
Logical reasoning and programming
First-Order Logic—Resolution

Karel Chvalovský

CIIRC CTU

Our goal

We want to decide
Γ |= 𝜙

in full FOL.

It is undecidable, but we can still use our favorite recipe
1. show that it is sufficient to deal only with a restricted class of

formulae by presenting various transformations and
(=clauses)

2. use techniques that worked for less expressive systems
(=resolution)

to obtain a procedure that is quite useful.

Note that there exist also other approaches!

1 / 34

Instances

Lemma
Let 𝜙 be a clause and 𝜎 be a substitution, then ∀𝜙 |= 𝜙𝜎.

We say that 𝜙𝜎 is an instance of 𝜙. If an instance contains no
variable, then we call it a ground instance.

Example
From ∀𝑋∀𝑌 (𝑝(𝑋) ∨ ¬𝑞(𝑋,𝑌)), for example, follows
𝑝(𝑎) ∨ ¬𝑞(𝑎, 𝑓(𝑍)) and 𝑝(𝑏) ∨ ¬𝑞(𝑏, 𝑓(𝑎)) (a ground instance).

2 / 34

Herbrand models
We can restrict the types of interpretations (and ground instances) that
have to be considered. Let Γ be a set of clauses.
Herbrand universe
The Herbrand universe of Γ, denoted HU (Γ), is the set of all ground
terms in the language of Γ. If Γ contains no constants, we add a fresh
constant 𝑐 to the language.

Herbrand base
The Herbrand base of Γ, denoted HB(Γ), is the set of all ground atomic
formulae in the language of Γ, where only terms from HU (Γ) are allowed.

Herbrand interpretation
A Herbrand interpretation of Γ is a subset of HB(Γ).

Herbrand model
A Herbrand model ℳ of Γ is a Herbrand interpretation of Γ s.t. ℳ |= Γ.

Example
Γ = {¬𝑝(𝑋,𝑌), 𝑞(𝑓(𝑌), 𝑋)}. HU (Γ) = {𝑐, 𝑓(𝑐), 𝑓(𝑓(𝑐)), . . . } and
HB(Γ) = {𝑝(𝑐, 𝑐), 𝑝(𝑐, 𝑓(𝑐)), . . . , 𝑞(𝑓(𝑐), 𝑐), . . . }.

3 / 34

Herbrand’s theorem

Theorem
Let Γ be a set of clauses. The following conditions are equivalent:

1. Γ is unsatisfiable,
2. the set of all ground instances of Γ is unsatisfiable,
3. a finite subset of the set of all ground instances of Γ is

unsatisfiable.

Note that Γ has a model iff it has a Herbrand model. However, we should note
that clauses are quantifier-free. For example, a formula 𝑝(𝑐) ∧ ∃𝑋¬𝑝(𝑋) is
clearly satisfiable, but has no Herbrand model; the Herbrand universe contains
only 𝑐.

It is even possible to use so called Herbrand semantics, which is common in
logic programming, instead of Tarskian semantics, check, for example, The
Herbrand Manifesto.

4 / 34

http://intrologic.stanford.edu/extras/manifesto.html
http://intrologic.stanford.edu/extras/manifesto.html

Naïve approach
Herbrand’s theorem provides a propositional criterion for
unsatisfiability of a set of clauses Γ, because a ground atomic
formula can be seen as a propositional atom (like in SMT).

Several early approaches (Gilmore; David and Putnam in 1960)
work as follows
▶ generate ground instances and use propositional resolution,
▶ if it is propositionally satisfiable, then produce more instances

(there is usually infinitely many of them) and repeat.
However, such an approach is generally very inefficient.

But variants of it are widely used, for example, in
▶ iProver,

▶ EPR (effectively proposional, or Bernays–Schönfinkel–Ramsey
class)—no function symbols and a quantifier prefix ∃*∀* hence |𝐷|
is bounded by the number of constants occurring in the problem;
decidable (NEXPTIME-complete).

▶ SMT,
▶ Answer Set Programming.

5 / 34

https://www.cs.man.ac.uk/~korovink/iprover/

Lifting lemma
A technique to prove completeness theorems for the non-ground
case using completeness for a ground instance.

