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* What is a Geometrical Deep Learning
* Types of GNNS, their architecture

* Application of GNN on molecular data



Motivation: What is special about graphs?
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Figure 1: The Transformer - model architecture.



All of the previous approaches are so-called Euclidean

WHAT DOES NON EUCLIDEAN GEOMETRY MEAN??
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Motivation: What is special about graphs?

All of the previous approaches and data are so-called Euclidean

 The data lies in some multidimensional linear vector space

 The distance between two points is a straight line and has a distance metric

Flattening

Pooled Feature Map
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Motivation: What is special about graphs?

But there are data representations that do not follow the Euclidean
vector space representation

Bacteria Archaea Eucarya

Hyperbolic Euclidean

Networks Manifolds

Elliptic



Motivation: What is special about graphs?

The main concern here - the need for local distance preservation
* Manifold = local Euclidean distance relations
» But the global Euclidean distances aren’t fulfilled
* Problems: curse of dimensionality
* Too hard to learn such such complex shape

* Exponentially many examples
* Many layers of standard linear FC layers

* Machine learning alternative approaches
e Try dimension reduction: 3D -> 2D
* Not all manifolds can be reduced to lower dimensions!




Motivation: What is special about graphs?
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Motivation: What is special about graphs?

All of the previously learned Deep Learning concepts are not easily
applicable to non-Euclidean data

» Since we cannot efficiently represent the data

- = in vector space without the loss of information
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w * To put it shortly:
"We want to use the topology as input as well”
5 ” * This is the domain of Geometrical Deep Learning
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Graph Neural Networks (GNNs):

How to deal with non-Euclidean graphs?



GNNs: How to deal with non-Euclidean graphs?

First - we will define the framework for our upcoming

e GraphG=(V,E)
e Can be directed or undirected

e Each node has its own features in form of
vector > _
VEV_)XV_<X1’X2:")XH>
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GNNs: How to deal with non-Euclidean graphs?
Second - we define the type of tasks that we want to solve

https://www.datacamp.com/tutorial/comprehensive-introduction-graph-neural-networks-gnns-tutorial



Graph Neural Networks (GNNs):

Recurrent GNN approach



GNNs: How to deal with non-Euclidean graphs?

General recurrent algorithm on Graphs (information diffusion/message passing)

-

— —> t—1 _>0
Z f Xv:Xv X by ) Y v:h'” =randomly
uEN(v
hg,ﬁ,) Xyy s Z h ) h,(lv) 26 (It can be applied to edge feature messages also )

WEN

» Regardless of number of neighbors aggregate (collect) their hidden states

* Run until equilibrium (convergence)

* F(.) satisfy conditions of contraction (convergence)

- Before Neural Networks (Label propagation): f (t T 1) =as f ( t)+< 1- O{)Y

S =adjacency matrix
» Vector of classification probabilities per node . el
« Simple recurrent update algorithm Y =initial states of nodes

ac(0,1)



GNNs: How to deal with non-Euclidean graphs?

General recurrent algorithm on Graphs (information diffusion/message
passing)

Label propagation = recurrent information diffusion algorithm

@ @
@

https://medium.com/@mohammadsharique.cse/a-classical-graph-neural-network-gnn-graphs-tell-stories-
b80152a725d9

https://makeagif.com/gif/network-diffusion-9



GNNs: How to deal with non-Euclidean graphs?

Recurrent Graph Neural Network (RecGNN) from General recurrent algorithm

-

= 2 f u,iu,hit_l),w) Y v:h'” =randomly

uEN

» Instead of probabilities = label output per node, use a feature vector
» Try to incorporate some weights and non-linearities in F(.) function:

W in our case is the weight matrix

Sigmoid/tanh/Softmax can be applied as the activation/output functions

Can have multiple weight matrices combined in layers

Should have specific regularization and normalization terms to satisfy convergence

* Training:
1) Run the recurrent chain until convergence
2) Use back-propagation on final converged output to update W

3) Repeat



GNNs: How to deal with non-Euclidean graphs?
Recurrent Graph Neural Network (RecGNN)

-

h)=F(w,h""+ > W,h")
UEN(v)
F =activation function =sigmoid/tanh/ReLU/ ...

« Single layer instead of constants e e T ou
neighbors
« Can be generalized to multiple layers oo .
"8 |
* Weights are shared across Lo o9y oo
time iterations . = . | :
E |
p-09 =
H

https://dmol.pub/dl/gnn.html



GNNs: How to deal with non-Euclidean graphs?

