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All of the previous approaches are so-called Euclidean



  

Motivation: What is special about graphs?

All of the previous approaches and data are so-called Euclidean
● The data lies in some multidimensional linear vector space

 
● The distance between two points is a straight line and has a distance metric



  

Motivation: What is special about graphs?

But there are data representations that do not follow the Euclidean 
vector space representation 



  

Motivation: What is special about graphs?

The main concern here – the need for local distance preservation
● Manifold = local Euclidean distance relations
● But the global Euclidean distances aren’t fulfilled
● Problems: curse of dimensionality

● Too hard to learn such such complex shape
● Exponentially many examples 
● Many layers of standard linear FC layers

● Machine learning alternative approaches
● Try dimension reduction: 3D -> 2D
● Not all manifolds can be reduced to lower dimensions!



  

Motivation: What is special about graphs?

Exponentially complex shape

3D manifold geometrical structure



  

Motivation: What is special about graphs?

All of the previously learned Deep Learning concepts are not easily 
applicable to non-Euclidean data 

● Since we cannot efficiently represent the data 
in vector space without the loss of information

● We need to define some new operations to 
operate in this non-Euclidean space

● To put it shortly:
”We want to use the topology as input as well”

● This is the domain of Geometrical Deep Learning



  

Graph Neural Networks (GNNs):

 How to deal with non-Euclidean graphs? 



  

GNNs: How to deal with non-Euclidean graphs? 

First – we will define the framework for our upcoming 
● Graph G = (V, E)

● Can be directed or undirected

● Each node has its own features in form of 
    vector

● Each edge can have its own feature vector  

v∈V → x⃗v=(x1 , x2 ,.. , xn)

e=(v ,u)∈E→ ⃗xv ,u
e =( x1 , x2 ,.. , xk )



  

GNNs: How to deal with non-Euclidean graphs? 
Second – we define the type of tasks that we want to solve

https://www.datacamp.com/tutorial/comprehensive-introduction-graph-neural-networks-gnns-tutorial



  

Graph Neural Networks (GNNs): 

Recurrent GNN approach 



  

GNNs: How to deal with non-Euclidean graphs? 

h⃗v
(t )= ∑

u∈N( v)
f ( x⃗ v , ⃗xv , u

e , x⃗u , ⃗hu
(t−1 ))

General recurrent algorithm on Graphs (information diffusion/message passing)

● Regardless of number of neighbors aggregate (collect) their hidden states
● Run until equilibrium (convergence)
● F(.) satisfy conditions of contraction (convergence)

● Before Neural Networks (Label propagation): 
● Vector of classification probabilities per node
● Simple recurrent update algorithm

∀ v : h⃗v
(0)=randomly

f (t +1)=α S f ( t)+(1−α)Y
S=adjacency matrix

Y=initial states of nodes
α∈(0 , 1)

h⃗uv
(t )=f ( x⃗u , x⃗uv , ∑

w ∈N (u )/ v

⃗hwu
(t−1))       h⃗uv

(0)=0⃗ ( It can be applied to edge feature messages also )



  

GNNs: How to deal with non-Euclidean graphs? 

https://makeagif.com/gif/network-diffusion-9t0NVQ

Label propagation = recurrent information diffusion algorithm

General recurrent algorithm on Graphs (information diffusion/message 
passing)

https://medium.com/@mohammadsharique.cse/a-classical-graph-neural-network-gnn-graphs-tell-stories-
b80152a725d9



  

GNNs: How to deal with non-Euclidean graphs? 

Recurrent Graph Neural Network (RecGNN) from General recurrent algorithm

h⃗v
(t )= ∑

u∈N( v)
f ( x⃗ v , ⃗xv , u

e , x⃗u , ⃗hu
(t−1 ), W ) ∀ v : h⃗v

(0)=randomly

● Instead of probabilities = label output per node, use a feature vector
● Try to incorporate some weights and non-linearities in F(.) function: 

● W in our case is the weight matrix
● Sigmoid/tanh/Softmax can be applied as the activation/output functions
● Can have multiple weight matrices combined in layers
● Should have specific regularization and normalization terms to satisfy convergence

● Training:
1) Run the recurrent chain until convergence
2) Use back-propagation on final converged output to update W
3) Repeat



  

● Single layer instead of constants
● Can be generalized to multiple layers
● Weights are shared across 

      time iterations

GNNs: How to deal with non-Euclidean graphs? 

h⃗v
(t)=F (W 1

⃗hv
(t−1 )+ ∑

u∈N (v)
W 2

⃗hu
(t−1))

F=activation function=sigmoid / tanh / ReLU / .. .

https://dmol.pub/dl/gnn.html

Recurrent Graph Neural Network (RecGNN)



  

GNNs: How to deal with non-Euclidean graphs? 