For example, we want to satisfy two clauses

{𝑞(𝑌, 𝑓(𝑋)), 𝑝(𝑋, 𝑔(𝑎, 𝑌))} and {¬𝑝(𝑈, 𝑉), 𝑟(𝑈, 𝑉)}.

We want to represent infinitely many ground instances and possible
resolution steps by a single non-ground instance

{𝑞(𝑌, 𝑓(𝑋)), 𝑝(𝑋, 𝑔(𝑎, 𝑌))} {¬𝑝(𝑈, 𝑉), 𝑟(𝑈, 𝑉)}
{𝑞(𝑌, 𝑓(𝑋)), 𝑟(𝑋, 𝑔(𝑎, 𝑌))}

Use unification!

Remark
{𝑞(𝑌, 𝑓(𝑋)), 𝑝(𝑋, 𝑔(𝑎, 𝑌))} means ∀𝑋∀𝑌 (𝑞(𝑌, 𝑓(𝑋)) ∨ 𝑝(𝑋, 𝑔(𝑎, 𝑌)))
and {¬𝑝(𝑈, 𝑉), 𝑟(𝑈, 𝑉)} means ∀𝑈∀𝑉 (¬𝑝(𝑈, 𝑉) ∨ 𝑟(𝑈, 𝑉).

6 / 34

Unifiers
Let 𝑠 and 𝑡 be terms. A unifier of 𝑠 and 𝑡 is a substitution 𝜎 such
that 𝑠𝜎 and 𝑡𝜎 are identical (𝑠𝜎 = 𝑡𝜎).
A unifier 𝜎 of 𝑠 and 𝑡 is said to be a most general unifier (or mgu
for short), denoted 𝜎 = mgu(𝑠, 𝑡), if for any unifier 𝜃 of 𝑠 and 𝑡
there is a substitution 𝜂 such that 𝜃 = 𝜎𝜂 that is 𝜃 is a
composition of 𝜎 and 𝜂.

We can easily extend our definitions to
▶ a (most general) unifier of a set of terms,
▶ a (most general) unifier of two atomic formulae,
▶ a (most general) unifier of a set of atomic formulae.

Example
𝜙 = 𝑝(𝑋, 𝑔(𝑎, 𝑌)), 𝜓 = 𝑝(𝑈, 𝑉), 𝜎 = {𝑋 ↦→ 𝑎, 𝑈 ↦→ 𝑎, 𝑉 ↦→
𝑔(𝑎, 𝑌)}, 𝜃 = {𝑈 ↦→ 𝑋,𝑉 ↦→ 𝑔(𝑎, 𝑌)}, and 𝜂 = {𝑋 ↦→ 𝑄,𝑈 ↦→
𝑄,𝑌 ↦→ 𝑅, 𝑉 ↦→ 𝑔(𝑎,𝑅)}. 𝜎 is a unifier of 𝜙 and 𝜓, but
𝜎 ̸= mgu(𝜙,𝜓). 𝜃 and 𝜂 are mgu(𝜙,𝜓).

7 / 34

Unification algorithm
A set of equations {𝑋1

.= 𝑡1, . . . , 𝑋𝑛
.= 𝑡𝑛 } is in solved form if

𝑋1, . . . , 𝑋𝑛 are distinct variables that do not appear in 𝑡1, . . . , 𝑡𝑛.

Given a finite set of pairs of terms 𝑇 = { 𝑠1
.= 𝑡1, . . . , 𝑠𝑛

.= 𝑡𝑛 }.
The following algorithm either produces a set of equations in
solved form that defines an mgu 𝜎 such that 𝑠𝑖𝜎 = 𝑡𝑖𝜎, for
1 ≤ 𝑖 ≤ 𝑛, or it fails. If it fails, then there is no unifier for the set.
▶ 𝑆 ⊔ {𝑢 .= 𝑢 }⇝ 𝑆,
▶ 𝑆 ⊔ { 𝑓(𝑢1, . . . , 𝑢𝑘) .= 𝑓(𝑣1, . . . , 𝑣𝑘) }⇝