Recurrent Graph Neural Network (RecGNN), Training process

Step O
0
q@
0 / \0/25

https://blog.twitter.com/engineering/en_us/topics/insights/2022/graph-machine-learning-with-missing-node-features



GNNs: How to deal with non-Euclidean graphs?

Recurrent Graph Neural Network (RecGNN), Training process
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https://medium.com/stanford-cs224w/wikinet-an-experiment-in-recurrent-graph-neural-networks-3f149676fbf3



GNNs: How to deal with non-Euclidean graphs?
Recurrent Graph Neural Network (RecGNN)

h=GRU (h Z W )

uEN

« Gated RecGNN - mstead of convergence just do a fixed number of different linear layers

 More parameters, more memory and computation requirement

* Less time to run, no need for global convergence guarantees/constraints
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GNNs: How to deal with non-Euclidean graphs?
Recurrent Graph Neural Network (RecGNN)

h=GRU (h Z W )
uEN
« Gated RecGNN - mstead of convergence just do a fixed number of different linear layers

RN

02

0.5

https://towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21



Graph Neural Networks (GNNs):

Convolution GNNs



GNNs: How to deal with non-Euclidean graphs?

Convolution Neural Network (CNN) on image data (Spatial-based)

b d
X*QIQZY yij:O(Z Z Wzlnnxi+m,j+n+b§j>

m

» Locality, Shift invariance, highly reduce parameter count
 Need to generalize this approach to graphs
* Since graphs have different number of neighbors

» There exists two approaches to it:

1) Spectral-based Convolution Neural Networks

2) Spatial-based Convolution Neural Networks

https://www.analyticssteps.com/blogs/convolutional-neural-network-cnn-graphical-visualization-code-explanation



GNNs: How to deal with non-Euclidean graphs?
Convolution on S|gnal analysis (Spectral-based)

(fxg)(s,t)= ffst s—x,t—y)dxdy €O(|fllgl)

1) First convert to Frequency Space

e o pE(fxg)=F ' (F(f)oF (f))<0(f log f])

2) Do simple element-wise multiplication

W

3) Convert back to image space

\J

X —»




GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

Labeled graph Degree matrix _1/2 _1/2
10 0 0 0 0] L=1 —-D ""AD
0 3 0 0 0 0 _ .
W D=Degree matrix
(5 0 0 2 0 0 0 . )
© N 0 0 0 3 0 0 A= Adjacency matrix
O—© ¢ 0oeBs 0 I = Identity matrix
0 0 0 0 0 2 _
Adjacency matrix Laplacian matrix * Assume undirected graphs only
00000 : e ? 0 0 * L = real, symmetric, semi-definite
1 01 0 10 =k ¥ =1 0 =1 0 (all eigenvalues are >= 0)
01 0 1 0 0 0 -1 2 -1 0 0
00 1 0 1 1 6 =y 4 =i = . Has_a property of I_Eigen decomposition
» Diagonalization in orthonormal space
01 0 1 0 1 0 =1 0 =1 3 -l
0 0 0 1 1 0] 0o 0 o0 -1 -1 2

https://www.researchgate.net/figure/Example-of-degree-adjacency-and-Laplacian-matrices-for-an-undirected-
graph_fig3_ 362345733



GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

Labeled graph Degree matrix
(1 0 0 0 0
o o 0O 3 0 0 0
0 0 2 0 0
‘ 0 0 0 3 0
e o 0 0 0 0 3
(0 0 0 0 0
Adjacency matrix Laplacian matrix
001 0 0 0 0] 1 -1 0
1 01 0 1 0 -1 3 -1
01 0 1 0 0 0 -1 2 -1
00 1 0 1 1 0 0 -1
o 1 0 1 0 1 0 -1 0 -1
0 0 0 1 1 O] L 0 0 0 -1

0
-1
0
-1

o o O o o
1 J

L=UAU"
U =orthonormal matrix
A =Diagonal matrix, A,>0

* This orthonormal space is exactly the Spectral Space!
—> T —
F(x)=U"%
—1/-> -
F(x)=UX



GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

Structure = Graph Signal
Adjacency matrix (feature matrix)
A BN X e R™
- 1 0 1 0 node's feature vector
0 ) 0 0
: ” . : -
0 i] 1 1 -

g =filter/kernel € R"
xxg,=F (F(X)oF(g,))=UU %0U g,=Udiag(U" g,)U" X

https://theaisummer.com/graph-convolutional-networks/



GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach
fin
(k) _ k T y7(k—1) .
H:,j_a(z U@i,jU H. ) J=12, ., f o
i=0

o
)

®=diag(U" g,)

H(O): X , H<k>€ RfoutXN, H(k_l)e RmeN |
Graph Signal

« So, we are apply the same kernel across the feature axis (feature matrix)
X R

node's feature vector




GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

out

fin
HY=o(> ue! u"H"") j=1.2,..f
=0

O=diag(U" g,)

H(O): X , H(k)e RfoutXN, H(k—l)e RmeN |
Graph Signal

« So, we are apply the same kernel across the feature axis (feature matrix)
X R

node's feature vector




GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach
fin
(k) _ k T y7(k—1) .
H:,j_a(z U@i,jU H. ) J=12, ., f o
i=0

o
)

®=diag(U" g,)

H(O): X , H<k>€ RfoutXN, H(k_l)e RmeN |
Graph Signal

« So, we are apply the same kernel across the feature axis (feature matrix)
Xl B

node's feature vector




GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach
fin

Hlj=o(3 U6 U'H") j=12,..f,,
i=0

o
)

©=diag(U" g,)
H(O):X, H(k>€RfoutXN, H(k—l)ERmeN |
Graph Signal
. But: (feature matrix)
Xl B

» After every change to structure - train all over

« Convolution not local, a global sliding window nodds feature. veetor

» Eigen-decomposition is O(n"3) :

* Not practical, just a theory.....




GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spectral-based approach

« Chebyshev Spectral CNN (ChebNet):
« If Laplacian is sparse, can decompose it
» Use decomposition by Chebyshev polynomials instead of Eigen

* No need for O(n”™3), but only approximately for O(n)
* Further layers are reduced even to O(1) K -
0= 6T ,(A)
i=0
- Graph Convolution Network (GCN, 2018): N — .
A=2AIA,,.—1,
* Use even more approximation
 Same principle as computing first elements of Taylor series
« Adding up to K is exact value, compute only i=0, i=1

» First successful Spectral-based ConvGNN

» Both methods are still unusable for directed or changeable graphs



GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spatial-based approach
Neural Network for Graphs (NN4G)

* Finally, the same approach as in standard ConvNN, by applying a sliding window
» Different number of neighbors per node is solved by Aggregation

Tk) W) T_» k « Efficient to compute

. 1)

hv — f( X T Z @ ) « Can be applied to directed graphs
uEN

 Can change a graph as long as nodes

H(k):f(X W( >+AH<k ) @(k> ) are the same/shared

-

h'=0

\%

f = activation function



GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spatial-based approach
Neural Network for Graphs (NN4G)

* Finally, the same approach as in standard ConvNN, by applying a sliding window
» Different number of neighbors per node is solved by Aggreggtion

w3 o)

UEN (v)

H(k):f(XW(k/+AH\'\ ) @\"}m)

-

h"'=0

1%




GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spatial-based approach

Neural Network for Graphs (NN4G)

* Finally, the same approach as in standard ConvNN, by applying a sliding window
» Different number of neighbors per node is solved by Aggregation
« Can also enhance - introduce Skip connection (ResNet)

hY=f(w" X +Z Z e hlr~1)
p= 1u€N
H(vk) f( X W + Z A H p 1) ®( p)T Without Skip Connection
- p:1 Q 1+1
h'=0 5

https://www.pluralsight.com/guides/introduction-to-resnet

Linear= RelU

Linear— RelU

Main path

00
P

With Skip Connection

) . Shortcut/Skipped

H[[].":‘ 8 a[1+1] 8 a[Hz]
@ O

- Shortcut added before non-linearity (ReLU) to the main path
- Stack these Residual blocks to form much deeper neural network



GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spatial-based approach
Message Passing Neural Network (MPNN)

» Generalizes all of preivous Spatial-based ConvGNNs (Not really, a lot of extensions afterward)

« Same mechanism as in RecGNNSs, but implemented as Spatial Graph Convolution layer

