GRAPHICAL MARKOV MODELS
 EXAM WS2015 (26P)

Assignment 1. (5p)

Let $S_{0}, S_{2}, \ldots, S_{n-1}$ be a collection of K-valued random variables, where K is a finite set. Their joint probability distribution is a Markov model on a cycle

$$
p(s)=\frac{1}{Z} \prod_{i=0}^{n-1} g_{i}\left(s_{i}, s_{i+1}\right)
$$

where indices $i+1$ are considered modulo n. The functions $g_{i}: K^{2} \rightarrow \mathbb{R}_{+}$are given and Z is a normalisation constant. Find an algorithm for searching the most probable realisation

$$
s^{*}=\underset{s \in K^{n}}{\arg \max } p(s) .
$$

What complexity has it?

Assignment 2. (8p)

Let $S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)$ be a sequence of K-valued random variables, where K is a finite set. Their joint probability distribution is a Markov chain model given by

$$
p(s)=p\left(s_{1}\right) \prod_{i=2}^{n} p\left(s_{i} \mid s_{i-1}\right) .
$$

The transition probabilities $p\left(s_{i} \mid s_{i-1}\right), i=2,3, \ldots, n$ and the probability distribution $p\left(s_{1}\right)$ of the first variable are known.
a) Given a subset $M \subset K$ of states and one of the variables S_{i}, the task is to compute the probability $p\left(s_{i} \in M\right)$, i.e. the probability that the variable S_{i} will take a value from M. Describe an efficient algorithm for computing this probability. What complexity has it?
b) Suppose now, it is known that the last variable S_{n} has taken the value $k^{*} \in K$. As before, the task is to compute the probability of S_{i} taking a value from M, but now conditioned on the additional information, i.e. $p\left(s_{i} \in M \mid s_{n}=k^{*}\right)$. Describe an algorithm for computing this probability. What complexity has it?

Assignment 3. (8p)
Let $S_{0}, S_{2}, \ldots, S_{n}$ be a collection of K-valued random variables, where K is a finite set. Their joint probability distribution is a Markov model on a star given by

$$
p(s)=p\left(s_{0}\right) \prod_{i=1}^{n} p\left(s_{i} \mid s_{0}\right)=\frac{1}{p\left(s_{0}\right)^{n-1}} \prod_{i=1}^{n} p\left(s_{0}, s_{i}\right)
$$

(see figure below). The task is to learn the probabilities $p\left(s_{0}, s_{i}\right), i=1, \ldots, n$ from i.i.d. training data $\mathcal{T}=\left\{\boldsymbol{s}^{\ell} \mid \ell=1,2, \ldots, L\right\}$. Each example in \mathcal{T} is a configuration $\boldsymbol{s}=\left(s_{1}, \ldots, s_{n}\right)$ generated by the model in which, however, the value of s_{0} is missing (not visible). Explain how to apply the Expectation Maximisation algorithm for this learning task.

Assignment 4. (5p)

Let (V, E) be an undirected graph and s denote a vertex labelling by labels from the finite set K, i.e $s_{i} \in K$ for all $i \in V$. The cost of a labelling s is

$$
C(s)=\sum_{i \in V} u_{i}\left(s_{i}\right)+\sum_{i j \in E} \mathbf{1}\left\{s_{i} \neq s_{j}\right\},
$$

where the functions $u_{i}: K \rightarrow \mathbb{R}$ are given for all $i \in V$. The task is to find the labelling with minimal cost. Is it possible to solve the task approximately by applying the alpha-expansion algorithm? Justify your answer.

