
Graph Neural
Networks

Alikhan Anuarbekov
anuarali@fel.cvut.cz

Outline

● What is a Geometrical Deep Learning

● Types of GNNS, their architecture

● Application of GNN on molecular data

Motivation: What is special about graphs?

All of the previous approaches are so-called Euclidean

Motivation: What is special about graphs?

All of the previous approaches and data are so-called Euclidean
● The data lies in some multidimensional linear vector space

● The distance between two points is a straight line and has a distance metric

Motivation: What is special about graphs?

But there are data representations that do not follow the Euclidean
vector space representation

Motivation: What is special about graphs?

The main concern here – the need for local distance preservation
● Manifold = local Euclidean distance relations
● But the global Euclidean distances aren’t fulfilled
● Problems: curse of dimensionality

● Too hard to learn such such complex shape
● Exponentially many examples
● Many layers of standard linear FC layers

● Machine learning alternative approaches
● Try dimension reduction: 3D -> 2D
● Not all manifolds can be reduced to lower dimensions!

Motivation: What is special about graphs?

Exponentially complex shape

3D manifold geometrical structure

Motivation: What is special about graphs?

All of the previously learned Deep Learning concepts are not easily
applicable to non-Euclidean data

● Since we cannot efficiently represent the data
in vector space without the loss of information

● We need to define some new operations to
operate in this non-Euclidean space

● To put it shortly:
”We want to use the topology as input as well”

● This is the domain of Geometrical Deep Learning

Graph Neural Networks (GNNs):

 How to deal with non-Euclidean graphs?

GNNs: How to deal with non-Euclidean graphs?

First – we will define the framework for our upcoming
● Graph G = (V, E)

● Can be directed or undirected

● Each node has its own features in form of
 vector

● Each edge can have its own feature vector

v∈V → x⃗v=(x1 , x2 ,.. , xn)

e=(v ,u)∈E→ ⃗xv ,u
e =(x1 , x2 ,.. , xk)

GNNs: How to deal with non-Euclidean graphs?
Second – we define the type of tasks that we want to solve

https://www.datacamp.com/tutorial/comprehensive-introduction-graph-neural-networks-gnns-tutorial

Graph Neural Networks (GNNs):

Recurrent GNN approach

GNNs: How to deal with non-Euclidean graphs?

h⃗v
(t)= ∑

u∈N(v)
f (x⃗ v , ⃗xv , u

e , x⃗u , ⃗hu
(t−1))

General recurrent algorithm on Graphs (information diffusion/message passing)

● Regardless of number of neighbors aggregate (collect) their hidden states
● Run until equilibrium (convergence)
● F(.) satisfy conditions of contraction (convergence)

● Before Neural Networks (Label propagation):
● Vector of classification probabilities per node
● Simple recurrent update algorithm

∀ v : h⃗v
(0)=randomly

f (t +1)=α S f (t)+(1−α)Y
S=adjacency matrix

Y=initial states of nodes
α∈(0 , 1)

h⃗uv
(t)=f (x⃗u , x⃗uv , ∑

w ∈N (u)/ v

⃗hwu
(t−1)) h⃗uv

(0)=0⃗ (It can be applied to edge feature messages also)

GNNs: How to deal with non-Euclidean graphs?

https://makeagif.com/gif/network-diffusion-9t0NVQ

Label propagation = recurrent information diffusion algorithm

General recurrent algorithm on Graphs (information diffusion/message
passing)

https://medium.com/@mohammadsharique.cse/a-classical-graph-neural-network-gnn-graphs-tell-stories-
b80152a725d9

GNNs: How to deal with non-Euclidean graphs?