-

(k) _ k 1) k 1) 7.(k—1) —e .
h Uk + Z Mk 3hu )Xuv)) (-)h,,g
UEN ( “131{
(0)_ 0 h,,
hV — O atl/)’ (5+&14
« Particular implementations are then choosing the U k and M_k C)h hw()
- Graph Attention Network (GAT) . y<§ h,,
12 ® 2 &
‘ : — B )
W) =o( 3 ol WHn{Y) -

(b) GAT [43] implicitly captures
the weight a;; via an end-to-end

k T k kE—1 ) kE—1 neural network architecture, so
( ) — = S Of?f'nlflﬂf (g (a [W( ) hgj ) ‘ ‘W( ) hg,t )) ) that more important nodes receive

TJTL :
larger weights.

weN (v)Uv



GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spatial-based approach

But isn't the MPNN ConvGNN the same as Gated RecGNN?

Rec-GNN Cony-GNN

W,=W,=W,=w w,'=w, I=w,
y, = fiw) Y. =fiw)
f=relu

Drug Discovery Today: Technologies

* Rec-GNN apply the same set of weights until a criterion is met, whereas Conv-GNNs apply
different weights at each iteration

* So, the index (k) means layers in ConvGNN, whereas in Gated RecGNN it is a time/iteration!

https://www.researchgate.net/figure/Difference-between-recurrent-Rec-GNN-and-convolution-Conv-GNN-
based-graph-neural _fig2 347681450



Gconv Gconv

Graph A o
—) LA, A Outputs
| : RelLu AN RelLu >
- [T =T ] el ™
X

(a) A ConvGNN with multiple graph convolutional layers. A graph convo-
lutional layer encapsulates each node’s hidden representation by aggregating
feature information from its neighbors. After feature aggregation, a non-linear
transformation 1s applied to the resulted outputs. By stacking multiple layers,
the final hidden representation of each node receives messages from a further
neighborhood.



GNNs: How to deal with non-Euclidean graphs?

Convolution Graph Neural Network (ConvGNN), Spatial-based approach
Message Passing Neural Network (MPNN)

» Generalizes all of the Spatial-based ConvGNNs

1) Readout function to convert multiple node features into single vector for non-graph

output N
h.=R(h'"|veG)

» 2) Pooling function to reduce the number of nodes in a graph - convert to subgraph

« Convert feature matrices by matrix S S=S (A ’ X)
S function can either be a deterministic algorithm T
or a trainable layer Hpooled =S H

Apooled — ST A S



Gconv Gconv

Pooling u' Readout MLP

Softmax

-
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= T > - |= X |-
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(b) A ConvGNN with pooling and readout layers for graph classification
[21]. A graph convolutional layer i1s followed by a pooling layer to coarsen
a graph into sub-graphs so that node representations on coarsened graphs
represent higher graph-level representations. A readout layer summarizes the
final graph representation by taking the sum/mean of hidden representations
of sub-graphs.



Graph Neural Networks (GNNs):

Graph Autoencoders



GNNs: How to deal with non-Euclidean graphs?

But what about the topology inference?

* Previous approaches were targeting the node/edge/vector feature extraction from a graph
and used topology as a feature.

« But what about topology prediction/generation?

» Use latent space and AutoEncoders to do it!




GNNs: How to deal with non-Euclidean graphs?

Standard AutoEncoders in Deep Learning

« When the task is given as a generative one - e.g. to operate with something between given
training examples
* To create meaningful sentences from words
» To generate images that combine concepts from training samples

» |nstead of trying to accomplish it with complex mapping input to output, we introduce:

« The latent space of embeddings ‘ Encoder Decoder '
(remember vector embedding logic? BEEIBEEER
A
& N0~ ®
=5 L) I OUTPUT :
“e.. voman INPUT . ‘A’é )“' ,. Reconstructed
& O "}‘Q‘ \%‘_ input
king 11“‘=L. . ' /‘
gueen

Compressed
data

Q4
\

X

/l_-_-_-_-___-_'_'_'_‘—‘—')*
https://www.researchgate.net/figure/Basic-architecture-of-a-single-layer-autoencoder-made-of-an-encoder-going-

from-the-input_fig3 333038461
https://medium.com/@krithigkrish/from-words-to-vectors-decoding-the-intuition-behind-word-embedding-5a4f83fbf920




GNNs: How to deal with non-Euclidean graphs?
Apply AutoEncoders to Graph data

Deep Neural Network for Graph Representations (DNGR)

