
Logical reasoning and programming
First-Order Logic—Equality and model finding

Karel Chvalovský

CIIRC CTU

FOL with equality

We have intentionally ignored the equality predicate. It is the most
common predicate used in FOL and hence it deserves a special
treatment. There are two main approaches how to deal with it,
equality is either
▶ a binary predicate and its meaning is given by axioms added

to our problem, or
▶ a logical symbol interpreted by the identity relation on the

domain.

Note that we have already discussed equality in SMT.

1 / 30

Naïve handling of equality

We can handle equality as a new binary predicate symbol ∼
defined by the following axioms:
▶ ∀𝑋(𝑋 ∼ 𝑋),
▶ ∀𝑋∀𝑌 (𝑋 ∼ 𝑌 → 𝑌 ∼ 𝑋),
▶ ∀𝑋∀𝑌 ∀𝑍(𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍 → 𝑋 ∼ 𝑍),
▶ ∀𝑋1 . . . ∀𝑋𝑛∀𝑌1 . . . ∀𝑌𝑛(𝑋1 ∼ 𝑌1 ∧ · · · ∧ 𝑋𝑛 ∼ 𝑌𝑛 →

𝑓(𝑋1, . . . , 𝑋𝑛) ∼ 𝑓(𝑌1, . . . , 𝑌𝑛)),
▶ ∀𝑋1 . . . ∀𝑋𝑚∀𝑌1 . . . ∀𝑌𝑚(𝑋1 ∼ 𝑌1 ∧ · · · ∧ 𝑋𝑚 ∼ 𝑌𝑚 →

(𝑝(𝑋1, . . . , 𝑋𝑚) → 𝑝(𝑌𝑚, . . . , 𝑌𝑚))).
for every 𝑛-ary function symbol 𝑓 and 𝑚-ary predicate symbol 𝑝.

However, this is rarely a feasible approach, mainly thanks to the
congruence axioms (for function and predicate symbols) and
transitivity.

2 / 30

Axiomatic vs. direct approach
We say that a model is normal if the equality predicate is
interpreted as the identity relation on its domain.

Example
We can define 𝑋 ∼ 𝑌 over Z by 𝑋 ≡ 𝑌 (mod 𝑛) and it clearly
satisfies the previous axioms, but the models are non-normal.

In fact, it is impossible to force that all models are normal just by
using axioms. For any ℳ = (𝐷, 𝑖), we may add a fresh constant 𝑐
that will be interpreted exactly as a constant 𝑑 ∈ 𝐷 and we get a
new non-normal model.

Theorem
Any set of formulae Γ has a normal model iff Γ has a model
satisfying the previous equality axioms.

Proof.
We get a normal model by partitioning the domain into equivalence
classes, [𝑎] = { 𝑏 | 𝑏 ∼ 𝑎 }, and use them as the new domain. 3 / 30

Paramodulation
We say 𝑠 ≑ 𝑡 if 𝑠 = 𝑡 or 𝑡 = 𝑠, because order will be important for
us later on.

Let 𝑙, 𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛 be literals and 𝑠, 𝑠′ and 𝑡 be
terms. Moreover, 𝑙[𝑠′] means that the literal 𝑙 contains 𝑠′

{𝑙1, . . . , 𝑙𝑚, 𝑠 ≑ 𝑡} {𝑙[𝑠′], 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛}
{𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛, 𝑙[𝑡]}𝜎

where 𝜎 = mgu(𝑠, 𝑠′) and 𝑙[𝑡] is the result of replacing an
occurrence of 𝑠′ in 𝑙[𝑠′] by 𝑡. We assume that the input clauses do
not share variables (renaming away).

The clause {𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛, 𝑙[𝑡]}𝜎 produced by the
paramodulation rule is sometimes called the paramodulant.
Example
From {𝑓(𝑋) = 𝑔(𝑋, 𝑒)} and {𝑝(ℎ(𝑓(0), 𝑔(𝑌, 𝑒)), 2)} we can derive
{𝑝(ℎ(𝑔(0, 𝑒), 𝑔(𝑌, 𝑒)), 2)} and {𝑝(ℎ(𝑓(0), 𝑓(𝑌), 2)} as
paramodulants.