Recurrent Graph Neural Network (RecGNN), Training process

https://blog.twitter.com/engineering/en_us/topics/insights/2022/graph-machine-learning-with-missing-node-features



  

GNNs: How to deal with non-Euclidean graphs? 

Recurrent Graph Neural Network (RecGNN), Training process

https://medium.com/stanford-cs224w/wikinet-an-experiment-in-recurrent-graph-neural-networks-3f149676fbf3



  

GNNs: How to deal with non-Euclidean graphs? 
Recurrent Graph Neural Network (RecGNN)

https://www.researchgate.net/figure/The-architecture-of-a-multi-layer-gated-recurrent-neural-network_fig5_330723201

● Gated RecGNN – instead of convergence just do a fixed number of different linear layers
● More parameters, more memory and computation requirement
● Less time to run, no need for global convergence guarantees/constraints

h⃗v
(t )=GRU ( ⃗hu

(t−1) , ∑
u∈N (v)

W ⃗hu
(t−1))



  

GNNs: How to deal with non-Euclidean graphs? 
Recurrent Graph Neural Network (RecGNN)

● Gated RecGNN – instead of convergence just do a fixed number of different linear layers

h⃗v
(t )=GRU ( ⃗hu

(t−1) , ∑
u∈N (v)

W ⃗hu
(t−1))

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21



  

Graph Neural Networks (GNNs): 

Convolution GNNs 



  

GNNs: How to deal with non-Euclidean graphs? 

X∗gθ
l =Y     y ij=σ(∑

m

b

∑
n

d

wmn
l x i+m, j+n+b ij

l )

Convolution Neural Network (CNN) on image data (Spatial-based)

● Locality, Shift invariance, highly reduce parameter count
● Need to generalize this approach to graphs

● Since graphs have different number of neighbors
● There exists two approaches to it:

1) Spectral-based Convolution Neural Networks

2) Spatial-based Convolution Neural Networks 

https://www.analyticssteps.com/blogs/convolutional-neural-network-cnn-graphical-visualization-code-explanation



  

GNNs: How to deal with non-Euclidean graphs? 

( f∗g)(s ,t )=∫
−∞

∞

∫
−∞

∞

f (s ,t )g (s−x , t− y)dxdy     ∈O(|f||g|)

Convolution on signal analysis (Spectral-based)

1) First convert to Frequency Space
Fourier Transform (FT)

2) Do simple element-wise multiplication

3) Convert back to image space

F−1 F ( f ∗g )=F−1(F ( f )⊙F ( f ))∈O(|f ||log f|)



  

GNNs: How to deal with non-Euclidean graphs? 

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

https://www.researchgate.net/figure/Example-of-degree-adjacency-and-Laplacian-matrices-for-an-undirected-
graph_fig3_362345733

L=I n−D−1/2 A D−1 /2

D=Degree matrix
A=Adjacency matrix

I n=Identity matrix
● Assume undirected graphs only
● L = real, symmetric, semi-definite

(all eigenvalues are >= 0)
● Has a property of Eigen decomposition

● Diagonalization in orthonormal space



  

GNNs: How to deal with non-Euclidean graphs? 

Convolution Graph Neural Network (ConvGNN), Spectral-based approach
L=U ΛUT

U=orthonormal matrix
Λ=Diagonal matrix, λi≥0

● This orthonormal space is exactly the Spectral Space! 

F ( x⃗)=UT x⃗
F−1( x⃗ )=U x⃗



  

GNNs: How to deal with non-Euclidean graphs? 

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

g=filter/kernel∈RN

x⃗∗gθ=F−1(F ( x⃗ )⊙F (gθ))=U U T x⃗⊙U T gθ=U diag (U T gθ)U
T x⃗

https://theaisummer.com/graph-convolutional-networks/



  

H : , j
(k)=σ(∑

i=0

f in

U Θi , j
k UT H : , i

(k−1))    j=1,2 , .. , f out

Θ=diag(UT gθ)
H (0 )=X ,    H (k)∈R f out x N ,    H (k −1 )∈Rf in x N

GNNs: How to deal with non-Euclidean graphs? 