Labeled graph

Adjacency matrix
1 0 0 0

r 1
o o o o = O

0 0
1 1
0 0
1 1
0 1

(=R — T I =R
— D b D e

o = = o O O
L I

INPUT

&

&
o

®

Z in Z out
Encoder Decoder '
\ Bottfene_ck /
o OIS —0
Comdzrteas#ed \ '

* Use simple FC linear layers

 Or maybe some Convolution

OUTPUT :
Reconstructed
input

Add some noise for different output:

Zow~N(z

+ train to denoise

-

in»

I)



GNNs: How to deal with non-Euclidean graphs?
Apply AutoEncoders to Graph data

Structural Deep Network Embedding (SDNE) * Stack multiple layers

Labeled graph

LN

Adjacency matrix
1 0 0 0

0 0
1 1
0 0
1 1
0 |

o O = O
T e D

o = = o O O
L J

Input layer

 More complex latent space

Encoded

Layer2
Layer1 Layer2 Layer Layerl 4 Decoded

Output layer

https://medium.com/@evertongomede/unveiling-the-power-of-stacked-autoencoders-675de2ce4273



GNNs: How to deal with non-Euclidean graphs?
Apply AutoEncoders to Graph data

Variational Autoencoders

* Generalize the AutoEncoders Input Image Reconstructed Image
« What optimal loss function to use
Encoder Decoder
: : Latent Spac

- What type of noise to introduce _..|}Ix % ——
° [ [ [ I o

Learn distribution too! MEEN S >0z > pxlm) > @

* Not only the noise _*E'x }\

« Can generate new samples Standard Devaition

T Reconstruction Loss 4+ KL Divergence

https://medium.com/@rushikesh.shende/autoencoders-variational-autoencoders-vae-and-%CE%B2-vae-
ceba9998773d



GNNs: How to deal with non-Euclidean graphs?
Graph AutoEncoders (GAEs)

« But what if | want to combine features and topology?
e Let us start with the most successful feature extraction architecture, ConvGNNs

» Use AutoEncoders to it to combine features and topology

Zin:enCOder(X:A):Gconv (f (GconV(A:X,.(h)l)); ®2)

1 [atent vector per node! But compute all at once

® with matrices
B o o
—»A —»A _bT -
A, ,=decoder (Z,,Z,)=0lz, Z,)

~y



GNNs: How to deal with non-Euclidean graphs?
Graph Variational AutoEncoders (GVAs)

« But what if | want to combine features and topology?
» Let us start with the most successful feature extraction architecture, ConvGNNs
« Use Variational AutoEncoders to learn the distribution of features + topology

* Introduce the loss that compute the distribution-wise error, not only sample-wise
(Kullback-Leibler divergence)

P(Z)=Gaussian prior=] | N(Z]0,I)
P(A|Z)=Noise likelihood=] | p(A,Z)= 0(21 Z)
q(Z|X ,A)=Empirical learned distribution:Hq (z]A,X)=N(z|mu,, oI

* Other usages: Robustness
 Adversarially Regularized Variational Graph Autoencoder (ARVGA)
Use generator to try to train to distinguish between fake and real samples



GNNs: How to deal with non-Euclidean graphs?

But what about different size graph generation?

Deep Generative Model of Graphs (DeepGMG)

 Generate a graph sequentially

« Start by one node and perform

e Use a RecGNN to do it

» Classify as 0/1 output

« Alternatively:

T rounds of propagation

nm] ;
=N

 Variational GAE (GraphVAE) °

https://arxiv.org/pdf/1803.03324.pdf

o
O =\ !
/ \O < (B— e
L4
Add node (0)? f(ﬂ\dd /ed@ge? Add node (1)? Add edge? Pick node (0) to
(yes/no) yes (yes/no) (yes/no) add edge (0,1)
® ® ® ® g
@ @
Generation steps
L Add edge? Add node (2)? Add edge? Pick node (0) to Add edge?
@ (yes/no) | @ (yes/no) /no) ge (0,2) & (yes/no)
0 @ ® @
3 @ @ ®

Figure 1. Depiction of the steps taken during the generation process.




Applications: What GNNS are good for?