4 / 30

Reflexivity resolution

Clearly, we cannot refute

{¬𝑋 = 𝑋}

by the paramodulation rule. Hence we have to add also a rule for
such cases. Let 𝑙1, . . . , 𝑙𝑚 be literals and 𝑠 and 𝑡 be terms, then
the reflexivity resolution rule is

{𝑙1, . . . , 𝑙𝑚, ¬𝑠 = 𝑡}
{𝑙1, . . . , 𝑙𝑚}𝜎

where 𝜎 = mgu(𝑠, 𝑡).

5 / 30

Completeness of paramodulation

We define Γ ⊢= 𝜙 similarly to ⊢, but, moreover, we can use the
paramodulation rule and the reflexivity resolution rule.

Theorem
Let Γ be a set of clauses in the FOL language with equality. Γ is
unsatisfiable iff Γ ⊢= 2.

It is possible to produce various restrictions, for example, it is never
necessary to replace a variable by a more complex term using
paramodulation. Loosely speaking, the aim of paramodulation is to
make things unifiable, by changing a variable into a complex term
we do not improve on this.

However, the most important modification is if we impose
orderings on equalities.

6 / 30

Example on equalities (word problem for group theory)

Assume we have axioms

1 · 𝑋 = 𝑋

𝑋−1 · 𝑋 = 1
(𝑋 · 𝑌) · 𝑍 = 𝑋 · (𝑌 · 𝑍)

and we want to know whether 𝑋 · 𝑌 = 𝑌 · 𝑋−1 follows from them?

It would be nice to direct axioms, say left to right (or from bigger
to smaller), and use them only in this one direction, where two
terms are equal if they reduce to the same term (irreducible word).

However, this is not sufficient, because we know that, e.g.,
𝑌 · (𝑋 · 𝑋−1) = 𝑌 holds. Hence we have to add more rules!

7 / 30

Example on equalities (word problem for group theory)

Assume we have axioms

1 · 𝑋 = 𝑋

𝑋−1 · 𝑋 = 1
(𝑋 · 𝑌) · 𝑍 = 𝑋 · (𝑌 · 𝑍)

and we want to know whether 𝑋 · 𝑌 = 𝑌 · 𝑋−1 follows from them?

It would be nice to direct axioms, say left to right (or from bigger
to smaller), and use them only in this one direction, where two
terms are equal if they reduce to the same term (irreducible word).

However, this is not sufficient, because we know that, e.g.,
𝑌 · (𝑋 · 𝑋−1) = 𝑌 holds. Hence we have to add more rules!

7 / 30

Example on equalities (word problem for group theory)

Assume we have axioms

1 · 𝑋 = 𝑋

𝑋−1 · 𝑋 = 1
(𝑋 · 𝑌) · 𝑍 = 𝑋 · (𝑌 · 𝑍)

and we want to know whether 𝑋 · 𝑌 = 𝑌 · 𝑋−1 follows from them?

It would be nice to direct axioms, say left to right (or from bigger
to smaller), and use them only in this one direction, where two
terms are equal if they reduce to the same term (irreducible word).

However, this is not sufficient, because we know that, e.g.,
𝑌 · (𝑋 · 𝑋−1) = 𝑌 holds. Hence we have to add more rules!

