Graph Neural Networks

Alikhan Anuarbekov
anuarali@fel.cvut.cz

Outline

- What is a Geometrical Deep Learning
- Types of GNNS, their architecture
- Application of GNN on molecular data

Motivation: What is special about graphs?

Object detection and Instance segmentation

Figure 1: The Transformer - model architecture.

All of the previous approaches are so-called Euclidean

WHAT DOES NON EUCLIDEAN GEOMETRY MEAN??

Euclidean

Euclidean

Spherical

Hyperbolic

Motivation: What is special about graphs?

All of the previous approaches and data are so-called Euclidean

- The data lies in some multidimensional linear vector space
- The distance between two points is a straight line and has a distance metric

Pooled Feature Map

Motivation: What is special about graphs?

But there are data representations that do not follow the Euclidean vector space representation

Networks

Motivation: What is special about graphs?

The main concern here - the need for local distance preservation

- Manifold = local Euclidean distance relations
- But the global Euclidean distances aren't fulfilled
- Problems: curse of dimensionality
- Too hard to learn such such complex shape
- Exponentially many examples
- Many layers of standard linear FC layers
- Machine learning alternative approaches
- Try dimension reduction: 3D -> 2D
- Not all manifolds can be reduced to lower dimensions!

Motivation: What is special about graphs?

Motivation: What is special about graphs?

All of the previously learned Deep Learning concepts are not easily applicable to non-Euclidean data

$\xrightarrow{?}$

- Since we cannot efficiently represent the data in vector space without the loss of information
- We need to define some new operations to operate in this non-Euclidean space
- To put it shortly:
"We want to use the topology as input as well"
- This is the domain of Geometrical Deep Learning

Graph Neural Networks (GNNs):

How to deal with non-Euclidean graphs?

GNNs: How to deal with non-Euclidean graphs?

First - we will define the framework for our upcoming

- Graph $G=(V, E)$
- Can be directed or undirected

- Each node has its own features in form of vector $v \in V \rightarrow \vec{x}_{v}=\left(x_{1}, x_{2}, . ., x_{n}\right)$
Each edge can have its own feature vector

$$
e=(v, u) \in E \rightarrow x_{v, u}^{\vec{e}}=\left(x_{1}, x_{2}, . ., x_{k}\right)
$$

GNNs: How to deal with non-Euclidean graphs?

Second - we define the type of tasks that we want to solve

Graph Embedding

Link Prediction

Graph Generation

Graph Neural Networks (GNNs):

Recurrent GNN approach

GNNs: How to deal with non-Euclidean graphs?

General recurrent algorithm on Graphs (information diffusion/message passing)

$$
\vec{h}_{v}^{(t)}=\sum_{u \in N(v)} f\left(\vec{x}_{v}, x_{v, u}^{\vec{e}}, \vec{x}_{u}, h_{u}^{(\overrightarrow{t-1)}}\right) \quad \forall v: h_{v}^{(0)}=\text { randomly }
$$

$$
\overrightarrow{h_{u v}^{(t)}}=f\left(\vec{x}_{u}, \vec{x}_{u v}, \sum_{w \in N(u) / v} h_{w u}^{(\vec{t}-1)}\right) \quad \vec{h}_{u v}^{(0)}=\overrightarrow{0} \quad \text { (It can be applied to edge feature messages also) }
$$

- Regardless of number of neighbors aggregate (collect) their hidden states
- Run until equilibrium (convergence)
- F(.) satisfy conditions of contraction (convergence)
- Before Neural Networks (Label propagation):
- Vector of classification probabilities per node
- Simple recurrent update algorithm

$$
f(t+1)=\alpha S f(t)+(1-\alpha) Y
$$

$$
S=\text { adjacency matrix }
$$

$Y=$ initial states of nodes $\alpha \in(0,1)$

GNNs: How to deal with non-Euclidean graphs?