Applications: What GNNS are good for?
Molecular mapping in chemistry

Given a set of pair {(pActl, pAct2)} graphs, we define a known chemical reaction/transition
from one molecule to another by a single change

Such transformation improves some phys/chem properties, represented by some value
(For example effectiveness on target disease or activity in certain environment)

Task - given some other molecule pActX, generate an improved molecule

MMPA - previous approach, use all know H
pairs to learn some general
transformation rules

GNN approach - see this problem as
graph-to-graph mapping

Core 1 —R1 Core 1 —R2
* Analogy from machine translation:
Paraphrase of one sentence to a better one:
"buy sandwich cheese” -> pACtl pACtz

"I"d like to buy some sandwich with cheese”

Fig. 1. Example of a matched molecular pair (MMP).



Applications: What GNNS are good for?
Molecular mapping in chemistry

» Scaffold - a family of molecules share the same core structure
.« Intuitive example:
) o S 1—' e i}_vc[ b o T sd &
? N > TTT LT A and G in DNA are from the same purine family
ey B [
= 1 0. 0"'_\_"./-’ - j F O/-. _’I}_
L LTULY WXL
. o e le; 0 0 0
.l (PN NP N N HN N
| \> j \} > \> )
RMMF cares | k\;N - H ‘-Q'QN ——— H /]\ l\ D)\\ N
. w . N
ol r.ov.‘f:r‘;x_f—.- m-ﬁr-o-\riﬁﬁgﬁ r, purine adenine guanine hypoxanthine xanthine

! o IR v 1 2 3 4 5

ASE scatfald D hlll.' O h'jll HE .

| HN - N HN HN

- A | 2 /;l\ﬂj P ka >=G' 9

-. 0" >N~ N o7 >NT TN “N

i | | H

theobromine caffeine uric acid isoguanine

6 7 8 9



Applications: What GNNS are good for?

Molecular mapping in chemistry

2 Graphs input:
Atom-per-node graph scaffold multi-atom-node
graph

5 | C=0 {xY }/ﬁ.'tﬁc:\ ‘ CN

O Qo et 8B Oget"x 3~ JL e,
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Attention
Molecular Graph Junction Tree Decoded Junction Tree Decoded Graph
¢ >  Run RecGNN on edge for T iterations only
Compute from vocabulary - | - ) _(. |
of known scaffolds t) _ c oL t—1 0) _
vl(,lv_gl(fu’fuw Z v(wu ) Vuv_
o > weN (u)lv
atom =node v - f ,=atom type, valence, etc.. ~ * Run RecGNN with previous MESSages
- : _ 0)_
edge uv - f = interaction features... =g, f s Z V=0

scaffold node w-> f , =one-hot id in vocabulary weN (u
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Molecular Graph Junction Tree Decoded Junction Tree

» Use Graph Attention Network and Gated RecGNN
« Traverse the tree in DFS manner
* For every visit do a binary classification by GRU
« If 1 - split and expand node

C@D

Decoded Graph

» Use MPNN, Spatial-based ConvGNN ®
« Use Decoded Junction Tree feature vectors
* For every possible molecular graph compute its score by MPNN
» Output the probabilities of all possible molecular graphs
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Method QED DRD2

Success Diversity Novelty Success Diversity Novelty
MMPA 32.9% 0.236 99.9% 46.4% 0.275 99.9%
JT-VAE 8.8% - - 3.4% - -
GCPN 9.4% 0.216 100% 4.4% 0.152 100%
VSeq2Seq 58.5% 0.331 99.6% 75.9% 0.176 79.7%
VJITNN 59.9% 0.373 98.3% 77.8% 0.156 83.4%

VITNN+GAN  60.6% 0.376 99.0%  78.4% 0.162 82.7%




Papers used:

[A Comprehensive Survey on Graph Neural Networks]
https://arxiv.org/pdf/1901.00596.pdf

[Geometric deep learning: going beyond Euclidean data]
https://arxiv.org/pdf/1611.08097.pdf

[Deep recurrent graph neural networks]
https://www.research.unipd.it/handle/11577/3366866

[Learning Multimodal Graph-to-Graph Translation for Molecular Optimization]
https://openreview.net/pdf?id=B1xJASASF7

[Understanding Pooling in Graph Neural Networks]
https://arxiv.org/pdf/2110.05292.pdf

Additional materials used:

https://www.youtube.com/watch?v=2KRAOZIULzw
https://dataroots.io/blog/a-gentle-introduction-to-geometric
https://cw.fel.cvut.cz/b221/courses/b4m33dzo/start
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