7 / 30

Solution
Using the Knuth–Bendix completion we produce the following set
of directed rewriting rules (also called reduction rules):

1 · 𝑋 ≻ 𝑋

𝑋−1 · 𝑋 ≻ 1
(𝑋 · 𝑌) · 𝑍 ≻ 𝑋 · (𝑌 · 𝑍)

𝑋−1 · (𝑋 · 𝑌) ≻ 𝑌

𝑋 · 1 ≻ 𝑋

1−1 ≻ 1
𝑋−1−1 ≻ 𝑋

𝑋 · 𝑋−1 ≻ 1
𝑋 · (𝑋−1 · 𝑌) ≻ 𝑌

(𝑋 · 𝑌)−1 ≻ 𝑌 −1 · 𝑋−1

Note that the Knuth–Bendix completion may fail.
8 / 30

Equalities are general

It is possible to express every FOL problem as a problem using only
equalities by the following transformation:

𝑝(𝑡1, . . . , 𝑡𝑛) becomes 𝑓𝑝(𝑡1, . . . , 𝑡𝑛) = ⊤,

¬𝑝(𝑡1, . . . , 𝑡𝑛) becomes ¬𝑓𝑝(𝑡1, . . . , 𝑡𝑛) = ⊤,

where ⊤ is a new constant and 𝑓𝑝 is a new functional symbol for
every predicate 𝑝 in our original language. Note that 𝑓𝑝 and ⊤ are
not valid arguments of other terms.

Example
{𝑝(𝑋), ¬𝑞(𝑋, 𝑔(𝑋, 𝑌))} becomes
{𝑓𝑝(𝑋) = ⊤, ¬𝑓𝑞(𝑋, 𝑔(𝑋, 𝑌)) = ⊤}.

9 / 30

Term orderings
We say that a binary relation ⇝ is a rewrite relation, if it is
▶ stable under contexts: 𝑠⇝ 𝑡 implies 𝑢[𝑠]⇝ 𝑢[𝑡], and
▶ stable under substitutions: 𝑠⇝ 𝑡 implies 𝑠𝜎 ⇝ 𝑡𝜎

where 𝑠, 𝑡, and 𝑢 are terms and 𝜎 is a substitution.

A reduction ordering, denoted =, is a rewrite relation where ⇝ is
irreflexive, transitive, and well-founded, i.e., there is no infinite
strictly-descending sequence 𝑠1 = 𝑠2 =
A simplification ordering, denoted ≻, is a reduction ordering where
a term is larger than all its proper subterms, i.e., 𝑢[𝑠] ≻ 𝑠 if
𝑢[𝑠] ̸= 𝑠.
Example
𝑓(𝑋) and 𝑔(𝑌) are =-incomparable. Let 𝑓(𝑋) = 𝑔(𝑌) and
𝜎 = {𝑌 ↦→ 𝑓(𝑋)}, then 𝑓(𝑋) = 𝑔(𝑓(𝑋)), and hence
𝑔(𝑓(𝑋)) = 𝑔(𝑔(𝑓(𝑋))), . . . Therefore, it is possible that all
(non-ground) terms and literals are maximal under a =.

10 / 30

Useful orderings
Very popular simplification orderings are:

KBO (Knuth–Bendix Ordering)
▶ uses function symbols weights and precedence to break ties
▶ produces syntactically smaller terms and is more efficient

LPO (Lexicographic Path Ordering)
▶ uses function symbols precedence and lexicographic

decompositions to break ties
▶ produces better directions in many cases, e.g., for distributivity

For further details see for example Baader and Nipkow 1998.
Note that the EQP prover used orderings to prove the Robbins
conjecture—are the algebras satisfying a given set of axioms exactly
Boolean algebras.

11 / 30

Superposition

Although paramodulation rule

{𝑙1, . . . , 𝑙𝑚, 𝑠 ≑ 𝑡} {𝑙[𝑠′], 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛}
{𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛, 𝑙[𝑡]}𝜎

where 𝜎 = mgu(𝑠, 𝑠′), is more efficient than the naïve approach, it
has to be further improved to be practical.

We want
▶ to use only maximal literals (ordered resolution),
▶ to use only maximal sides of literals (completion),
▶ 𝑠′ not to be a variable

and the superposition calculus satisfies all this.

It is used in almost all state-of-the-art automated theorem provers.

12 / 30

How do we show that a formula is not provable?