General recurrent algorithm on Graphs (information diffusion/message passing)
Label propagation $=$ recurrent information diffusion algorithm

https://medium.com/@mohammadsharique.cse/a-classical-graph-neural-network-gnn-graphs-tell-storiesb80152a725d9

GNNs: How to deal with non-Euclidean graphs?

Recurrent Graph Neural Network (RecGNN) from General recurrent algorithm

$$
\vec{h}_{v}^{(t)}=\sum_{u \in N(v)} f\left(\vec{x}_{v}, x_{v, u}^{\vec{e}}, \vec{x}_{u}, h_{u}^{(\overrightarrow{t-1)}}, W\right) \quad \forall v: \vec{h}_{v}^{(0)}=\text { randomly }
$$

- Instead of probabilities = label output per node, use a feature vector
- Try to incorporate some weights and non-linearities in F(.) function:
- W in our case is the weight matrix
- Sigmoid/tanh/Softmax can be applied as the activation/output functions
- Can have multiple weight matrices combined in layers
- Should have specific regularization and normalization terms to satisfy convergence
- Training:

1) Run the recurrent chain until convergence
2) Use back-propagation on final converged output to update W
3) Repeat

GNNs: How to deal with non-Euclidean graphs?

Recurrent Graph Neural Network (RecGNN)

$$
\overrightarrow{h_{v}^{(t)}}=F\left(W_{1} h_{v}^{(\vec{t}-1)}+\sum_{u \in N(v)} W_{2} h_{u}^{\overrightarrow{t-1)}}\right)
$$

$F=$ activation function $=$ sigmoid $/ \tanh / \operatorname{ReLU} / . .$.

- Single layer instead of constants
- Can be generalized to multiple layers
- Weights are shared across time iterations

GNNs: How to deal with non-Euclidean graphs?

Recurrent Graph Neural Network (RecGNN), Training process

Step 0

GNNs: How to deal with non-Euclidean graphs?

Recurrent Graph Neural Network (RecGNN), Training process

GNNs: How to deal with non-Euclidean graphs?

Recurrent Graph Neural Network (RecGNN)

$$
\vec{h}_{v}^{(t)}=G R U\left(h_{u}^{(\overrightarrow{t-1})}, \sum_{u \in N(v)} W h_{u}^{(\overrightarrow{t-1)}}\right)
$$

- Gated RecGNN - instead of convergence just do a fixed number of different linear layers
- More parameters, more memory and computation requirement
- Less time to run, no need for global convergence guarantees/constraints

GNNs: How to deal with non-Euclidean graphs?

Recurrent Graph Neural Network (RecGNN)

$$
h_{v}^{(t)}=G R U\left(h_{u}^{(\vec{t}-1)}, \sum_{u \in N(v)} W h_{u}^{(\vec{t}-1)}\right)
$$

- Gated RecGNN - instead of convergence just do a fixed number of different linear layers

Graph Neural Networks (GNNs):

Convolution GNNs

GNNs: How to deal with non-Euclidean graphs?

Convolution Neural Network (CNN) on image data (Spatial-based)

$$
X * g_{\theta}^{l}=Y \quad y_{i j}=\sigma\left(\sum_{m}^{b} \sum_{n}^{d} w_{m n}^{l} x_{i+m, j+n}+b_{i j}^{l}\right)
$$

- Locality, Shift invariance, highly reduce parameter count
- Need to generalize this approach to graphs
- Since graphs have different number of neighbors
- There exists two approaches to it:

1) Spectral-based Convolution Neural Networks
2) Spatial-based Convolution Neural Networks

https://www.analyticssteps.com/blogs/convolutional-neural-network-cnn-graphical-visualization-code-explanation

GNNs: How to deal with non-Euclidean graphs?

