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Intro

Causal inference (Cl) aims to draw conclusions from data and correctly predict the causal effect of actions.

Traditional ML is more towards correlation not causation / Correlation doesn’t imply causation

Correlation measures the tendency of two random quantities to move together.
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Observational data

Large amount of available data
Less expensive than randomized controlled trials (RCT)
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Estimating the causal effect

Counterfactuals : “Would this patient have different
results if he received a different medication? “

Comparing results of a treatment in “almost” two
identical worlds.

Problem : counterfactuals are not observable.
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CIl's frameworks

Tools for formalizing implicit assumptions about causal mechanisms.
Two main frameworks : potential outcome and structural causal model.
Major challenges in causal inference:

- Confounders
- Selection bias
- Simpson'’s paradox



Confounders

Factors affecting both the assignment of the treatment and the outcome.
Creates a spurious effect

Example : age in medical treatments

Table 1. An Example to Show the Spurious Effect of Confounder Variable Age

Recovery Rate Treatment
Treatment A Treatment B
Age
Young 234/270 = 87% 81/87 = 92%
Older 55/80 = 69% | 192/263 = 73%
Overall 289/350 = 83% | 273/350 = 78%




Selection bias

The distribution of the observed group is not representative to the group we are interested in.
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Fig. 1. An example to show the selection bias caused by confounder variable Age.



Simpson’s paradox

Young and Older patient groups: Medicine B > Medicine A; but when combining the groups, Medicine A is
the one with a higher recovery rate.

-Statistical phenomenon described by Edward Hugh Simpson in a technical paper in 1951

- A historical example : UC Berkeley’s suspected gender-bias 1970

AppRcants Admiised Sex Bias in Graduate Admissions:
Men 8442 44% Data from Berkeley
Women 4321 35% Measuring bias is harder than is usually assumed,

and the evidence is sometimes contrary to expectation.

P. J. Bickel, E. A. Hammel, J. W. O’Connell



Potential Outcome

Terminology :

- Unit: physical object, a firm, a patient, an individual person ...

- Treatment : action applied to the unit (W=1 treated group; W=0 control group)

- Outcome:results from the treatment/control

- Treatment effect : change of outcome when applying the different treatments on the units.

Estimating the treatment effect via CATE, ATE ...

CATE = E[Y(W = 1)|X = z] — E[Y(W = 0)| X = ]



Structural Causal Models

Introduced by Judea Pearl but actually started with Wright (1921)

Notation: u are all the factors, y is the severity of the symptom and x is the severity of the disease

+ path diagram + nonlinear system of equations
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. A simple structural equation model, and its associated diagrams. Unobserved exoge-
nous variables are connected by dashed arrows.



Structural Causal Models

Do operator : to represent interventions and identify the causal effect
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Why is identifiability important? P(Y =yldo(X =x)) = ZP(y|t,x)P(t)

A general identification theorem is the following : “A sufficient condition for identifying the causal effect
P(y|do(x)) is that every path between X and any of its children traces at least one arrow emanating from a
measured variable.”



Example
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X
0 -0.078186
1 0.129325
2 2440264
3 0.714965
4 0.664560

y
-0.578115
1.005127
2.034245
0.943958
-1.410155

z
-0.892278
-0.894835

2.362531
0.525021
-0.845570

-Regression shows that Zisrelated to Y, Z is related to X
but regressing Z on both Y and X, X’s coefficient goes away!

-Direct effect vs indirect effect.

-you have to be very careful what you regress on . But with
no graph, you don't what what you should regress on.



Conditioning

Age
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Stationary biking causes cholesterol?



Causal inference assumptions

Assumptions:
- Stable Unit Treatment Value Assumption (SUTVA) :

The potential outcomes for any unit do not vary with the treatment assigned to other units, and, for each unit,
there are no different forms or versions of each treatment level, which lead to different potential outcomes.

- lgnorability :

Given the background variable, X, the treatment assignment W is independent to the potential outcomes

- Positivity :

For any set of values of X, treatment assignment is not deterministic



Propensity score based matching

Matching similar units
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Stratification

-Pairing groups with similar covariates and different assignments.