We have seen several methods that can be used to prove a formula
𝜙 from a set of formulae Γ and hence Γ |= 𝜙. However, can we
show that

Γ ̸|= 𝜙

by these methods? Sometimes we can, but it is quite rare, e.g., if
we obtain a saturated set.

Note that Γ ̸|= 𝜙 is not equivalent to Γ |= ¬𝜙! For example,
̸|= 𝑝(𝑎) and ̸|= ¬𝑝(𝑎).

A general method is to provide a counterexample. A model of Γ
where 𝜙 is false, for simplicity assume that 𝜙 is a closed formula.

13 / 30

How do we find a counterexample?
We have to check all possible models.
Finite models
For a finite language and a given size of domain, it is possible to
check all possible models exhaustively (up to trivial isomorphisms).

Infinite models
Clearly, there are many sets of formulae with only infinite models,
for example,

∀𝑋¬(𝑋 < 𝑋),
∀𝑋∀𝑌 ∀𝑍(𝑋 < 𝑌 ∧ 𝑌 < 𝑍 → 𝑋 < 𝑍),
∀𝑋∃𝑌 (𝑋 < 𝑌).

However, the problem how to generate useful infinite models is
widely open. Moreover, the necessity to consider infinite models
makes first-order logic algorithmically undecidable (precisely
semi-decidable). Fortunately, for many problems finite
counterexamples are sufficient.

14 / 30

MACE-style approach

We attempt to generate a finite counterexample iteratively. We try
to produce a model of size 1, 2, 3, . . .

The main idea is to produce a grounding of the problem assuming
a given cardinality of our model and encode such a grounding as a
SAT problem. Using a clever encoding we can significantly reduce
the search space; no need to go through all possible models of the
given size.

We present some basic techniques used in a model finder called
Paradox, see Claessen and Sörensson 2003.

15 / 30

Our example

There is a counterexample for the problem that from

∀𝑋(𝑒 · 𝑋 = 𝑋),
∀𝑋(𝑋−1 · 𝑋 = 𝑒),

∀𝑋∀𝑌 ∀𝑍(𝑋 · (𝑌 · 𝑍) = (𝑋 · 𝑌) · 𝑍)

follows

∀𝑋(𝑋 · (𝑋 · 𝑋) = 𝑋).

Or equivalently.

16 / 30

Our example

There is a model for

∀𝑋(𝑒 · 𝑋 = 𝑋),
∀𝑋(𝑋−1 · 𝑋 = 𝑒),

∀𝑋∀𝑌 ∀𝑍(𝑋 · (𝑌 · 𝑍) = (𝑋 · 𝑌) · 𝑍),
¬(𝑎 · (𝑎 · 𝑎) = 𝑎).

We have ℳ = (𝐷, 𝑖), where 𝐷 = {1, 2, 3}, 𝑖(𝑒) = 1, 𝑖(𝑎) = 2, and

𝑖(−1)
1 1
2 3
3 2

𝑖(·) 1 2 3
1 1 2 3
2 2 3 1
3 3 1 2

17 / 30

Propositional encoding
We are looking for a model ℳ = (𝐷, 𝑖) of a given cardinality, say
𝑛, that satisfies a set of clauses Γ. Assume without loss of
generality that 𝐷 = {1, . . . , 𝑛}. Hence it only remains to generate
a function 𝑖.

We want to describe 𝑖 using propositional variables (atoms). For
every 𝑘-ary
▶ predicate symbol 𝑝 in Γ, there is a prop. variable for every

𝑝(𝑑1, . . . , 𝑑𝑘)

where 𝑑1, . . . , 𝑑𝑘 ∈ 𝐷.
▶ function symbol 𝑓 in Γ, there is a prop. variable for every

𝑓(𝑑1, . . . , 𝑑𝑘) = 𝑑

where 𝑑1, . . . , 𝑑𝑘, 𝑑 ∈ 𝐷.
This is all we need to describe a model.