Convolution on signal analysis (Spectral-based)

2) Do simple element-wise multiplication

3) Convert back to image space

1) First convert to Frequency Space

Founier r Tanstom (FT) $F^{-1} F(f * g)=F^{-1}(F(f) \odot F(f)) \in O(|f| \log f \mid)$

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

Labeled graph	Degree matrix
	$\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2\end{array}\right]$
Adjacency matrix	Laplacian matrix
$\left[\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0\end{array}\right]$	$\left[\begin{array}{cccccc}1 & -1 & 0 & 0 & 0 & 0\end{array}\right]$
$\begin{array}{lllllll}1 & 0 & 1 & 0 & 1 & 0\end{array}$	$\begin{array}{llllll}-1 & 3 & -1 & 0 & -1 & 0\end{array}$
$\begin{array}{lllllll}0 & 1 & 0 & 1 & 0 & 0\end{array}$	$\begin{array}{llllll}0 & -1 & 2 & -1 & 0 & 0\end{array}$
$\begin{array}{llllll}0 & 0 & 1 & 0 & 1 & 1\end{array}$	$\begin{array}{llllll}0 & 0 & -1 & 3 & -1 & -1\end{array}$
$\begin{array}{llllll}0 & 1 & 0 & 1 & 0 & 1\end{array}$	$\left[\begin{array}{llllll}0 & -1 & 0 & -1 & 3 & -1\end{array}\right.$
$\left[\begin{array}{llllll}0 & 0 & 0 & 1 & 1 & 0\end{array}\right]$	$\left[\begin{array}{llllll}0 & 0 & 0 & -1 & -1 & 2\end{array}\right]$

$$
\begin{gathered}
L=I_{n}-D^{-1 / 2} A D^{-1 / 2} \\
D=\text { Degree matrix } \\
A=\text { Adjacency matrix } \\
I_{n}=\text { Identity matrix }
\end{gathered}
$$

- Assume undirected graphs only
- L = real, symmetric, semi-definite (all eigenvalues are $>=0$)
- Has a property of Eigen decomposition
- Diagonalization in orthonormal space
https://www.researchgate.net/figure/Example-of-degree-adjacency-and-Laplacian-matrices-for-an-undirectedgraph_fig3_362345733

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

Labeled graph	Degree matrix
	$\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2\end{array}\right]$
Adjacency matrix	Laplacian matrix
$\left[\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0\end{array}\right]$	$\left[\begin{array}{llllll}1 & -1 & 0 & 0 & 0 & 0\end{array}\right]$
$\begin{array}{llllll}1 & 0 & 1 & 0 & 1 & 0\end{array}$	$\begin{array}{llllll}-1 & 3 & -1 & 0 & -1 & 0\end{array}$
$\begin{array}{llllll}0 & 1 & 0 & 1 & 0 & 0\end{array}$	$\begin{array}{llllll}0 & -1 & 2 & -1 & 0 & 0\end{array}$
$\begin{array}{llllll}0 & 0 & 1 & 0 & 1 & 1\end{array}$	$\begin{array}{llllll}0 & 0 & -1 & 3 & -1 & -1\end{array}$
$\left(\begin{array}{llllll}0 & 1 & 0 & 1 & 0 & 1\end{array}\right.$	$\begin{array}{llllll}0 & -1 & 0 & -1 & 3 & -1\end{array}$
$\left[\begin{array}{llllll}0 & 0 & 0 & 1 & 1 & 0\end{array}\right]$	$\left[\begin{array}{llllll}0 & 0 & 0 & -1 & -1 & 2\end{array}\right]$

$$
\begin{gathered}
L=U \Lambda U^{T} \\
U=\text { orthonormal matrix } \\
\Lambda=\text { Diagonal matrix, } \lambda_{i} \geq 0
\end{gathered}
$$

- This orthonormal space is exactly the Spectral Space!

$$
\begin{gathered}
F(\vec{x})=U^{T} \vec{x} \\
F^{-1}(\vec{x})=U \vec{x}
\end{gathered}
$$

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

Structure =
Adjacency matrix

Graph Signal
(feature matrix)