𝑆 ∪ {𝑢1
.= 𝑣1, . . . , 𝑢𝑘

.= 𝑣𝑘},
▶ 𝑆 ⊔ { 𝑓(𝑢1, . . . , 𝑢𝑘) .= 𝑔(𝑣1, . . . , 𝑣𝑙) }⇝ fail, if 𝑓 ̸= 𝑔 or 𝑘 ̸= 𝑙,
▶ 𝑆 ⊔ { 𝑓(𝑢1, . . . , 𝑢𝑘) .= 𝑋 }⇝ 𝑆 ∪ {𝑋 .= 𝑓(𝑢1, . . . , 𝑢𝑘) },
▶ 𝑆⊔{𝑋 .= 𝑢 }⇝ 𝑆{𝑋 ↦→ 𝑢}∪{𝑋 .= 𝑢 }, if 𝑋 /∈ 𝑢 and 𝑋 ∈ 𝑆,
▶ 𝑆 ⊔ {𝑋 .= 𝑢 }⇝ fail, if 𝑋 ∈ 𝑢,

where 𝑢, 𝑢𝑗 , 𝑣𝑗 are terms and 𝑆 is a finite set of pairs of terms.
Moreover, 𝑆{𝑋 ↦→ 𝑢} means that we substitute 𝑢 for all
occurrences of 𝑋 in 𝑆. 𝑆 ⊔ 𝑈 means 𝑆 ∪ 𝑈 where 𝑆 ∩ 𝑈 = ∅ and
∈ means appears in.

8 / 34

Properties of the unification algorithm
Termination
The algorithm always terminates. Assume the following triplet

1. the number of distinct variables that occur more than once
in 𝑇 ,

2. the number of function (and constant) symbols that occur on
the left hand sides in 𝑇 ,

3. the number of pairs in 𝑇 .
Clearly, under the lexicographic order, the triple decreases after an
application of any rule.

It produces an mgu
A routine induction proof on the number of steps of the algorithm
proves that
▶ it finds an mgu, if there is a unifier of the set,
▶ it fails, if there is no unifier of the set.

9 / 34

Resolution—idea
We want to show that a set of clauses (implicitly universally
quantified) is (un)satisfiable. For example, if we want to satisfy

{{¬𝑝(𝑋), 𝑞(𝑋), 𝑟(𝑋)}, {𝑝(𝑎), 𝑝(𝑏)}, {¬𝑞(𝑌)}, {¬𝑟(𝑎)}, {¬𝑟(𝑏)}},

then satisfying the first two clauses means that also clauses

{¬𝑝(𝑋), 𝑞(𝑋), 𝑟(𝑋)} {𝑝(𝑎), 𝑝(𝑏)}
{𝑞(𝑎), 𝑟(𝑎), 𝑝(𝑏)}

{¬𝑝(𝑋), 𝑞(𝑋), 𝑟(𝑋)} {𝑝(𝑎), 𝑝(𝑏)}
{𝑞(𝑏), 𝑟(𝑏), 𝑝(𝑎)}

must be satisfied. Repeating this process for all clauses, we finally
get that 2, the empty clause, must be satisfied; a contradiction.

Remark
{¬𝑝(𝑋), 𝑞(𝑋), 𝑟(𝑋)} means ∀𝑋(¬𝑝(𝑋) ∨ 𝑞(𝑋) ∨ 𝑟(𝑋)) and
{¬𝑞(𝑌)} means ∀𝑌 (¬𝑞(𝑌)).

10 / 34

Resolution
Let 𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛 be literals and 𝑝 and 𝑞 be atomic
formulae.

{𝑙1, . . . , 𝑙𝑚, 𝑝} {¬𝑞, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛}
{𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛}𝜎

where 𝜎 = mgu(𝑝, 𝑞) and {𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛}𝜎 is equal to
{𝑙1𝜎, . . . , 𝑙𝑚𝜎, 𝑙𝑚+1𝜎, . . . , 𝑙𝑚+𝑛𝜎}. The clause
{𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛}𝜎 produced by the (binary) resolution
rule is called the resolvent of the two input clauses. We assume
that the input clauses do not share variables (renaming away).

Theorem (correctness)
{𝑙1, . . . , 𝑙𝑚, 𝑝}, {¬𝑞, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛} |=
{𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛}𝜎, where 𝜎 = mgu(𝑝, 𝑞).

Hence the resolution rule preserves satisfiability.
11 / 34

Factoring

We need to add the factoring rule. Let 𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, 𝑙, 𝑘 be
literals.

