
Logical reasoning and programming, task II

(November 28, 2023)

A notoriously hard task for humans1 is to prove formulae in Hilbert-style
(also called Frege) proof systems. Despite this fact, they are quite popular
among logicians for their nice theoretical properties and hence occur regularly
in courses. If the rule modus ponens rings a bell, you have probably already
seen such a system.

Your task is to prove some formulae in propositional Hilbert-style proof
systems using first-order theorem provers; you encode a propositional proof
system into first-order logic. It means that you should produce a TPTP file
for each problem and use a theorem prover or a model finder to show that it
is provable or not provable, respectively. The task is slightly simplified by the
fact that the propositional language is restricted—the only allowed connectives
are implications (→) and negations (¬).

Software

I recommend to use the E prover in --auto-schedule mode as a theorem
prover; you can also print the proof using the --proof-object=1 option (it
is also possible to produce a GraphViz dot graph using the --proof-graph op-
tion). To run the E prover for roughly 30 seconds, use the --cpu-limit=30
option.

If you are unable to find a proof, try to find a counter-example using Para-
dox (compiled version 2.3 for linux, version 2.3, experimental version 3 from
author’s web page); you can also print the model using the --model option. To
run Paradox for roughly 30 seconds, use the --time 30 option, however, it is
really a very soft limit.

As a last resort, you can also use System on TPTP, where many provers are
available online (including E and Paradox). An advantage is there is no need to
install solver, and it is also possible to visualize your proofs using IDV easily.

Points

The task consists of three parts:

I System HC (5 points).

II System HI (5 points).

III The relation between HC and HI (5 points).

You are supposed to submit all files in an archive to BRUTE. Ideally, each
part should be in a separate directory. Note that this task will be evaluated
manually.

Please, do submit even incomplete solutions!

1In fact, it is also hard for machines as many seemingly simple problems are already algorithmi-
cally undecidable, for example, whether given schemata of axioms together with the rule modus
ponens prove the same formulae as the system HC. Hence in Part III you are asked to solve an
instance of a really hard problem.

1

http://www.tptp.org/
http://www.eprover.org
https://cw.fel.cvut.cz/wiki/_media/courses/lup/paradox.gz
http://code.haskell.org/folkung/
http://www.cse.chalmers.se/~koen/code/folkung.tar.gz
http://www.cse.chalmers.se/~koen/
http://www.tptp.org/cgi-bin/SystemOnTPTP

I System HC
Problem

The system HC has the following three schemata of axioms

φ → (ψ → φ) (C1)
(φ → (ψ → χ)) → ((φ → ψ) → (φ → χ)) (C2)
(¬ψ → ¬φ) → (φ → ψ) (C3)

where φ, ψ, and χ are arbitrary propositional formulae. It means that any
instance, which is a formula, of (C1), (C2), or (C3) is trivially provable. The
system HC also contains the rule modus ponens that for every formulae φ and
ψ says:

If φ is provable and φ → ψ is provable, then also ψ is provable. (MP)

Hence the rule modus ponens extends provability also to formulae that are not
instances of (C1–C3). A natural question to ask is whether a given formula is
provable in the system HC. Or more generally, we can ask whether formulae
of a given shape are provable in HC.

It is possible to encode this problem, which is about propositional provabil-
ity, as a first-order problem. We can treat propositional formulae as terms in
first-order logic and we can introduce a new unary predicate, for example pr,
that says a term (representing a propositional formula) is provable. Then the
schema of axiom (C3) can be encoded, for example, as

fof(c3, axiom, ![A,B]: (pr(i(i(n(B), n(A)), i(A, B))))).

or

cnf(c3, axiom, pr(i(i(n(B), n(A)), i(A, B)))).

in TPTP, where we use the binary function symbol i for implication (→) and
the unary function symbol n for negation (¬). Similarly, we can encode (C1–C2)
and the rule modus ponens (MP).

Now we can use a theorem prover to show that φ → φ is provable in HC
for every φ (in our propositional language containing only → and ¬). In the
language of TPTP this can be encoded as

fof(phiphi, conjecture, ![A]: (pr(i(A,A)))).

or

cnf(phiphi, negated_conjecture, ~pr(i(a,a))).