$g=$ filter $/$ kernel $\in R^{N}$

$$
\vec{x} * g_{\theta}=F^{-1}\left(F(\vec{x}) \odot F\left(g_{\theta}\right)\right)=U U^{T} \vec{x} \odot U^{T} g_{\theta}=U \operatorname{diag}\left(U^{T} g_{\theta}\right) U^{T} \vec{x}
$$

https://theaisummer.com/graph-convolutional-networks/

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

$$
\begin{gathered}
H_{:, j}^{(k)}=\sigma\left(\sum_{i=0}^{f_{\text {in }}} U \Theta_{i, j}^{k} U^{T} H_{:, i}^{(k-1)}\right) \quad j=1,2, . ., f_{\text {out }} \\
\Theta=\operatorname{diag}\left(U^{T} g_{\theta}\right) \\
H^{(0)}=X, \quad H^{(k)} \in R^{f_{\text {out }} X N}, \quad H^{(k-1)} \in R^{f_{\text {in }} X N}
\end{gathered}
$$

- So, we are apply the same kernel across the feature axis

Graph Signal (feature matrix)

$$
X \in R^{N \times F}
$$

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

$$
\begin{gathered}
H_{:, j}^{(k)}=\sigma\left(\sum_{i=0}^{f_{\text {in }}} U \Theta_{i, j}^{k} U^{T} H^{(k-1)}\right) \quad j=1,2, . ., f_{\text {out }} \\
\Theta=\operatorname{diag}\left(U^{T} g_{\theta}\right) \\
H^{(0)}=X, \quad H^{(k)} \in R^{f_{\text {out }} \times N}, \quad H^{(k-1)} \in R^{f_{\text {in }} \times N}
\end{gathered}
$$

- So, we are apply the same kernel across the feature axis

Graph Signal (feature matrix)

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

$$
\begin{gathered}
H_{:, j}^{(k)}=\sigma\left(\sum_{i=0}^{f_{\text {in }}} U \Theta_{i, j}^{k} U^{T} H_{:, i}^{(k-1)}\right) \quad j=1,2, . ., f_{\text {out }} \\
\Theta=\operatorname{diag}\left(U^{T} g_{\theta}\right) \\
H^{(0)}=X, \quad H^{(k)} \in R^{f_{\text {out }} X N}, \quad H^{(k-1)} \in R^{f_{\text {in }} X N}
\end{gathered}
$$

- So, we are apply the same kernel across the feature axis

Graph Signal (feature matrix)

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

$$
\begin{gathered}
H_{:, j}^{(k)}=\sigma\left(\sum_{i=0}^{f_{\text {in }}} U \Theta_{i, j}^{k} U^{T} H_{:, i}^{(k-1)}\right) \quad j=1,2, . ., f_{\text {out }} \\
\Theta=\operatorname{diag}\left(U^{T} g_{\theta}\right) \\
H^{(0)}=X, \quad H^{(k)} \in R^{f_{\text {out }} X N}, \quad H^{(k-1)} \in R^{f_{\text {in }} X N}
\end{gathered}
$$

- But:
- After every change to structure - train all over
- Convolution not local, a global sliding window
- Eigen-decomposition is $\mathrm{O}\left(\mathrm{n}^{\wedge} 3\right)$
- Not practical, just a theory.....

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

- Chebyshev Spectral CNN (ChebNet):
- If Laplacian is sparse, can decompose it
- Use decomposition by Chebyshev polynomials instead of Eigen
- No need for $\mathrm{O}\left(\mathrm{n}^{\wedge} 3\right)$, but only approximately for $\mathrm{O}(\mathrm{n})$
- Further layers are reduced even to O(1)
- Graph Convolution Network (GCN, 2018):

$$
\Theta=\sum_{i=0}^{K} \theta_{i} T_{i}(\widetilde{\Lambda})
$$

- Use even more approximation

$$
\widetilde{\Lambda}=2 \Lambda / \lambda_{\max }-I_{n}
$$

- Same principle as computing first elements of Taylor series
- Adding up to K is exact value, compute only $\mathrm{i}=0, \mathrm{i}=1$
- First successful Spectral-based ConvGNN
- Both methods are still unusable for directed or changeable graphs