18 / 30

Our example

Note that our example is a bit confusing—we have only one
predicate symbol (=), which is very special, because it has the
fixed meaning. Still we have atoms for all

1 = 1, 1 = 2, 1 = 3, 2 = 1, . . . , 3 = 2, 3 = 3

We also have propositional variables for all

𝑒 = 1, 𝑒 = 2, 𝑒 = 3
𝑎 = 1, 𝑎 = 2, 𝑎 = 3

1−1 = 1, 1−1 = 2, 1−1 = 3, 2−1 = 1, . . . , 3−1 = 3
1 · 1 = 1, 1 · 1 = 2, 1 · 1 = 3, 1 · 2 = 1, . . . , 3 · 3 = 3

19 / 30

Flattening
However, it is impossible to express complex terms like 𝑋 · (𝑌 · 𝑍)
directly in our language. We can only express so called shallow
literals:
▶ 𝑝(𝑋1, . . . , 𝑋𝑘), or ¬𝑝(𝑋1, . . . , 𝑋𝑘),
▶ 𝑓(𝑋1, . . . , 𝑋𝑙) = 𝑌 , or 𝑓(𝑋1, . . . , 𝑋𝑙) ̸= 𝑌 ,
▶ 𝑋 = 𝑌 .

Note that 𝑠 ̸= 𝑡 is a shortcut for ¬𝑠 = 𝑡.

We do not want 𝑋 ̸= 𝑌 , because we can transform a clause

{𝑋 ̸= 𝑌, 𝜙(𝑋, 𝑌)}

into
{𝜙(𝑋, 𝑋)}.

Note that a clause {𝑋 ̸= 𝑌 } is unsatisfiable.

20 / 30

Flattening complex terms
If we have a clause

𝜙(𝑡),
it is equivalent to

∀𝑋(𝑋 = 𝑡 → 𝜙(𝑋)),
which is

𝑋 ̸= 𝑡 ∨ 𝜙(𝑋)
where 𝑋 is fresh in 𝜙(𝑡). 𝜙(𝑋) is produced from 𝜙(𝑡) by replacing
all (free) occurrences of 𝑡 by 𝑋.

We can repeat this process as long as necessary.

Example

𝑋 · (𝑌 · 𝑍) = (𝑋 · 𝑌) · 𝑍 ;

(𝑋 · 𝑌) · 𝑍 ̸= 𝑊 ∨ 𝑋 · (𝑌 · 𝑍) = 𝑊 ;

𝑋 · 𝑌 ̸= 𝑉 ∨ 𝑉 · 𝑍 ̸= 𝑊 ∨ 𝑋 · (𝑌 · 𝑍) = 𝑊 ;

𝑋 · 𝑌 ̸= 𝑉 ∨ 𝑉 · 𝑍 ̸= 𝑊 ∨ 𝑌 · 𝑍 ̸= 𝑈 ∨ 𝑋 · 𝑈 = 𝑊.
21 / 30

Instantiating
For every flattened clause we create three sets of propositional
clauses

1. instances — we generate all possible groundings, where we
can immediately simplify all groundings containing 𝑑1 = 𝑑2 or
𝑑1 ̸= 𝑑2, for 𝑑1, 𝑑2 ∈ 𝐷, based on whether it is true (discard
the clause), or not (discard the literal)

2. function definitions — for each 𝑘-ary function 𝑓 and 𝑑, 𝑑′ ∈ 𝐷
such that 𝑑 ̸= 𝑑′, we add

{𝑓(𝑑1, . . . , 𝑑𝑘) ̸= 𝑑, 𝑓(𝑑1, . . . , 𝑑𝑘) ̸= 𝑑′}

for every 𝑑1, . . . , 𝑑𝑘 ∈ 𝐷.
3. totality definitions — for each 𝑘-ary function 𝑓 , we add

{𝑓(𝑑1, . . . , 𝑑𝑘) = 1, 𝑓(𝑑1, . . . , 𝑑𝑘) = 2, . . . , 𝑓(𝑑1, . . . , 𝑑𝑘) = 𝑛}

for every 𝑑1, . . . , 𝑑𝑘 ∈ 𝐷.
22 / 30

Reducing the number of distinct variables
The number of instances is exponential in the number of distinct
variables in a flattened clause.

