——
° [[[I o

Learn distribution too! MEEN S >0z > pxlm) > @

* Not only the noise _*E'x }\

« Can generate new samples Standard Devaition

T Reconstruction Loss 4+ KL Divergence

https://medium.com/@rushikesh.shende/autoencoders-variational-autoencoders-vae-and-%CE%B2-vae-
ceba9998773d

GNNs: How to deal with non-Euclidean graphs?
Graph AutoEncoders (GAEs)

« But what if | want to combine features and topology?
e Let us start with the most successful feature extraction architecture, ConvGNNs

» Use AutoEncoders to it to combine features and topology

Zin:enCOder(X:A):Gconv (f (GconV(A:X,.(h)l)); ®2)

1 [atent vector per node! But compute all at once

® with matrices
B o o
—»A —»A _bT -
A, ,=decoder (Z,,Z,)=0lz, Z,)

~y

GNNs: How to deal with non-Euclidean graphs?
Graph Variational AutoEncoders (GVAs)

« But what if | want to combine features and topology?
» Let us start with the most successful feature extraction architecture, ConvGNNs
« Use Variational AutoEncoders to learn the distribution of features + topology

* Introduce the loss that compute the distribution-wise error, not only sample-wise
(Kullback-Leibler divergence)

P(Z)=Gaussian prior=] | N(Z]0,I)
P(A|Z)=Noise likelihood=] | p(A,Z)= 0(21 Z)
q(Z|X ,A)=Empirical learned distribution:Hq (z]A,X)=N(z|mu,, oI

* Other usages: Robustness
 Adversarially Regularized Variational Graph Autoencoder (ARVGA)
Use generator to try to train to distinguish between fake and real samples

GNNs: How to deal with non-Euclidean graphs?

But what about different size graph generation?

Deep Generative Model of Graphs (DeepGMG)

 Generate a graph sequentially

« Start by one node and perform

e Use a RecGNN to do it

» Classify as 0/1 output

« Alternatively:

T rounds of propagation

nm] ;
=N

 Variational GAE (GraphVAE) °

https://arxiv.org/pdf/1803.03324.pdf

o
O =\ !
/ \O < (B— e
L4
Add node (0)? f(ﬂ\dd /ed@ge? Add node (1)? Add edge? Pick node (0) to
(yes/no) yes (yes/no) (yes/no) add edge (0,1)
® ® ® ® g
@ @
Generation steps
L Add edge? Add node (2)? Add edge? Pick node (0) to Add edge?
@ (yes/no) | @ (yes/no) /no) ge (0,2) & (yes/no)
0 @ ® @
3 @ @ ®

Figure 1. Depiction of the steps taken during the generation process.

Applications: What GNNS are good for?

Applications: What GNNS are good for?
Molecular mapping in chemistry

Given a set of pair {(pActl, pAct2)} graphs, we define a known chemical reaction/transition
from one molecule to another by a single change

Such transformation improves some phys/chem properties, represented by some value
(For example effectiveness on target disease or activity in certain environment)

Task - given some other molecule pActX, generate an improved molecule

MMPA - previous approach, use all know H
pairs to learn some general
transformation rules

GNN approach - see this problem as
graph-to-graph mapping

Core 1 —R1 Core 1 —R2
* Analogy from machine translation:
Paraphrase of one sentence to a better one:
"buy sandwich cheese” -> pACtl pACtz

"I"d like to buy some sandwich with cheese”

Fig. 1. Example of a matched molecular pair (MMP).

Applications: What GNNS are good for?
Molecular mapping in chemistry

» Scaffold - a family of molecules share the same core structure
.« Intuitive example:
) o S 1—' e i}_vc[b o T sd &
? N > TTT LT A and G in DNA are from the same purine family
ey B [
= 1 0. 0"'__"./-’ - j F O/-. _’I}_
L LTULY WXL
. o e le; 0 0 0
.l (PN NP N N HN N
| \> j \} > \>)
RMMF cares | k\;N - H ‘-Q'QN ——— H /]\ l\ D)\\ N
. w . N
ol r.ov.‘f:r‘;x_f—.- m-ﬁr-o-\riﬁﬁgﬁ r, purine adenine guanine hypoxanthine xanthine

! o IR v 1 2 3 4 5

ASE scatfald D hlll.' O h'jll HE .

| HN - N HN HN

- A | 2 /;l\ﬂj P ka >=G' 9

-. 0" >N~ N o7 >NT TN “N

i | | H

theobromine caffeine uric acid isoguanine

6 7 8 9

Applications: What GNNS are good for?

Molecular mapping in chemistry

2 Graphs input:
Atom-per-node graph scaffold multi-atom-node
graph

5 | C=0 {xY }/ﬁ.'tﬁc:\ ‘ CN

O Qo et 8B Oget"x 3~ JL e,
o cCl ';‘ ‘;‘ - CCl
{«l}

Attention
Molecular Graph Junction Tree Decoded Junction Tree Decoded Graph
¢ > Run RecGNN on edge for T iterations only
Compute from vocabulary - | -) _(. |
of known scaffolds t) _ c oL t—1 0) _
vl(,lv_gl(fu’fuw Z v(wu) Vuv_
o > weN (u)lv
atom =node v - f ,=atom type, valence, etc.. ~ * Run RecGNN with previous MESSages
- : _ 0)_
edge uv - f = interaction features... =g, f s Z V=0

scaffold node w-> f , =one-hot id in vocabulary weN (u

-

0

Applications: What GNNS are good for?
Molecular mapping in chemistry

C=0 {9} W ‘ CN

O

S e e ‘- @ N e
2 C ,/C &
B Y oo A #E_ oo
: H
z]}
Molecular Graph Junction Tree Decoded Junction Tree

» Use Graph Attention Network and Gated RecGNN
« Traverse the tree in DFS manner
* For every visit do a binary classification by GRU
« If 1 - split and expand node

C@D

Decoded Graph

» Use MPNN, Spatial-based ConvGNN ®
« Use Decoded Junction Tree feature vectors
* For every possible molecular graph compute its score by MPNN
» Output the probabilities of all possible molecular graphs

Applications: What GNNS are good for?
Molecular mapping in chemistry

Method QED DRD2

Success Diversity Novelty Success Diversity Novelty
MMPA 32.9% 0.236 99.9% 46.4% 0.275 99.9%
JT-VAE 8.8% - - 3.4% - -
GCPN 9.4% 0.216 100% 4.4% 0.152 100%
VSeq2Seq 58.5% 0.331 99.6% 75.9% 0.176 79.7%
VJITNN 59.9% 0.373 98.3% 77.8% 0.156 83.4%

VITNN+GAN 60.6% 0.376 99.0% 78.4% 0.162 82.7%

Papers used:

[A Comprehensive Survey on Graph Neural Networks]
https://arxiv.org/pdf/1901.00596.pdf

[Geometric deep learning: going beyond Euclidean data]
https://arxiv.org/pdf/1611.08097.pdf

[Deep recurrent graph neural networks]
https://www.research.unipd.it/handle/11577/3366866

[Learning Multimodal Graph-to-Graph Translation for Molecular Optimization]
https://openreview.net/pdf?id=B1xJASASF7

[Understanding Pooling in Graph Neural Networks]
https://arxiv.org/pdf/2110.05292.pdf

Additional materials used:

https://www.youtube.com/watch?v=2KRAOZIULzw
https://dataroots.io/blog/a-gentle-introduction-to-geometric
https://cw.fel.cvut.cz/b221/courses/b4m33dzo/start

	B4M36SAN
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