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spatial-based approach Neural Network for Graphs (NN4G)

- Finally, the same approach as in standard ConvNN, by applying a sliding window
- Different number of neighbors per node is solved by Aggregation

$$
\begin{aligned}
h_{v}^{(k)} & =f\left(W^{(k)^{r} \vec{x}_{v}}+\sum_{u \in N(v)} \Theta^{\left.(k)^{r} \vec{h}_{u}^{(k-1)}\right)}\right) \\
H_{v}^{(k)} & =f\left(X W^{(k)}+A H^{(k-1)} \Theta^{(k)^{r}}\right)
\end{aligned}
$$

- Efficient to compute
- Can be applied to directed graphs
- Can change a graph as long as nodes are the same/shared

$$
\overrightarrow{h_{v}^{(0)}}=\overrightarrow{0}
$$

$f=$ activation function

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spatial-based approach Neural Network for Graphs (NN4G)

- Finally, the same approach as in standard ConvNN, by applying a sliding window
- Different number of neighbors per node is solved by Aggregation

$$
\begin{gathered}
h_{v}^{(k)}=f\left(W^{(k)^{r}} \overrightarrow{x_{v}}-\sum_{u \in N(v)} \Theta^{\left.(k)^{r} \vec{h}_{u}^{(k-1)}\right)}\right) \\
H_{v}^{(k)}=f\left(X W^{(k)}+A H^{(n-1)} \Theta^{(n)}\right) \\
h_{v}^{(0)}=\overrightarrow{0}
\end{gathered}
$$

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spatial-based approach Neural Network for Graphs (NN4G)

- Finally, the same approach as in standard ConvNN, by applying a sliding window
- Different number of neighbors per node is solved by Aggregation
- Can also enhance - introduce Skip connection (ResNet)

$$
\begin{aligned}
& h_{v}^{(k)}=f\left(W^{(k)^{T}} \vec{X}_{v}+\sum_{p=1}^{k} \sum_{u \in N(v)} \Theta^{(p)^{T}} \vec{h}_{u}^{(p-1)}\right) \\
& H_{v}^{(k)}=f\left(X W^{(k)}+\sum_{p=1}^{k} A H^{(p-1)} \Theta^{(p)^{T}}\right)^{\text {whanomsespocomemecion }} \\
& \overrightarrow{h_{v}^{(0)}}=\overrightarrow{0}
\end{aligned}
$$

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spatial-based approach Message Passing Neural Network (MPNN)

- Generalizes all of preivous Spatial-based ConvGNNs (Not really, a lot of extensions afterward)
- Same mechanism as in RecGNNs, but implemented as Spatial Graph Convolution layer

$$
\begin{gathered}
\vec{h}_{v}^{(k)}=U_{k}\left(\vec{h}_{v}^{(k-1)}+\sum_{u \in N(v)} M_{k}\left(\vec{h}_{v}^{(k-1)}, \vec{h}_{u}^{(k-1)}, \vec{x}_{u v}^{e}\right)\right) \\
\overrightarrow{h_{v}^{(0)}}=\overrightarrow{0}
\end{gathered}
$$

- Particular implementations are then choosing the U_k and M_k
- Graph Attention Network (GAT)

$$
\begin{aligned}
\mathbf{h}_{v}^{(k)} & =\sigma\left(\sum_{u \in \mathcal{N}(v) \cup v} \alpha_{v u}^{(k)} \mathbf{W}^{(k)} \mathbf{h}_{u}^{(k-1)}\right) \\
\alpha_{v u}^{(k)} & =\operatorname{softmax}\left(g\left(\mathbf{a}^{T}\left[\mathbf{W}^{(k)} \mathbf{h}_{v}^{(k-1)} \| \mathbf{W}^{(k)} \mathbf{h}_{u}^{(k-1)}\right)\right)\right.
\end{aligned}
$$

(b) GAT [43] implicitly captures the weight $a_{i j}$ via an end-to-end neural network architecture, so that more important nodes receive larger weights.