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

● So, we are apply the same kernel across the feature axis 



  

H : , j
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GNNs: How to deal with non-Euclidean graphs? 

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

● So, we are apply the same kernel across the feature axis 



  

H : , j
(k)=σ(∑

i=0

f in

U Θi , j
k UT H : , i

(k−1))    j=1,2 , .. , f out

Θ=diag(UT gθ)
H (0 )=X ,    H (k)∈R f out x N ,    H (k −1 )∈Rf in x N

GNNs: How to deal with non-Euclidean graphs? 

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

● So, we are apply the same kernel across the feature axis 



  

H : , j
(k)=σ(∑

i=0

f in

U Θi , j
k UT H : , i

(k−1))    j=1,2 , .. , f out

Θ=diag(UT gθ)
H (0 )=X ,    H (k)∈R f out x N ,    H (k −1 )∈Rf in x N

GNNs: How to deal with non-Euclidean graphs? 

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

● But:
● After every change to structure – train all over
● Convolution not local, a global sliding window
● Eigen-decomposition is O(n^3)
● Not practical, just a theory…..



  

● Chebyshev Spectral CNN (ChebNet): 
● If Laplacian is sparse, can decompose it
● Use decomposition by Chebyshev polynomials instead of Eigen
● No need for O(n^3), but only approximately for O(n)
● Further layers are reduced even to O(1)

 
● Graph Convolution Network (GCN, 2018):

● Use even more approximation 
● Same principle as computing first elements of Taylor series
● Adding up to K is exact value, compute only i=0, i=1 
● First successful Spectral-based ConvGNN

● Both methods are still unusable for directed or changeable graphs
 

Θ=∑
i=0

K

θi T i(
~Λ)

~Λ=2Λ/λmax−I n

GNNs: How to deal with non-Euclidean graphs? 

Convolution Graph Neural Network (ConvGNN), Spectral-based approach



  

● Finally, the same approach as in standard ConvNN, by applying a sliding window
● Different number of neighbors per node is solved by Aggregation

h⃗v
(k)=f (W (k)T

x⃗v+ ∑
u∈N (v)

Θ(k)T

h⃗u
(k−1))

H v
(k )= f ( X W (k)+ A H (k −1)Θ(k )T

)

h⃗v
(0 )= 0⃗

f = activation function

GNNs: How to deal with non-Euclidean graphs? 

Convolution Graph Neural Network (ConvGNN), Spatial-based approach
Neural Network for Graphs (NN4G)

● Efficient to compute
● Can be applied to directed graphs
● Can change a graph as long as nodes

are the same/shared



  

● Finally, the same approach as in standard ConvNN, by applying a sliding window
● Different number of neighbors per node is solved by Aggregation

h⃗v
(k)=f (W (k)T

x⃗v+ ∑
u∈N (v)

Θ(k)T

h⃗u
(k−1))

H v
(k )= f ( X W (k)+ A H (k −1)Θ(k )T

)

h⃗v
(0 )= 0⃗

GNNs: How to deal with non-Euclidean graphs? 

Convolution Graph Neural Network (ConvGNN), Spatial-based approach
Neural Network for Graphs (NN4G)



  

● Finally, the same approach as in standard ConvNN, by applying a sliding window
● Different number of neighbors per node is solved by Aggregation
● Can also enhance – introduce Skip connection (ResNet)

h⃗v
(k)=f (W (k)T

x⃗v+∑
p=1

k

∑
u∈N (v)

Θ(p )T

h⃗u
( p−1 ))

H v
(k )= f ( X W (k)+∑

p=1

k

A H ( p−1)Θ(p )T

)

h⃗v
(0 )= 0⃗

GNNs: How to deal with non-Euclidean graphs? 

Convolution Graph Neural Network (ConvGNN), Spatial-based approach

https://www.pluralsight.com/guides/introduction-to-resnet

Neural Network for Graphs (NN4G)



  

● Generalizes all of preivous Spatial-based ConvGNNs (Not really, a lot of extensions afterward)
● Same mechanism as in RecGNNs, but implemented as Spatial Graph Convolution layer

● Particular implementations are then choosing the U_k and M_k
● Graph Attention Network (GAT) 

h⃗v
(k)=U k (h⃗v

(k−1)+ ∑
u∈N ( v)

M k ( h⃗v
(k −1) , h⃗u

(k−1 ) , x⃗uv
e ))

h⃗v
(0 )= 0⃗

GNNs: How to deal with non-Euclidean graphs? 