{𝑙1, . . . , 𝑙𝑚, 𝑙, 𝑘}
{𝑙1, . . . , 𝑙𝑚, 𝑙}𝜎

where 𝜎 = mgu(𝑙, 𝑘). Note that 𝑙 and 𝑘 are either both positive,
or both negative. Moreover, {𝑙1, . . . , 𝑙𝑚, 𝑙, 𝑘} |= {𝑙1, . . . , 𝑙𝑚, 𝑙}𝜎.

In propositional logic we avoided this problem completely by using
sets (of clauses). However, it is still possible to combine both rules
into just one rule.

Example
Using only the binary resolution rule, we cannot derive 2 from
clauses {𝑝(𝑋), 𝑝(𝑌)} and {¬𝑝(𝑈),¬𝑝(𝑉)}.

12 / 34

Resolution calculus (in FOL without =)
The resolution calculus has no axioms and the only deduction rules
are the binary resolution rule and the factoring.

Resolution proof
A (resolution) proof of clause 𝜙 from clauses 𝜓1, . . . , 𝜓𝑛, in FOL
without equality, is a finite sequence of clauses 𝜒1, . . . , 𝜒𝑚 such
that
▶ every 𝜒𝑖 is

▶ among 𝜓1, . . . , 𝜓𝑛, or
▶ derived by the binary resolution rule from input clauses 𝜒𝑗 and

𝜒𝑘, for 1 ≤ 𝑗 < 𝑘 < 𝑖 ≤ 𝑚, or
▶ derived by the factoring rule from an input clause 𝜒𝑗 , for

1 ≤ 𝑗 < 𝑖 ≤ 𝑚.
▶ 𝜙 = 𝜒𝑚.

We say that a clause 𝜙 is provable (derivable) from a set of clauses
{𝜓1, . . . , 𝜓𝑛}, we write {𝜓1, . . . , 𝜓𝑛} ⊢ 𝜙, if there is a proof of 𝜙
from 𝜓1, . . . , 𝜓𝑛.

13 / 34

Resolution proof

Example
We prove 2 from a set of clauses

{{¬𝑝(𝑋), 𝑞(𝑋), 𝑟(𝑋)}, {𝑝(𝑎), 𝑝(𝑏)}, {¬𝑞(𝑌)}, {¬𝑟(𝑎)}, {¬𝑟(𝑏)}}.

¬𝑝(𝑋), 𝑞(𝑋), 𝑟(𝑋) ¬𝑞(𝑌)
¬𝑝(𝑋), 𝑟(𝑋) ¬𝑟(𝑎)

¬𝑝(𝑎) 𝑝(𝑎), 𝑝(𝑏)
𝑝(𝑏)

¬𝑝(𝑋), 𝑞(𝑋), 𝑟(𝑋) ¬𝑞(𝑌)
¬𝑝(𝑋), 𝑟(𝑋) ¬𝑟(𝑏)

¬𝑝(𝑏)
2

Strictly speaking the presented derivation is not a sequence, but it
is easy to produce a sequence from it. For example,
{¬𝑝(𝑋), 𝑟(𝑋)} is derived only once in the sequence.

14 / 34

More resolvents

Unlike in propositional logic, it is possible to resolve two clauses in
multiple ways and still obtain useful resolvents.

Example
From {𝑝(𝑎), 𝑝(𝑏)} and {¬𝑝(𝑋), 𝑞(𝑋)} we can derive two
non-tautological clauses

{𝑝(𝑎), 𝑝(𝑏)} {¬𝑝(𝑋), 𝑞(𝑋)}
{𝑝(𝑏), 𝑞(𝑎)}

{𝑝(𝑎), 𝑝(𝑏)} {¬𝑝(𝑋), 𝑞(𝑋)}
{𝑝(𝑎), 𝑞(𝑏)}

15 / 34

Completeness of resolution calculus (in FOL without =)

It is not true that we can derive every valid formula in the
resolution calculus, e.g., from the empty set we derive nothing.
However, it is so called refutationally complete.

Theorem (completeness)
Let Γ be a set of clauses. If Γ is unsatisfiable, then Γ ⊢ 2.