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spatial-based approach

But isn't the MPNN ConvGNN the same as Gated RecGNN?

Rec-GNN
$w_{0}=w_{1}=w_{2}=w$
$y_{i}=f(w)$

Conv-GNN

$$
\begin{array}{r}
w_{0}!=w_{1}!=w_{2} \\
y_{i}=f(w)
\end{array}
$$

$\overline{\text { Drug Discovery Today: Technologies }}$

- Rec-GNN apply the same set of weights until a criterion is met, whereas Conv-GNNs apply different weights at each iteration
- So, the index (k) means layers in ConvGNN, whereas in Gated RecGNN it is a time/iteration!

(a) A ConvGNN with multiple graph convolutional layers. A graph convolutional layer encapsulates each node's hidden representation by aggregating feature information from its neighbors. After feature aggregation, a non-linear transformation is applied to the resulted outputs. By stacking multiple layers, the final hidden representation of each node receives messages from a further neighborhood.

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spatial-based approach Message Passing Neural Network (MPNN)

- Generalizes all of the Spatial-based ConvGNNs
- 1) Readout function to convert multiple node features into single vector for non-graph output

$$
\vec{h}_{G}=R\left(\vec{h}_{v}^{(K)} \mid v \in G\right)
$$

- 2) Pooling function to reduce the number of nodes in a graph - convert to subgraph
- Convert feature matrices by matrix S

$$
\begin{gathered}
S=S(A, X) \\
H_{\text {pooled }}=S^{T} H \\
A_{\text {pooled }}=S^{T} A S
\end{gathered}
$$ S function can either be a deterministic algorithm or a trainable layer

(b) A ConvGNN with pooling and readout layers for graph classification [21]. A graph convolutional layer is followed by a pooling layer to coarsen a graph into sub-graphs so that node representations on coarsened graphs represent higher graph-level representations. A readout layer summarizes the final graph representation by taking the sum/mean of hidden representations of sub-graphs.

Graph Neural Networks (GNNs):

Graph Autoencoders

GNNs: How to deal with non-Euclidean graphs?

But what about the topology inference?

- Previous approaches were targeting the node/edge/vector feature extraction from a graph and used topology as a feature.
- But what about topology prediction/generation?
- Use latent space and AutoEncoders to do it!

Graph Generation

GNNs: How to deal with non-Euclidean graphs?

Standard AutoEncoders in Deep Learning

- When the task is given as a generative one - e.g. to operate with something between given training examples
- To create meaningful sentences from words
- To generate images that combine concepts from training samples
- Instead of trying to accomplish it with complex mapping input to output, we introduce:
- The latent space of embeddings (remember vector embedding logic?

OUTPUT : Reconstructed input
https://www.researchgate.net/figure/Basic-architecture-of-a-single-layer-autoencoder-made-of-an-encoder-going-from-the-input fig3_333038461
https://medium.com/@krithiqkrish/from-words-to-vectors-decoding-the-intuition-behind-word-embedding-5a4f83fbf920

GNNs: How to deal with non-Euclidean graphs?

Apply AutoEncoders to Graph data

Deep Neural Network for Graph Representations (DNGR)

$$
\overrightarrow{Z_{\text {out }}} \sim N\left(\overrightarrow{z_{\text {in }}}, I\right)
$$

+ train to denoise

GNNs: How to deal with non-Euclidean graphs?

Apply AutoEncoders to Graph data

Structural Deep Network Embedding (SDNE)

- Stack multiple layers
- More complex latent space

https://medium.com/@evertongomede/unveiling-the-power-of-stacked-autoencoders-675de2ce4273

GNNs: How to deal with non-Euclidean graphs?