Convolution Graph Neural Network (ConvGNN), Spatial-based approach
Message Passing Neural Network (MPNN) 



  

Convolution Graph Neural Network (ConvGNN), Spatial-based approach

GNNs: How to deal with non-Euclidean graphs? 

But isn’t the MPNN ConvGNN the same as Gated RecGNN?

https://www.researchgate.net/figure/Difference-between-recurrent-Rec-GNN-and-convolution-Conv-GNN-
based-graph-neural_fig2_347681450

● Rec-GNN apply the same set of weights until a criterion is met, whereas Conv-GNNs apply 
different weights at each iteration

● So, the index (k) means layers in ConvGNN, whereas in Gated RecGNN it is a time/iteration!



  



  

● Generalizes all of the Spatial-based ConvGNNs
● 1) Readout function to convert multiple node features into single vector for non-graph 

output

● 2) Pooling function to reduce the number of nodes in a graph – convert to subgraph
● Convert feature matrices by matrix S

S function can either be a deterministic algorithm
or a trainable layer

GNNs: How to deal with non-Euclidean graphs? 

Convolution Graph Neural Network (ConvGNN), Spatial-based approach
Message Passing Neural Network (MPNN) 

h⃗G=R (h⃗v
(K )∣v∈G)

S=S ( A , X )
H pooled=ST H
Apooled=ST A S



  



  

Graph Neural Networks (GNNs): 

Graph Autoencoders 



  

● Previous approaches were targeting the node/edge/vector feature extraction from a graph 
and used topology as a feature. 

● But what about topology prediction/generation?
● Use latent space and AutoEncoders to do it!  

GNNs: How to deal with non-Euclidean graphs? 

But what about the topology inference?



  

● When the task is given as a generative one – e.g. to operate with something between given 
training examples 
● To create meaningful sentences from words
● To generate images that combine concepts from training samples

● Instead of trying to accomplish it with complex mapping input to output, we introduce:
● The latent space of embeddings 

(remember vector embedding logic?)

GNNs: How to deal with non-Euclidean graphs? 
Standard AutoEncoders in Deep Learning

https://www.researchgate.net/figure/Basic-architecture-of-a-single-layer-autoencoder-made-of-an-encoder-going-
from-the-input_fig3_333038461
https://medium.com/@krithiqkrish/from-words-to-vectors-decoding-the-intuition-behind-word-embedding-5a4f83fbf920



  

GNNs: How to deal with non-Euclidean graphs? 
Apply AutoEncoders to Graph data

Add some noise for different output:
Z⃗out∼N ( z⃗in , I )

+ train to denoise

Z⃗ in Z⃗ out

Deep Neural Network for Graph Representations (DNGR)
● Use simple FC linear layers
● Or maybe some Convolution



  

GNNs: How to deal with non-Euclidean graphs? 
Apply AutoEncoders to Graph data

Structural Deep Network Embedding (SDNE) ● Stack multiple layers
● More complex latent space

https://medium.com/@evertongomede/unveiling-the-power-of-stacked-autoencoders-675de2ce4273



  

GNNs: How to deal with non-Euclidean graphs? 

● Generalize the AutoEncoders
● What optimal loss function to use
● What type of noise to introduce
● Learn distribution too!

● Not only the noise

● Can generate new samples

Apply AutoEncoders to Graph data
Variational Autoencoders

https://medium.com/@rushikesh.shende/autoencoders-variational-autoencoders-vae-and-%CE%B2-vae-
ceba9998773d



  

GNNs: How to deal with non-Euclidean graphs? 
Graph AutoEncoders (GAEs)
● But what if I want to combine features and topology?
● Let us start with the most successful feature extraction architecture, ConvGNNs
● Use AutoEncoders to it to combine features and topology

Z in=encoder ( X , A)=Gconv (f (Gconv( A , X ;Θ1));Θ2)

~Au ,v=decoder ( z⃗u , z⃗ v)=σ ( z⃗u
T z⃗v )

1 latent vector per node! But compute all at once 
with matrices



  