Note that from the correctness theorem we already know the
converse implication.

Theorem
Let Γ be a set of clauses. If Γ ⊢ 2, then Γ is unsatisfiable.

16 / 34

Subsumption
A clause 𝜙 subsumes a clause 𝜓, denoted 𝜙 ⊑ 𝜓, if there is a
substitution 𝜎 such that 𝜙𝜎 ⊆ 𝜓.

If 𝜙 ⊑ 𝜓, then 𝜙 |= 𝜓.

Let Γ and Δ be sets of clauses. We write Γ ⊑ Δ if for every clause
𝜓 ∈ Δ exists a clause 𝜙 ∈ Γ such that 𝜙 ⊑ 𝜓.

Lemma
If Δ ⊢ 2 and Γ ⊑ Δ, then Γ ⊢ 2. Moreover, for every proof of 2

from Δ, there exists a proof of 2 from Γ that is not longer.

Example
{𝑝(𝑋)} ⊑ {𝑝(𝑓(𝑎))}, {𝑝(𝑋)} ⊑ {𝑝(𝑓(𝑎)), 𝑝(𝑏)},
{𝑝(𝑋)} ⊑ {𝑝(𝑌), 𝑞(𝑌)}, and {𝑝(𝑋), 𝑞(𝑌)} ⊑ {𝑝(𝑍), 𝑞(𝑍)}, but
{𝑝(𝑍), 𝑞(𝑍)} ̸⊑ {𝑝(𝑋), 𝑞(𝑌)}.

17 / 34

Subsumption example

Assume we have the following resolution refutation

𝑝(𝑓(𝑋)), 𝑞(𝑋,𝑌), 𝑟(𝑋) ¬𝑝(𝑓(𝑓(𝑐)))
𝑞(𝑓(𝑐), 𝑌), 𝑟(𝑓(𝑐)) ¬𝑞(𝑈, 𝑉)

𝑟(𝑓(𝑐)) ¬𝑟(𝑓(𝑐))
2

Then after deriving {𝑝(𝑌), 𝑟(𝑍)}, we can simplify the previous
proof into

𝑝(𝑌), 𝑟(𝑍) ¬𝑝(𝑓(𝑓(𝑐)))
𝑟(𝑍) ¬𝑟(𝑓(𝑐))

2

thanks to {𝑝(𝑌), 𝑟(𝑍)} ⊑ {𝑝(𝑓(𝑋)), 𝑞(𝑋,𝑌), 𝑟(𝑋)}.

18 / 34

Forward and backward subsumptions

Forward subsumption
If we derive a clause 𝜓 and we already have a clause 𝜙 such that
𝜙 ⊑ 𝜓, then we can remove 𝜓, because 𝜙 is stronger.

Backward subsumption
If we derive a clause 𝜙 and we already have a clause 𝜓 such that
𝜙 ⊑ 𝜓, then we can remove 𝜓, because 𝜙 is stronger. We can
remove all such 𝜓s.

19 / 34

Saturation procedure (a simplified picture)
A way how to organize proof search (also called ANL loop or the
given-clause algorithm). We split the derived clauses into two sets
▶ processed clauses 𝒫 and
▶ unprocessed clauses 𝒰 .

𝒫 𝒰

We start with the input clauses in 𝒰 and 𝒫 = ∅.
20 / 34

Saturation procedure (a simplified picture)
A way how to organize proof search (also called ANL loop or the
given-clause algorithm). We split the derived clauses into two sets
▶ processed clauses 𝒫 and
▶ unprocessed clauses 𝒰 .

𝒫 𝒰

select clause 𝐶 ∈ 𝒰

20 / 34

Saturation procedure (a simplified picture)
A way how to organize proof search (also called ANL loop or the
given-clause algorithm). We split the derived clauses into two sets
▶ processed clauses 𝒫 and
▶ unprocessed clauses 𝒰 .

𝒫 𝒰

select clause 𝐶 ∈ 𝒰

clauses derived from 𝐶 and clauses in 𝒫

20 / 34

Saturation procedure (a simplified picture)
A way how to organize proof search (also called ANL loop or the
given-clause algorithm). We split the derived clauses into two sets
▶ processed clauses 𝒫 and
▶ unprocessed clauses 𝒰 .