Apply AutoEncoders to Graph data

Variational Autoencoders

- Generalize the AutoEncoders

Input Image

- What optimal loss function to use
- What type of noise to introduce
- Learn distribution too!
- Not only the noise
- Can generate new samples

https://medium.com/@rushikesh.shende/autoencoders-variational-autoencoders-vae-and-\�\�-vaeceba9998773d

GNNs: How to deal with non-Euclidean graphs?

Graph AutoEncoders (GAEs)

- But what if I want to combine features and topology?
- Let us start with the most successful feature extraction architecture, ConvGNNs
- Use AutoEncoders to it to combine features and topology

$$
Z_{\mathrm{in}}=\operatorname{encoder}(X, A)=G_{\mathrm{conv}}\left(f\left(G_{\mathrm{conv}}\left(A, X ; \Theta_{1}\right)\right) ; \Theta_{2}\right)
$$

1 latent vector per node! But compute all at once with matrices

$$
\widetilde{A}_{u, v}=\operatorname{decoder}\left(\vec{z}_{u}, \vec{z}_{v}\right)=\sigma\left({\overrightarrow{z_{u}}}^{T} \vec{z}_{v}\right)
$$

GNNs: How to deal with non-Euclidean graphs?

Graph Variational AutoEncoders (GVAs)

- But what if I want to combine features and topology?
- Let us start with the most successful feature extraction architecture, ConvGNNs
- Use Variational AutoEncoders to learn the distribution of features + topology
- Introduce the loss that compute the distribution-wise error, not only sample-wise (Kullback-Leibler divergence)

$$
\begin{gathered}
L=E_{q(\mathbf{Z} \mid \mathbf{X}, \mathbf{A})}[\log p(\mathbf{A} \mid \mathbf{Z})]-K L[q(\mathbf{Z} \mid \mathbf{X}, \mathbf{A}) \| p(\mathbf{Z})] \\
P(Z)=\text { Gaussian prior }=\prod N\left(\vec{z}_{i} \mid 0, I\right) \\
P(A \mid Z)=\text { Noise likelihood }=\prod p\left(A_{i j} \mid Z\right)=\sigma\left(\vec{z}_{i}^{T} \vec{z}_{j}\right) \\
q(Z \mid X, A)=\text { Empirical learned distribution }=\prod q\left(z_{i} \mid A, X\right)=N\left(z_{i} \mid m u_{i}, \sigma_{i} \cdot I\right)
\end{gathered}
$$

- Other usages: Robustness
- Adversarially Regularized Variational Graph Autoencoder (ARVGA) Use generator to try to train to distinguish between fake and real samples

GNNs: How to deal with non-Euclidean graphs?

But what about different size graph generation?

Deep Generative Model of Graphs (DeepGMG)

- Generate a graph sequentially
- Start by one node and perform
- Use a RecGNN to do it
- Classify as $0 / 1$ output

- Alternatively:
- Variational GAE (GraphVAE) ${ }^{\circ}$

Add node (o)? (yes/no)	©	Add edge? (yes/no)	©	Add node (1)? (yes/no) (1)	©	Add edge? (yes/no) (1)	Pick node (o) to © add edge $(0,1)$

Figure 1. Depiction of the steps taken during the generation process.

Applications: What GNNS are good for?

Applications: What GNNS are good for?

Molecular mapping in chemistry

- Given a set of pair $\{($ pAct1, pAct2) \} graphs, we define a known chemical reaction/transition from one molecule to another by a single change
- Such transformation improves some phys/chem properties, represented by some value (For example effectiveness on target disease or activity in certain environment)
- Task - given some other molecule pActX, generate an improved molecule
- MMPA - previous approach, use all know pairs to learn some general transformation rules
- GNN approach - see this problem as

graph-to-graph mapping

Core 1 ——R1

- Analogy from machine translation: Paraphrase of one sentence to a better one: "buy sandwich cheese" ->
"I'd like to buy some sandwich with cheese"

pAct1

pAct2

Fig. 1. Example of a matched molecular pair (MMP).

