
Logical reasoning and programming, lab session 7
(November 6, 2023)

Instead of installing all the theorem provers on your computer, you may
experiment with them using System on TPTP.

7.1 Unify the following pairs of formulae:

(a) {𝑝(𝑋,𝑌) .= 𝑝(𝑌, 𝑓(𝑍))},
(b) {𝑝(𝑎, 𝑌, 𝑓(𝑌)) .= 𝑝(𝑍,𝑍,𝑈)},
(c) {𝑝(𝑋, 𝑔(𝑋)) .= 𝑝(𝑌, 𝑌)},
(d) {𝑝(𝑋, 𝑔(𝑋), 𝑌) .= 𝑝(𝑍,𝑈, 𝑔(𝑈))},
(e) {𝑝(𝑔(𝑋), 𝑌) .= 𝑝(𝑌, 𝑌), 𝑝(𝑌, 𝑌) .= 𝑝(𝑈, 𝑓(𝑊))}.

Note: You can check your results in SWISH using unify_with_occurs_check/2.

7.2 What is the size of the maximal term that is produced when you try to
unify

{𝑓(𝑔(𝑋1, 𝑋1), 𝑔(𝑋2, 𝑋2), . . . , 𝑔(𝑋𝑛−1, 𝑋𝑛−1)) .= 𝑓(𝑋2, 𝑋3, . . . , 𝑋𝑛}.

7.3 We say that a binary predicate 𝑞 is the transitive closure of a binary pred-
icate 𝑝, if 𝑞(𝑠, 𝑡) iff there is a sequence of terms 𝑠 = 𝑡1, 𝑡2, . . . , 𝑡𝑛−1, 𝑡𝑛 = 𝑡
such that 𝑝(𝑡𝑖, 𝑡𝑖+1), for 1 ≤ 𝑖 < 𝑛. Is the formula

∀𝑋∀𝑍(𝑞(𝑋,𝑍) ↔ (𝑝(𝑋,𝑍) ∨ ∃𝑌 (𝑝(𝑋,𝑌) ∧ 𝑞(𝑌,𝑍))))

a correct definition of 𝑞?

7.4 The compactness theorem in First-Order Logic says that a set of sentences
has a model iff every finite subset of it has a model. Use this theorem to
show that the transitive closure is not definable in FOL.

Hint: Assume for a contradiction that 𝜙 is a formula that expresses that
𝑞 is the transitive closure of 𝑝. Let 𝜓𝑛(𝑎, 𝑏) = ¬(∃𝑋1 . . . ∃𝑋𝑛−1(𝑝(𝑎,𝑋1)∧
𝑝(𝑋1, 𝑋2) ∧ · · · ∧ 𝑝(𝑋𝑛−1, 𝑏)) (Hence 𝜓1(𝑎, 𝑏) means ¬𝑝(𝑎, 𝑏) and 𝜓2(𝑎, 𝑏)
means ¬(∃𝑋1(𝑝(𝑎,𝑋1) ∧ 𝑝(𝑋1, 𝑏)))). What can you say about the satisfi-
ability of Γ = {𝜙} ∪ {𝑞(𝑎, 𝑏)} ∪ {𝜓1(𝑎, 𝑏), 𝜓2(𝑎, 𝑏), . . . }?

7.5 Show that the resolution rule is correct.

7.6 Derive the empty clause □ using the resolution calculus from:

(a) {{¬𝑝(𝑋),¬𝑝(𝑓(𝑋))}, {𝑝(𝑓(𝑋)), 𝑝(𝑋)}, {¬𝑝(𝑋), 𝑝(𝑓(𝑋))}}
(b) {{¬𝑝(𝑋, 𝑎),¬𝑝(𝑋,𝑌),¬𝑝(𝑌,𝑋)}, {𝑝(𝑋, 𝑓(𝑋)), 𝑝(𝑋, 𝑎)}, {𝑝(𝑓(𝑋), 𝑋), 𝑝(𝑋, 𝑎)}}

7.7 Prove using the resolution calculus that from

∀𝑋∀𝑌 (𝑝(𝑋,𝑌) → 𝑝(𝑌,𝑋))
∀𝑋∀𝑌 ∀𝑍((𝑝(𝑋,𝑌) ∧ 𝑝(𝑌, 𝑍)) → 𝑝(𝑋,𝑍))
∀𝑋∃𝑌 𝑝(𝑋,𝑌)

follows ∀𝑋𝑝(𝑋,𝑋).

