
Logical reasoning and programming, lab session 9
(November 27, 2023)

In this lab, we start working with Prolog. Prolog is a logic programming language. It is
(mostly) a declarative programming language used to write logic programs. The Prolog
runtime then attempts to find answers to our queries given the program.
We will be using SWI-Prolog implementation of Prolog. You may download it from their
website. Most Linux distributions should also have it available in their repositories. Last
but not least, people behind SWI-Prolog offer an online sandbox environment SWISH.

Task 1: Familiarize yourself with the House of Windsor, the reigning royal house of
the United Kingdom. We will use a part of their family tree as the ground facts of our
programs. Consider the following people:

• george: George VI, King of the UK and the British Dominions

• elizabeth: Elizabeth II, Her Majesty Queen Elizabeth

• philip: Prince Philip, Duke of Edinburgh

• margaret: Princess Margaret, Countess of Snowdon

• charles: Charles III, HM King, Head of the Commonwealth

• diana: Diana, Princess of Wales

• camilla: Camilla, Queen Consort

• edward: Prince Edward, Duke of Edinburgh

• sophie: Sophie, Duchess of Edinburgh

• william: William, Prince of Wales

• kate: Catherine, Princess of Wales

• harry: Prince Harry, Duke of Sussex

• meghan: Meghan, Duchess of Sussex

• louise: Lady Louise Windsor

• james: James, Earl of Wessex

and their relationships:

• male(X) means that X is a male.

• female(X) if X is a female.

• parent(P,C) if P is the parent of C. Not the other way around!

• wife(W,H) if W is (or was) the wife of H.

1

https://www.swi-prolog.org/
https://swish.swi-prolog.org
https://en.wikipedia.org/wiki/House_of_Windsor


female(elizabeth).
female(margaret).
female(diana).
female(camilla).
female(sophie).
female(kate).
female(meghan).
female(louise).

male(george).
male(philip).
male(charles).
male(edward).
male(william).
male(harry).
male(james).

parent(george,elizabeth).
parent(george, margaret).
parent(elizabeth,charles).
parent(philip,charles).
parent(elizabeth,edward).
parent(philip,edward).
parent(charles,william).
parent(diana,william).
parent(charles,harry).
parent(diana,harry).
parent(edward,louise).
parent(sophie,louise).
parent(edward,james).
parent(sophie,james).

wife(elizabeth,philip).
wife(diana,charles).
wife(camilla,charles).
wife(sophie,edward).
wife(kate, william).
wife(meghan, harry).

Copy&Paste the code above into a file “royal.pl”. It is loaded into Prolog by the
“[filename]” command. The console should look like:
?- [royal].
true.

If you are using SWISH, the program is loaded automatically. No need for this step,
then.

2



Task 2: Write a query to ask for all children of elizabeth.

Task 3: Define the predicate husband(Man,Woman).
Do not list all husbands of all wives as ground facts! :-)

Task 4: Define person(P) to be either a male or a female.
Try avoiding the ; symbol (which defines a logical or).

Task 5: Define mother(Mother,Child) and father(Father,Child).
Be careful not to define a son or a daughter.

Check your knowledge:

• What is a difference between a Person and a person ?

• What is a singleton? Should you avoid it? How does an underscore _ fit into it?

Task 6: Compare the two definitions of the father predicate:
a) father1(F,C) :- male(F), parent(F,C).
b) father2(F,C) :- parent(F,C), male(F).
Which of them is faster on the father[1/2] (X,charles) query? Why?

Note: You can estimate Prolog’s speed by starting the trace mode:
?- trace.
true.
[trace] ?-

It can be turned off by the nodebug command.

Task 7: Write two SLD trees for father1(X, charles) and father2(X, charles).

Check your knowledge:

• What is a left-to-right rule?

• What is a top-to-bottom rule?

Task 8: Define the ancestor(Ancestor,Descendant), which connects the Ancestor
with any of their descendants.

Task 9 (optional): Define the sibling(A,B,Parent) predicate such that A is the
sibling of B and Parent is their shared parent. Be careful, no person is its own sibling.
Therefore sibling(william,william,P) should fail!
Hint: Use the non-unifiability predicate “\=”.
Note: “\=” is in fact just syntactic sugar for applying a technique known as negation as
failure to the Prolog unification procedure. We will study negation as failure later on in
the course. If you are interested, you may use the course literature (or Google) to read
up on it in advance.

3

https://book.simply-logical.space/src/simply-logical.html