Recurrent Graph Neural Network (RecGNN) from General recurrent algorithm

h⃗v
(t)= ∑

u∈N(v)
f (x⃗ v , ⃗xv , u

e , x⃗u , ⃗hu
(t−1), W) ∀ v : h⃗v

(0)=randomly

● Instead of probabilities = label output per node, use a feature vector
● Try to incorporate some weights and non-linearities in F(.) function:

● W in our case is the weight matrix
● Sigmoid/tanh/Softmax can be applied as the activation/output functions
● Can have multiple weight matrices combined in layers
● Should have specific regularization and normalization terms to satisfy convergence

● Training:
1) Run the recurrent chain until convergence
2) Use back-propagation on final converged output to update W
3) Repeat

● Single layer instead of constants
● Can be generalized to multiple layers
● Weights are shared across

 time iterations

GNNs: How to deal with non-Euclidean graphs?

h⃗v
(t)=F (W 1

⃗hv
(t−1)+ ∑

u∈N (v)
W 2

⃗hu
(t−1))

F=activation function=sigmoid / tanh / ReLU / .. .

https://dmol.pub/dl/gnn.html

Recurrent Graph Neural Network (RecGNN)

GNNs: How to deal with non-Euclidean graphs?

Recurrent Graph Neural Network (RecGNN), Training process

https://blog.twitter.com/engineering/en_us/topics/insights/2022/graph-machine-learning-with-missing-node-features

GNNs: How to deal with non-Euclidean graphs?

Recurrent Graph Neural Network (RecGNN), Training process

https://medium.com/stanford-cs224w/wikinet-an-experiment-in-recurrent-graph-neural-networks-3f149676fbf3

GNNs: How to deal with non-Euclidean graphs?
Recurrent Graph Neural Network (RecGNN)

https://www.researchgate.net/figure/The-architecture-of-a-multi-layer-gated-recurrent-neural-network_fig5_330723201

● Gated RecGNN – instead of convergence just do a fixed number of different linear layers
● More parameters, more memory and computation requirement
● Less time to run, no need for global convergence guarantees/constraints

h⃗v
(t)=GRU (⃗hu

(t−1) , ∑
u∈N (v)

W ⃗hu
(t−1))

GNNs: How to deal with non-Euclidean graphs?
Recurrent Graph Neural Network (RecGNN)

● Gated RecGNN – instead of convergence just do a fixed number of different linear layers

h⃗v
(t)=GRU (⃗hu

(t−1) , ∑
u∈N (v)

W ⃗hu
(t−1))

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Graph Neural Networks (GNNs):

Convolution GNNs

GNNs: How to deal with non-Euclidean graphs?

X∗gθ
l =Y y ij=σ(∑

m

b

∑
n

d

wmn
l x i+m, j+n+b ij

l)

Convolution Neural Network (CNN) on image data (Spatial-based)

● Locality, Shift invariance, highly reduce parameter count
● Need to generalize this approach to graphs

● Since graphs have different number of neighbors
● There exists two approaches to it:

1) Spectral-based Convolution Neural Networks

2) Spatial-based Convolution Neural Networks

https://www.analyticssteps.com/blogs/convolutional-neural-network-cnn-graphical-visualization-code-explanation

GNNs: How to deal with non-Euclidean graphs?

(f∗g)(s ,t)=∫
−∞

∞

∫
−∞

∞

f (s ,t)g (s−x , t− y)dxdy ∈O(|f||g|)

Convolution on signal analysis (Spectral-based)

1) First convert to Frequency Space
Fourier Transform (FT)

2) Do simple element-wise multiplication

3) Convert back to image space

F−1 F (f ∗g)=F−1(F (f)⊙F (f))∈O(|f ||log f|)

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

https://www.researchgate.net/figure/Example-of-degree-adjacency-and-Laplacian-matrices-for-an-undirected-
graph_fig3_362345733

L=I n−D−1/2 A D−1 /2

D=Degree matrix
A=Adjacency matrix

I n=Identity matrix
● Assume undirected graphs only
● L = real, symmetric, semi-definite

(all eigenvalues are >= 0)
● Has a property of Eigen decomposition

● Diagonalization in orthonormal space

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach
L=U ΛUT

U=orthonormal matrix
Λ=Diagonal matrix, λi≥0

● This orthonormal space is exactly the Spectral Space!