-Should have enough data (i.e enough control and treated units per group) for each strata

j-th block

iR



Example
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Re-weighting

Creating balanced dataset = breaking the dependence between treatment and covariates
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: Automated Variables
Variables
: Decomposition

Data-Driven Variable Decomposition (D2VD) algorithm ¥ Confounders Pl
distinguishes the confounders and adjustment variables, X 7
while eliminating the irrelevant variables.

Treatment Effect
Estimation




Real world situations

SUTVA.:
- noni.i.d samples : presence of both unobserved confounding and data dependence.

Some solutions : Graph Convolutional Network (for unobserved confounders), segregated graphs (for data
dependence), using a classifier instead of regression models (for time series data type), deconfounder (for time series
with hidden confounders).

- there exists more than one version for each treatment : e.g with dosage parameters, many version for each
treatment will be obtained, a solution is to consider each treatment with its specific dosage as a new treatment.

Ignorability :
In real-world situations, collecting all background variables is not possible.

Some solutions : Variational autoencoders, using instrumental variables that only affect the treatment assignment
but not the outcome variable



High dimensional data

Positivity : it’s hard to satisfy this assumption in high dimensional datasets.

-Datais sparse (e.g not all tests are given to all patients)

-Some solutions : dimensionality reduction, regularized models, transforming
input space.



Applications of causal inference

- Decision evaluation
- Counterfactual estimation
- Dealing with selection bias
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Online advertising

f_) Estimating the ad effect from observational data!



Online Advertising as Causal Inference:
Estimating the ad effect from observational data

Observational » Logged feedback records under
data current advertising system'’s policy
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Recommendation

Selection bias:
1 Users tend to rate the items that they like:

[ The horror movie ratings are mostly made by horror movie fans and less by
romantics movie fans.

1 The records in the datasets are not representative of the whole population.

No enough data

Non-displayed item

Less recommended




Education

What would happen if the teacher
adopted another teaching method?

ﬁ Teachers can find the best teaching method for each individual!



Healthcare

—

Goal: Learning the optimal per-patient treatment rules. l ,_
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When the effect of different
available medicines can be
estimated

Doctors can give a better prescription accordingly.



Machine learning for causal inference

-Graph Neural Network : a class of deep learning methods designed to perform inference on data

described by graphs.

Goal: similarity(u,v) ~ zI %,

B

Need to define!

Determine node Propagate and
computation graph transform information

d-dimensional
Input network embedding space Locality (local network

neighborhoods) in the encoder



GNN

Simple neighborhood aggregation:
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Graph Convolutional Network layers

The simplest GCN has only three different operators:

-Graph convolution

-Linear layer

-Nonlinear activation



In practice : COVID

Treatment: Whether a certain policy is in effect (1 or O) in different
counties.

Outcome: The number of confirmed cases and death cases in different
counties.

U To control for unobserved confounders, we collect

mFeatures (covariates): data that reflect confounders (e.g., residents’
vigilance) in counties - web searches

mGraphs: relational information among counties, e.g., distance
network/mobility flow

m\We assume these features and networks are correlated with the
unobserved confounders

Graph neural History Graph
network embedding structure
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Explainability in machine learning

- “how should an input instance be perturbed to obtain a desired predicted label?" = counterfactual explanation

- An example for graphs : CLEAR

Original (G)
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Conclusion

Causal inference is tricky
Correlations are seldom enough. And sometimes horribly misleading.

Total revenue generated by arcades
correlates with

Computer science doctorates awarded in the US
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Always be skeptical of causal claims from ebservational-any data.

More data does not automatically lead to better causal estimates.

http://tylervigen.com/spurious-correlations




Try at least two methods with different assumptions: Higher confidence in
estimate if both methods agree.

Connections between traditional machine learning problems and causal
inference problems : missing data, high dimensionality ...

“Machine learning for causal inference” and “Causal inference for machine
learning”.
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