𝒫 𝒰

select clause 𝐶 ∈ 𝒰

clauses derived from 𝐶 and clauses in 𝒫

“All” the important consequences of clauses in 𝒫 are in 𝒫 ∪ 𝒰 .
20 / 34

Saturation procedure (a simplified picture)
A way how to organize proof search (also called ANL loop or the
given-clause algorithm). We split the derived clauses into two sets
▶ processed clauses 𝒫 and
▶ unprocessed clauses 𝒰 .

𝒫 𝒰

select clause 𝐶 ∈ 𝒰

clauses derived from 𝐶 and clauses in 𝒫

Outcomes: 2 (UNSAT), 𝑈 = ∅ (SAT), or resources exhausted.
20 / 34

Our situation
We have
▶ the resolution calculus for FOL without equality (resolution +

factoring),
▶ simplifications

▶ pure literal deletion — clauses containing a literal that occurs
only positively or negatively can be removed

▶ tautology eliminations — tautologous clauses can be removed
▶ subsumptions

However, the resolution calculus can produce many clauses that
are useless or produced in multiple ways. Hence we would like to
guide our proof search.

We can restrict our proof search in many ways, for example:
▶ select only some literals,
▶ select only some clauses,
▶ use different term orderings.

21 / 34

Ordered resolution
We know that we can impose an ordering on propositional atoms
and still be complete. Hence we can do a similar thing for ground
instances, however, for non-ground instances it is much more
involved, see later.

{𝑙1, . . . , 𝑙𝑚, 𝑝} {¬𝑞, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛}
{𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛}𝜎

where 𝜎 = mgu(𝑝, 𝑞) and 𝑝 and ¬𝑞 are maximal in their respective
clauses.

{𝑙1, . . . , 𝑙𝑚, 𝑙, 𝑘}
{𝑙1, . . . , 𝑙𝑚, 𝑙}𝜎

where 𝜎 = mgu(𝑙, 𝑘) and 𝑙 is maximal in the parent clause.
Selection function
We can overrule ordering restrictions in individual clauses by
selecting non-maximal (negative) literals in clauses. A selection
function selects a subset of literals and we compute inferences
involving only selected literals (or maximal if no selected).

22 / 34

How to select a (given) clause?

For example, all clauses are evaluated when added to 𝒰 and we
pick clauses, in a given ratio, say 1:10, by

age prefer clauses with a smaller derivational depth, and
weight prefer (shorter) clauses containing fewer symbols.

𝒫 𝒰

select clause 𝐶 ∈ 𝒰

clauses derived from 𝐶 and 𝒫 + evaluated

23 / 34

Clause selection heuristics

We usually sort clauses by some criteria:
▶ clause age — the maximal age of its parents + 1

(breadth-first search)
▶ clause weight — different types of weighting (best-first

search)
▶ small clauses are nice, but selecting only them leads to

incompleteness
▶ different types of symbols can have different weights

(predicates, functions, variables)
▶ symbols occurring in the conjecture can be prioritized

In E there are 5 priority queues and you can count different things,
in Vampire you have just age and weight. Otter’s approach is to
combine the breadth-first and best-first search in a given ratio
(e.g., 1:5 or 1:10).

24 / 34

Positive resolution

It is possible to restrict resolution in such a way that at least one
parent is always a positive clause (=contains no negative literal).

Let Γ be a set of clauses. We split it into the positive part Γ+ and
the rest Γ′ = Γ ∖ Γ+.
▶ If Γ+ = ∅, then making all atomic predicates false satisfies

Γ′ = Γ.
▶ If Γ′ = ∅, then making all atomic predicates true satisfies

Γ+ = Γ.

Proof is done for the ground case and we use the lifting argument.

25 / 34

Semantic resolution

A generalization of positive resolution, we have a model ℳ and we
always select at least one clause that is not valid in ℳ.

Set of support
We assume that some clauses must occur in any refutation. For
example, if we want to prove Γ ⊢ 𝜙, we sometimes assume that Γ
is consistent (this is not necessary!) and ¬𝜙 is needed to refute
Γ ∪ {¬𝜙}. Hence we only allow derivations where a clause
obtained from ¬𝜙 is involved.