Applications: What GNNS are good for?

Molecular mapping in chemistry

- Scaffold - a family of molecules share the same core structure
- Intuitive example:
A and G in DNA are from the same purine family

$\underset{1}{\text { purine }}$

theobromine

adenine 2

guanine

caffeine 7

uric acid

hypoxanthine 4

xanthine

$\underset{9}{\text { isoguanine }}$

Applications: What GNNS are good for?

Molecular mapping in chemistry
2 Graphs input:

Compute from vocabulary of known scaffolds
scaffold multi-atom-node graph

Molecular Graph

Junction Tree
$\left\{\boldsymbol{x}_{*}^{\mathcal{T}}\right\}$

Decoded Junction Tree

Decoded Graph

- Run RecGNN on edge for T iterations only

$$
\overrightarrow{v_{u v}^{(t)}}=g_{1}\left(\vec{f}_{u}, \overrightarrow{f_{u v}}, \sum_{w \in N(u) / v} v_{w u}^{(\vec{t}-1)}\right) \quad \overrightarrow{v_{u v}^{(0)}}=\overrightarrow{0}
$$

atom $=$ node $\mathrm{v} \rightarrow \vec{f}_{v}=$ atom type, valence, etc.. edge uv $\rightarrow \overrightarrow{f_{u v}}=$ interaction features...
scaffold node $\mathrm{w} \rightarrow \vec{f}_{w}=$ one-hot id in vocabulary

- Run RecGNN with previous messages

$$
\vec{x}_{u}=g_{2}\left(\vec{f}_{u}, \sum_{w \in N(u)} \overrightarrow{v_{w u}^{T()}}\right) \quad \overrightarrow{v_{u v}^{(0)}}=\overrightarrow{0}
$$

Applications: What GNNS are good for?

Molecular mapping in chemistry

- Use Graph Attention Network and Gated RecGNN
- Traverse the tree in DFS manner
- For every visit do a binary classification by GRU
- If 1 - split and expand node
- Use MPNN, Spatial-based ConvGNN
- Use Decoded Junction Tree feature vectors
- For every possible molecular graph compute its score by MPNN
- Output the probabilities of all possible molecular graphs

Applications: What GNNS are good for?

Molecular mapping in chemistry

Method	QED			DRD2		
	Success	Diversity	Novelty	Success	Diversity	Novelty
MMPA	32.9%	0.236	99.9%	46.4%	$\mathbf{0 . 2 7 5}$	99.9%
JT-VAE	8.8%	-	-	3.4%	-	-
GCPN	9.4%	0.216	100%	4.4%	0.152	100%
VSeq2Seq	58.5%	0.331	99.6%	75.9%	0.176	79.7%
VJTNN	59.9%	0.373	98.3%	77.8%	0.156	83.4%
VJTNN+GAN	$\mathbf{6 0 . 6 \%}$	$\mathbf{0 . 3 7 6}$	99.0%	$\mathbf{7 8 . 4 \%}$	0.162	82.7%

Papers used:

[A Comprehensive Survey on Graph Neural Networks]
https://arxiv.org/pdf/1901.00596.pdf
[Geometric deep learning: going beyond Euclidean data]
https://arxiv.org/pdf/1611.08097.pdf
[Deep recurrent graph neural networks]
https://www.research.unipd.it/handle/11577/3366866
[Learning Multimodal Graph-to-Graph Translation for Molecular Optimization] https://openreview.net/pdf?id=B1xJAsA5F7
[Understanding Pooling in Graph Neural Networks]
https://arxiv.org/pdf/2110.05292.pdf

Additional materials used:

https://www.youtube.com/watch?v=2KRAOZIULzw
https://dataroots.io/blog/a-gentle-introduction-to-geometric https://cw.fel.cvut.cz/b221/courses/b4m33dzo/start