On the other hand, φ → ψ is not provable in HC, for every φ and ψ, as you
can show by producing a counter-example (of course, it is provable if ψ = φ).

2

Task

Let φ, ψ, and χ be arbitrary propositional formulae in our language containing
only → and ¬. Decide for each of the following schemata whether it is provable
in HC or not:

(Ia) (φ → ψ) → ((ψ → χ) → (φ → χ)),

(Ib) ¬¬φ → φ,

(Ic) φ → ¬¬φ,

(Id) ((φ → ψ) → φ) → φ,

(Ie) (¬φ → ψ) → ((¬φ → ¬ψ) → φ),

(If) (¬φ → ψ) → (¬ψ → φ),

(Ig) (¬φ → ψ) → (ψ → φ).

Output

For each schema, upload an input file in the TPTP language that encodes the
problem. Upload also the output of either a theorem prover or a model finder
used on the input file that shows that the given schema is either provable or
not in HC.

II System HI
Problem

The system HI has the following four schemata of axioms

φ → (ψ → φ) (I1)
(φ → (ψ → χ)) → ((φ → ψ) → (φ → χ)) (I2)
(φ → ψ) → ((φ → ¬ψ) → ¬φ) (I3)
φ → (¬φ → ψ) (I4)

where φ, ψ, and χ are arbitrary propositional formulae. It means that any
instance, which is a formula, of (I1–I4) is trivially provable. The system HI
also contains the rule modus ponens (MP).

Similarly, as in I, we can use a theorem prover to show that φ → φ is prov-
able in HI for every φ (in our propositional language containing only → and
¬). On the other hand, φ → ψ is not provable in HI , for every φ and ψ, as you
can show by producing a counter-example.

3

Task

Let φ, ψ, and χ be arbitrary propositional formulae in our language containing
only → and ¬. Decide for each of the following schemata whether it is provable
in HI or not

(IIa) (φ → ψ) → ((ψ → χ) → (φ → χ)),

(IIb) ¬¬φ → φ,

(IIc) φ → ¬¬φ,

(IId) ((φ → ψ) → φ) → φ,

(IIe) (¬φ → ψ) → ((¬φ → ¬ψ) → φ),

(IIf) (¬φ → ψ) → (¬ψ → φ),

(IIg) (¬φ → ψ) → (ψ → φ).

Output

For each schema, upload an input file in the TPTP language that encodes the
problem. Upload also the output of either a theorem prover or a model finder
used on the input file that shows that the given schema is either provable or
not in HI .

III The relation between HC and HI
Problem

There are two natural questions about the relation between HC and HI , namely
whether

(IIIa) all the formulae provable in HC are also provable in HI , and

(IIIb) all the formulae provable in HI are also provable in HC.

You should already know a partial answer from I and II. Here we should dis-
close that HC is a system for (classical) propositional logic and HI is a system
for propositional intuitionistic logic.

Note that HC and HI share the rule modus ponens (MP) and some axiom
schemata. Hence, for example, if you prove (I3) and (I4) in HC, then it shows
that everything provable in HI is also provable in HC. On the other hand, if
(I3) or (I4) is not provable in HC, then this shows that not everything provable
in HI is provable in HC. Analogously you can decide whether everything
provable in HC is also provable in HI .

Output

For each problem (IIIa) and (IIIb), upload an input file (or files) in the TPTP
language that encodes the problem. Upload also the output of either a theorem
prover or a model finder used on the input file(s) that show(s) that the given
problem is either provable or not.

4

https://en.wikipedia.org/wiki/Intuitionistic_logic

Note

Maybe, you are wondering here why we prove it in such a complicated way.
It should be easy to prove (IIIa) and (IIIb); we can introduce two separate
provability predicates for HC and HI , for example, pr_hc and pr_hi. And
then, for example, proving/refuting ∀X(pr_hc(X) → pr_hi(X)) answers (IIIa).
However, this simple approach fails badly; the formula has a trivial counter-
example, because there is a model where pr_hc is always true.

5

	System HC
	System HI
	The relation between HC and HI