Term definitions
It is possible to decrease the number of newly introduced variables
during flattening for deep terms by using definitions based on
constants. From 𝑎 · (𝑎 · 𝑎) we can obtain 𝑎 · 𝑏, where 𝑏 is a fresh
constant, and define 𝑏 = 𝑎 · 𝑎. It is also possible to introduce
definitions for non-ground terms and use definitions across clauses.

Clause splitting
If a clause can be split into parts, where each part contains less
distinct variables than the whole clause, then we can decrease the
number of distinct variables by introducing a new predicate.

Example
From {𝑝(𝑋, 𝑌), 𝑞(𝑌, 𝑍)}, we can produce
{𝑝(𝑋, 𝑌), 𝑟(𝑌)}, {¬𝑟(𝑌), 𝑞(𝑌, 𝑍)}, where 𝑟 is a fresh predicate.

23 / 30

Isomorphic models

We have ℳ = (𝐷, 𝑖), where 𝐷 = {1, 2, 3}, 𝑖(𝑒) = 1, 𝑖(𝑎) = 2, and

𝑖(−1)
1 1
2 3
3 2

𝑖(·) 1 2 3
1 1 2 3
2 2 3 1
3 3 1 2

Note that any permutation on elements of 𝐷 produces an
isomorphic model. It makes no sense to look for all of them.

24 / 30

Static symmetry reduction
It is possible to avoid many isomorphic models using the following
symmetry reduction technique. If we start to build a model by
interpreting a constant 𝑐1, then we can safely assign 𝑖(𝑐1) = 1,
because no element of 𝐷 has an assigned meaning. Hence we have

{𝑐1 = 1} instead of {𝑐1 = 1, 𝑐1 = 2, . . . , 𝑐1 = 𝑛}.

Then we can assume that 𝑖(𝑐2) ∈ {1, 2} and 𝑖(𝑐3) ∈ {1, 2, 3},
because it has to be interpreted by an element with a meaning, or
the first fresh element (if available). However, if 𝑖(𝑐2) = 1, then
𝑖(𝑐3) ∈ {1, 2}. Or more generally

{𝑐𝑖 ̸= 𝑘, 𝑐1 = 𝑘 − 1, 𝑐2 = 𝑘 − 1, . . . 𝑐𝑖−1 = 𝑘 − 1}.

This can be used also for functions, however, we have to take into
account the meaning assigned to elements of 𝐷 by constants.
Example
Hence 𝑖(𝑒) = 1 and 𝑖(𝑎) = 2 in our example, although 𝑖(𝑎) = 3
works as well.

25 / 30

Other techniques

It is possible to use other techniques like
▶ pre-processing in SAT—variable and clause elimination, which

is incompatible with an incremental search
▶ finding bounds for |𝐷|

▶ look for cardinality axioms
▶ EPR (effectively proposional), also called

Bernays–Schönfinkel–Ramsey class—no function symbols and
a quantifier prefix ∃*∀* hence |𝐷| is bounded by the number
of constants occurring in the problem; decidable
(NEXPTIME-complete)

▶ use sorts
▶ some problems are expressed in a many-sorted language,
▶ other problems can be reformulated in a many-sorted

language, if we have parts that can be defined independently

26 / 30

Proving in first-order logic (quick summary)
We are interested in the problem Γ |= 𝜙 in FOL, which is an
algorithmically undecidable (precisely semi-decidable) problem.
Still we can solve many instances by using the following methods:
▶ we clausify formulae (skolemization,. . .),
▶ we extend the resolution calculus to FOL using unification,
▶ we add direct equality handling,
▶ we use term orderings.

The current most powerful solvers are based on superposition
calculus and we also showed how to use SAT to find small
counter-examples.