F (x⃗)=UT x⃗
F−1(x⃗)=U x⃗

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

g=filter/kernel∈RN

x⃗∗gθ=F−1(F (x⃗)⊙F (gθ))=U U T x⃗⊙U T gθ=U diag (U T gθ)U
T x⃗

https://theaisummer.com/graph-convolutional-networks/

H : , j
(k)=σ(∑

i=0

f in

U Θi , j
k UT H : , i

(k−1)) j=1,2 , .. , f out

Θ=diag(UT gθ)
H (0)=X , H (k)∈R f out x N , H (k −1)∈Rf in x N

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

● So, we are apply the same kernel across the feature axis

H : , j
(k)=σ(∑

i=0

f in

U Θi , j
k UT H (k−1)) j=1,2 , .. , f out

Θ=diag(UT gθ)
H (0)=X , H (k)∈R f out x N , H (k −1)∈Rf in x N

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

● So, we are apply the same kernel across the feature axis

H : , j
(k)=σ(∑

i=0

f in

U Θi , j
k UT H : , i

(k−1)) j=1,2 , .. , f out

Θ=diag(UT gθ)
H (0)=X , H (k)∈R f out x N , H (k −1)∈Rf in x N

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

● So, we are apply the same kernel across the feature axis

H : , j
(k)=σ(∑

i=0

f in

U Θi , j
k UT H : , i

(k−1)) j=1,2 , .. , f out

Θ=diag(UT gθ)
H (0)=X , H (k)∈R f out x N , H (k −1)∈Rf in x N

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

● But:
● After every change to structure – train all over
● Convolution not local, a global sliding window
● Eigen-decomposition is O(n^3)
● Not practical, just a theory…..

● Chebyshev Spectral CNN (ChebNet):
● If Laplacian is sparse, can decompose it
● Use decomposition by Chebyshev polynomials instead of Eigen
● No need for O(n^3), but only approximately for O(n)
● Further layers are reduced even to O(1)

● Graph Convolution Network (GCN, 2018):

● Use even more approximation
● Same principle as computing first elements of Taylor series
● Adding up to K is exact value, compute only i=0, i=1
● First successful Spectral-based ConvGNN

● Both methods are still unusable for directed or changeable graphs

Θ=∑
i=0

K

θi T i(
~Λ)

~Λ=2Λ/λmax−I n

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

● Finally, the same approach as in standard ConvNN, by applying a sliding window
● Different number of neighbors per node is solved by Aggregation

h⃗v
(k)=f (W (k)T

x⃗v+ ∑
u∈N (v)

Θ(k)T

h⃗u
(k−1))

H v
(k)= f (X W (k)+ A H (k −1)Θ(k)T

)

h⃗v
(0)= 0⃗

f = activation function

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spatial-based approach
Neural Network for Graphs (NN4G)

● Efficient to compute
● Can be applied to directed graphs
● Can change a graph as long as nodes

are the same/shared

● Finally, the same approach as in standard ConvNN, by applying a sliding window
● Different number of neighbors per node is solved by Aggregation

h⃗v
(k)=f (W (k)T

x⃗v+ ∑
u∈N (v)

Θ(k)T

h⃗u
(k−1))

H v
(k)= f (X W (k)+ A H (k −1)Θ(k)T

)

h⃗v
(0)= 0⃗

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spatial-based approach
Neural Network for Graphs (NN4G)

● Finally, the same approach as in standard ConvNN, by applying a sliding window
● Different number of neighbors per node is solved by Aggregation
● Can also enhance – introduce Skip connection (ResNet)

h⃗v
(k)=f (W (k)T

x⃗v+∑
p=1

k

∑
u∈N (v)

Θ(p)T

h⃗u
(p−1))

H v
(k)= f (X W (k)+∑

p=1

k

A H (p−1)Θ(p)T

)

h⃗v
(0)= 0⃗

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spatial-based approach

https://www.pluralsight.com/guides/introduction-to-resnet

Neural Network for Graphs (NN4G)

● Generalizes all of preivous Spatial-based ConvGNNs (Not really, a lot of extensions afterward)
● Same mechanism as in RecGNNs, but implemented as Spatial Graph Convolution layer

● Particular implementations are then choosing the U_k and M_k
● Graph Attention Network (GAT)

h⃗v
(k)=U k (h⃗v

(k−1)+ ∑
u∈N (v)

M k (h⃗v
(k −1) , h⃗u

(k−1) , x⃗uv
e))

h⃗v
(0)= 0⃗

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spatial-based approach
Message Passing Neural Network (MPNN)

Convolution Graph Neural Network (ConvGNN), Spatial-based approach

GNNs: How to deal with non-Euclidean graphs?