1

http://www.tptp.org/cgi-bin/SystemOnTPTP
https://swish.swi-prolog.org/

7.8 Check PyRes; simple resolution-based theorem provers for first-order logic.
You can find proofs for the previous examples using them. For example,
use

pyres-fof.py -tifb -HPickGiven5 -nlargest

There are various heuristics (FIFO, SymbolCount, PickGiven5, and PickGiven2)
and literal selections (first, smallest, largest, leastvars, and eqleastvars)
available. Use -p to see a proof.

7.9 List all the possible applications of the factoring rule on the clause

{𝑝(𝑋, 𝑓(𝑌), 𝑍), 𝑝(𝑇, 𝑇, 𝑔(𝑎)), 𝑝(𝑓(𝑏), 𝑆, 𝑔(𝑊)),¬𝑠(𝑍, 𝑇),¬𝑠(𝑐, 𝑑)}.

If it is possible to use the factoring rule several times, then produce even
these results.

7.10 Produce all the possible paramodulants, but do not perform paramodula-
tions into variables, of

{{𝑝(𝑋),¬𝑞(𝑋,𝑌), 𝑓(𝑐, 𝑌) = 𝑔(𝑋)}, {𝑝(𝑍), 𝑞(𝑔(𝑎), 𝑓(𝑍, 𝑏)), 𝑐 = 𝑓(𝑐, 𝑐)}}.

7.11 Formulate the following problems in the TPTP language and (dis)prove
them using the E prover. Assuming the following group axioms

𝑒 ·𝑋 = 𝑋,

𝑋−1 ·𝑋 = 𝑒,

(𝑋 · 𝑌) · 𝑍 = 𝑋 · (𝑌 · 𝑍)

your task is to (dis)prove

(a) 𝑋 · 𝑒 = 𝑋,
(b) 𝑋 ·𝑋−1 = 𝑒,
(c) 𝑋 · 𝑌 = 𝑌 ·𝑋,
(d) 𝑋 · 𝑌 = 𝑌 −1 ·𝑋−1.

7.12 Use the model finder Paradox to produce counterexamples for unprovable
claims in the previous exercise 7.11.

7.13 Use PyRes to prove 7.11a. Note that PyRes uses the naïve handling of
equality. For example, use

pyres-fof.py -tifb -HPickGiven5 -nlargest

There are various heuristics (FIFO, SymbolCount, PickGiven5, and PickGiven2)
and literal selections (first, smallest, largest, leastvars, and eqleastvars)
available. Use -p to see a proof.

2

https://github.com/eprover/PyRes
http://www.eprover.org
https://github.com/eprover/PyRes

7.14 Formalize in the TPTP format a simple example with the following axioms

∀𝑋¬𝑟(𝑋,𝑋),
∀𝑋∀𝑌 ∀𝑍(𝑟(𝑋,𝑌) ∧ 𝑟(𝑌,𝑍) → 𝑟(𝑋,𝑍)),
∀𝑋∃𝑌 𝑟(𝑋,𝑌)

and check how fast can Paradox generate possible finite models for this
simple problem. Clearly, it will never find a model, because the problem
has only infinite models.

7.15 Try the Vampire prover on the problem GRP140-1 from the TPTP library.
We demonstrate the effect of the limited resource strategy (LRS), which
discards unprocessed clauses that will be unlikely processed in a given
time limit, by this example. For the intended behavior you need a special
setting—age:weight ratio is 5:1 and the forward subsumption is turned off:

vampire -awr 5:1 -fsr off -t 30 GRP140-1.p

First, try the timelimit 30s, then try 15s, 7s, You can try even shorter
times than 1s, e.g., -t 5d means 5 deciseconds.
For comparison you can try the competition mode on the same problem

vampire --mode casc GRP140-1.p

7.16 Try the E prover on the problem GRP001-1 from the TPTP library. Com-
pare how can the use of a literal selection strategy influence the behavior
of the prover:

eprover --literal-selection-strategy=NoSelection GRP001-1.p
eprover --literal-selection-strategy=SelectLargestNegLit \

GRP001-1.p

You may also visualize the proof using the Interactive Derivation Viewer
(IDV) tool for graphical rendering of derivations through System on TPTP.

3

https://vprover.github.io/
http://www.tptp.org/cgi-bin/SeeTPTP?Category=Problems&Domain=GRP&File=GRP140-1.p
http://www.eprover.org
http://www.tptp.org/cgi-bin/SeeTPTP?Category=Problems&Domain=GRP&File=GRP001-1.p
http://www.tptp.org/cgi-bin/SystemOnTPTP