Note that all these methods are machine-oriented and not
particularly suitable for humans (tableaux systems are better). We
will use them in the next lecture on proof assistants.

27 / 30

Bibliography I

Baader, Franz and Tobias Nipkow (1998). Term Rewriting and
All That. Cambridge University Press.
Claessen, Koen and Niklas Sörensson (2003). “New Techniques
that Improve MACE-style Finite Model Finding”. In:
Proceedings of the CADE-19 Workshop: Model Computation -
Principles, Algorithms, Applications. Ed. by Peter Baumgartner
and Chris Fermüller.
D’Agostino, Marcello et al., eds. (1999). Handbook of Tableau
Methods. Springer Netherlands. doi:
10.1007/978-94-017-1754-0.
Harrison, John (Mar. 2009). Handbook of Practical Logic and
Automated Reasoning. New York: Cambridge University Press,
p. 702. url: http://www.cambridge.org/9780521899574.
Robinson, John Alan and Andrei Voronkov, eds. (2001).
Handbook of Automated Reasoning. Vol. 1. Elsevier Science.

https://doi.org/10.1007/978-94-017-1754-0
http://www.cambridge.org/9780521899574

Tableaux systems
There are many other approaches used to prove formulae in FOL.
For example, we have (semantic) tableaux. There are many simple
implementations of tableaux in Prolog, e.g., leanTAP or leanCoP,
available.

Tableaux systems are also popular in non-classical logics, because
▶ there is no need for special normal forms like CNF,

▶ can be complicated, or
▶ even impossible to obtain

▶ given a semantic meaning of a connective we can usually
produce a rule (or rules) in a straightforward way.

Generally, they are relatively easy to produce, in most cases, and
still suitable for automated theorem proving. However, the
handling of equality is as tricky as in resolution (superposition).

Moreover, they are similar to other proof systems like natural
deduction and sequent calculi.

28 / 30

https://formal.iti.kit.edu/beckert/leantap/
http://www.leancop.de/

Example

We want to prove ∀𝑋(¬𝑝(𝑋)) → (¬𝑝(𝑎) ∧ ¬𝑝(𝑏)). We can prove
it by showing that ∀𝑋(¬𝑝(𝑋)) and 𝑝(𝑎) ∨ 𝑝(𝑏) are together
unsatisfiable.

∀𝑋(¬𝑝(𝑋)) ∧ (𝑝(𝑎) ∨ 𝑝(𝑏))
(∧)

∀𝑋(¬𝑝(𝑋))
𝑝(𝑎) ∨ 𝑝(𝑏)

(∨)
𝑝(𝑎)

(∀)
¬𝑝(𝑋1)

𝜎1 = {𝑋1 ↦→ 𝑎}

𝑝(𝑏)
(∀)

¬𝑝(𝑋2)
𝜎2 = {𝑋2 ↦→ 𝑏}

Note that we have to use ∀𝑋(¬𝑝(𝑋)) twice.

29 / 30

leanTAP

prove((A,B),UnExp,Lits,FreeV,VarLim) :- !,
prove(A,[B|UnExp],Lits,FreeV,VarLim).

prove((A;B),UnExp,Lits,FreeV,VarLim) :- !,
prove(A,UnExp,Lits,FreeV,VarLim),
prove(B,UnExp,Lits,FreeV,VarLim).

prove(all(X,Fml),UnExp,Lits,FreeV,VarLim) :- !,
\+ length(FreeV,VarLim),
copy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),
append(UnExp,[all(X,Fml)],UnExp1),
prove(Fml1,UnExp1,Lits,[X1|FreeV],VarLim).

prove(Lit,_,[L|Lits],_,_) :-
(Lit = -Neg; -Lit = Neg) ->
(unify(Neg,L); prove(Lit,[],Lits,_,_)).

prove(Lit,[Next|UnExp],Lits,FreeV,VarLim) :-
prove(Next,UnExp,[Lit|Lits],FreeV,VarLim).

30 / 30

	References