But isn’t the MPNN ConvGNN the same as Gated RecGNN?

https://www.researchgate.net/figure/Difference-between-recurrent-Rec-GNN-and-convolution-Conv-GNN-
based-graph-neural_fig2_347681450

● Rec-GNN apply the same set of weights until a criterion is met, whereas Conv-GNNs apply
different weights at each iteration

● So, the index (k) means layers in ConvGNN, whereas in Gated RecGNN it is a time/iteration!

● Generalizes all of the Spatial-based ConvGNNs
● 1) Readout function to convert multiple node features into single vector for non-graph

output

● 2) Pooling function to reduce the number of nodes in a graph – convert to subgraph
● Convert feature matrices by matrix S

S function can either be a deterministic algorithm
or a trainable layer

GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spatial-based approach
Message Passing Neural Network (MPNN)

h⃗G=R (h⃗v
(K)∣v∈G)

S=S (A , X)
H pooled=ST H
Apooled=ST A S

Graph Neural Networks (GNNs):

Graph Autoencoders

● Previous approaches were targeting the node/edge/vector feature extraction from a graph
and used topology as a feature.

● But what about topology prediction/generation?
● Use latent space and AutoEncoders to do it!

GNNs: How to deal with non-Euclidean graphs?

But what about the topology inference?

● When the task is given as a generative one – e.g. to operate with something between given
training examples
● To create meaningful sentences from words
● To generate images that combine concepts from training samples

● Instead of trying to accomplish it with complex mapping input to output, we introduce:
● The latent space of embeddings

(remember vector embedding logic?)

GNNs: How to deal with non-Euclidean graphs?
Standard AutoEncoders in Deep Learning

https://www.researchgate.net/figure/Basic-architecture-of-a-single-layer-autoencoder-made-of-an-encoder-going-
from-the-input_fig3_333038461
https://medium.com/@krithiqkrish/from-words-to-vectors-decoding-the-intuition-behind-word-embedding-5a4f83fbf920

GNNs: How to deal with non-Euclidean graphs?
Apply AutoEncoders to Graph data

Add some noise for different output:
Z⃗out∼N (z⃗in , I)

+ train to denoise

Z⃗ in Z⃗ out

Deep Neural Network for Graph Representations (DNGR)
● Use simple FC linear layers
● Or maybe some Convolution

GNNs: How to deal with non-Euclidean graphs?
Apply AutoEncoders to Graph data

Structural Deep Network Embedding (SDNE) ● Stack multiple layers
● More complex latent space

https://medium.com/@evertongomede/unveiling-the-power-of-stacked-autoencoders-675de2ce4273

GNNs: How to deal with non-Euclidean graphs?

● Generalize the AutoEncoders
● What optimal loss function to use
● What type of noise to introduce
● Learn distribution too!

● Not only the noise

● Can generate new samples

Apply AutoEncoders to Graph data
Variational Autoencoders

https://medium.com/@rushikesh.shende/autoencoders-variational-autoencoders-vae-and-%CE%B2-vae-
ceba9998773d

GNNs: How to deal with non-Euclidean graphs?
Graph AutoEncoders (GAEs)
● But what if I want to combine features and topology?
● Let us start with the most successful feature extraction architecture, ConvGNNs
● Use AutoEncoders to it to combine features and topology

Z in=encoder (X , A)=Gconv (f (Gconv(A , X ;Θ1));Θ2)

~Au ,v=decoder (z⃗u , z⃗ v)=σ (z⃗u
T z⃗v)

1 latent vector per node! But compute all at once
with matrices

GNNs: How to deal with non-Euclidean graphs?
Graph Variational AutoEncoders (GVAs)
● But what if I want to combine features and topology?
● Let us start with the most successful feature extraction architecture, ConvGNNs
● Use Variational AutoEncoders to learn the distribution of features + topology