GNNs: How to deal with non-Euclidean graphs? 
Graph Variational AutoEncoders (GVAs)
● But what if I want to combine features and topology?
● Let us start with the most successful feature extraction architecture, ConvGNNs
● Use Variational AutoEncoders to learn the distribution of features + topology

● Introduce the loss that compute the distribution-wise error, not only sample-wise
(Kullback-Leibler divergence)

● Other usages: Robustness
● Adversarially Regularized Variational Graph Autoencoder (ARVGA)

Use generator to try to train to distinguish between fake and real samples    

P(Z )=Gaussian prior=∏ N ( z⃗ i∣0 , I )

P( A∣Z )=Noise likelihood=∏ p( A ij∣Z)=σ ( z⃗ i
T z⃗ j)

q (Z∣X , A)=Empirical learned distribution=∏ q(z i∣A , X )=N (z i∣mui ,σ i⋅I )



  

● Generate a graph sequentially
● Start by one node and perform
● Use a RecGNN to do it

● Classify as 0/1 output

● Alternatively:
● Variational GAE (GraphVAE)

GNNs: How to deal with non-Euclidean graphs? 
But what about different size graph generation?
Deep Generative Model of Graphs (DeepGMG)

https://arxiv.org/pdf/1803.03324.pdf



  

Applications: What GNNS are good for?



  

Applications: What GNNS are good for?
Molecular mapping in chemistry
● Given a set of pair {(pAct1, pAct2)} graphs, we define a known chemical reaction/transition 

from one molecule to another by a single change
● Such transformation improves some phys/chem properties, represented by some value

(For example effectiveness on target disease or activity in certain environment)
● Task – given some other molecule pActX, generate an improved molecule
● MMPA – previous approach, use all know 

pairs to learn some general
transformation rules

● GNN approach – see this problem as 
graph-to-graph mapping
● Analogy from machine translation:

Paraphrase of one sentence to a better one:
”buy sandwich cheese” -> 
”I’d like to buy some sandwich with cheese”



  

Applications: What GNNS are good for?
Molecular mapping in chemistry

● Scaffold – a family of molecules share the same core structure
● Intuitive example: 

A and G in DNA are from the same purine family



  

Applications: What GNNS are good for?
Molecular mapping in chemistry

Compute from vocabulary 
     of known scaffolds

atom=node v→ f⃗ v=atom type, valence, etc..
edge uv→ f⃗ uv= interaction features...
scaffold node w→ f⃗ w=one-hot id in vocabulary

                    2 Graphs input:
Atom-per-node graph          scaffold multi-atom-node    
                                                       graph

● Run RecGNN on edge for T iterations only

● Run RecGNN with previous messages 

ν⃗uv
( t)=g1( f⃗ u , f⃗ uv , ∑

w ∈N (u )/ v

⃗νwu
(t−1))       ν⃗uv

(0)=0⃗

x⃗u=g2( f⃗ u , ∑
w∈N (u)

ν⃗wu
(T ))       ν⃗uv

(0 )= 0⃗



  

● Use Graph Attention Network and Gated RecGNN
● Traverse the tree in DFS manner
● For every visit do a binary classification by GRU
● If 1 – split and expand node 

● Use MPNN, Spatial-based ConvGNN
● Use Decoded Junction Tree feature vectors
● For every possible molecular graph compute its score by MPNN
● Output the probabilities of all possible molecular graphs

Applications: What GNNS are good for?
Molecular mapping in chemistry



  

Applications: What GNNS are good for?
Molecular mapping in chemistry



  

Additional materials used:

https://www.youtube.com/watch?v=2KRAOZIULzw

[A Comprehensive Survey on Graph Neural Networks]                           
    https://arxiv.org/pdf/1901.00596.pdf

Papers used:

https://dataroots.io/blog/a-gentle-introduction-to-geometric

[Geometric deep learning: going beyond Euclidean data] 
             https://arxiv.org/pdf/1611.08097.pdf

[Deep recurrent graph neural networks] 
    https://www.research.unipd.it/handle/11577/3366866

[Learning Multimodal Graph-to-Graph Translation for Molecular Optimization]                                      
                             https://openreview.net/pdf?id=B1xJAsA5F7

https://cw.fel.cvut.cz/b221/courses/b4m33dzo/start

[Understanding Pooling in Graph Neural Networks] 
    https://arxiv.org/pdf/2110.05292.pdf
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