● Introduce the loss that compute the distribution-wise error, not only sample-wise
(Kullback-Leibler divergence)

● Other usages: Robustness
● Adversarially Regularized Variational Graph Autoencoder (ARVGA)

Use generator to try to train to distinguish between fake and real samples

P(Z)=Gaussian prior=∏ N (z⃗ i∣0 , I)

P(A∣Z)=Noise likelihood=∏ p(A ij∣Z)=σ (z⃗ i
T z⃗ j)

q (Z∣X , A)=Empirical learned distribution=∏ q(z i∣A , X)=N (z i∣mui ,σ i⋅I)

● Generate a graph sequentially
● Start by one node and perform
● Use a RecGNN to do it

● Classify as 0/1 output

● Alternatively:
● Variational GAE (GraphVAE)

GNNs: How to deal with non-Euclidean graphs?
But what about different size graph generation?
Deep Generative Model of Graphs (DeepGMG)

https://arxiv.org/pdf/1803.03324.pdf

Applications: What GNNS are good for?

Applications: What GNNS are good for?
Molecular mapping in chemistry
● Given a set of pair {(pAct1, pAct2)} graphs, we define a known chemical reaction/transition

from one molecule to another by a single change
● Such transformation improves some phys/chem properties, represented by some value

(For example effectiveness on target disease or activity in certain environment)
● Task – given some other molecule pActX, generate an improved molecule
● MMPA – previous approach, use all know

pairs to learn some general
transformation rules

● GNN approach – see this problem as
graph-to-graph mapping
● Analogy from machine translation:

Paraphrase of one sentence to a better one:
”buy sandwich cheese” ->
”I’d like to buy some sandwich with cheese”

Applications: What GNNS are good for?
Molecular mapping in chemistry

● Scaffold – a family of molecules share the same core structure
● Intuitive example:

A and G in DNA are from the same purine family

Applications: What GNNS are good for?
Molecular mapping in chemistry

Compute from vocabulary
 of known scaffolds

atom=node v→ f⃗ v=atom type, valence, etc..
edge uv→ f⃗ uv= interaction features...
scaffold node w→ f⃗ w=one-hot id in vocabulary

 2 Graphs input:
Atom-per-node graph scaffold multi-atom-node
 graph

● Run RecGNN on edge for T iterations only

● Run RecGNN with previous messages

ν⃗uv
(t)=g1(f⃗ u , f⃗ uv , ∑

w ∈N (u)/ v

⃗νwu
(t−1)) ν⃗uv

(0)=0⃗

x⃗u=g2(f⃗ u , ∑
w∈N (u)

ν⃗wu
(T)) ν⃗uv

(0)= 0⃗

● Use Graph Attention Network and Gated RecGNN
● Traverse the tree in DFS manner
● For every visit do a binary classification by GRU
● If 1 – split and expand node

● Use MPNN, Spatial-based ConvGNN
● Use Decoded Junction Tree feature vectors
● For every possible molecular graph compute its score by MPNN
● Output the probabilities of all possible molecular graphs

Applications: What GNNS are good for?
Molecular mapping in chemistry

Applications: What GNNS are good for?
Molecular mapping in chemistry

Additional materials used:

https://www.youtube.com/watch?v=2KRAOZIULzw

[A Comprehensive Survey on Graph Neural Networks]
 https://arxiv.org/pdf/1901.00596.pdf

Papers used:

https://dataroots.io/blog/a-gentle-introduction-to-geometric

[Geometric deep learning: going beyond Euclidean data]
 https://arxiv.org/pdf/1611.08097.pdf

[Deep recurrent graph neural networks]
 https://www.research.unipd.it/handle/11577/3366866

[Learning Multimodal Graph-to-Graph Translation for Molecular Optimization]
 https://openreview.net/pdf?id=B1xJAsA5F7

https://cw.fel.cvut.cz/b221/courses/b4m33dzo/start

[Understanding Pooling in Graph Neural Networks]
 https://arxiv.org/pdf/2110.05292.pdf

	B4M36SAN
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