A special case is the input resolution strategy, where at least one clause
involved in resolution is always from the input. It is complete for Horn
clauses (Prolog) and it is linear; we can see a proof as a linear sequence
where every clause is obtained from the previous one.

26 / 34

Watchlist

It is a set of clauses we feed into the prover that can be used for
guiding the proof search (lemmata, hints). For example, clauses
that led to proofs in previous similar problems.

In E, whenever a clause is generated, it is tested against the
watchlist by subsumption. Every clause on the watchlist that is
subsumed by a generated clause is removed (optional) and we can
use this fact in our strategy (boost the generated clause).

27 / 34

Clause splitting
If we can split a clause into two (or more) independent parts,
which do not share variables, then we can do that and solve two
(simpler) cases instead.

If we want to show that

Γ ∪ {𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛} ⊢ 2,

where {𝑙1, . . . , 𝑙𝑚} and {𝑙𝑚+1, . . . , 𝑙𝑚+𝑛} do not share variables,
then we can do that by showing both

Γ ∪ {𝑙1, . . . , 𝑙𝑚} ⊢ 2 and Γ ∪ {𝑙𝑚+1, . . . , 𝑙𝑚+𝑛} ⊢ 2.

It is possible to go a step further and encode more complex splits
into components as various propositional cases. Hence we can
employ a SAT solver to help us navigate through these cases. It is
called AVATAR in Vampire. Moreover, if theories are involved, we
can use an SMT solver.

28 / 34

How to select correct parameters?

See Vampire’s CASC mode at GitHub. It is a competition mode,
where the standard timelimit is 300s.

29 / 34

https://github.com/vprover/vampire/blob/master/CASC/Schedules.cpp

TPTP and TSTP

The TPTP (Thousands of Problems for Theorem Provers) is a
library of test problems for ATP systems. The TSTP (Thousands
of Solutions from Theorem Provers) is a library of solutions to
TPTP problems.

Language
Prolog like language both for input (problems) and output
(solutions). For details see TPTP and TSTP Quick Guide.

30 / 34

http://www.tptp.org/
http://www.tptp.org/TSTP
http://www.tptp.org/TPTP/QuickGuide/

TPTP example
fof(usa,axiom,(country(usa))).

fof(country_big_city,axiom,(! [C] : (country(C)
=> (big_city(capital_of(C))

& beautiful(capital_of(C)))))).

fof(usa_capital_axiom,axiom,(? [C] : (city(C)
& C = capital_of(usa)))).

fof(crime_axiom,axiom,(! [C] : (big_city(C)
=> has_crime(C)))).

fof(big_city_city,axiom,(! [C] : (big_city(C)
=> city(C)))).

fof(some_beautiful_crime,conjecture,(? [C] : (city(C)
& beautiful(C) & has_crime(C)))).

31 / 34

TPTP roles (official definitions)
▶ axioms are accepted, without proof. There is no guarantee that the

axioms of a problem are consistent.
▶ hypothesiss are assumed to be true for a particular problem, and are used

like axioms.
▶ definitions are intended to define symbols. They are either universally

quantified equations, or universally quantified equivalences with an
atomic lefthand side. They can be treated like axioms.

▶ assumptions can be used like axioms, but must be discharged before a
derivation is complete.

▶ lemmas and theorems have been proven from the axioms. They can be
used like axioms in problems, and a problem containing a non-redundant
lemma or theorem is ill-formed. They can also appear in derivations.
theorems are more important than lemmas from the user perspective.

▶ conjectures are to be proven from the axiom(-like) formulae. A problem is
solved only when all conjectures are proven.

▶ negated_conjectures are formed from negation of a conjecture (usually in
a FOF to CNF conversion).

▶ plains have no specified user semantics.
Morever, there are fi_domain, fi_functors, fi_predicates, type, and unknown
roles.

32 / 34

http://www.tptp.org/TPTP/SyntaxBNF.html

System before TPTP

System before TPTP is an interface for preprocessing systems.

cnf(i_0_4,plain, (capital_of(usa) = esk1_0)).
cnf(i_0_1,plain, (country(usa))).
cnf(i_0_5,plain, (city(esk1_0))).
cnf(i_0_7,plain, (city(X1) | ~ big_city(X1))).
cnf(i_0_6,plain, (has_crime(X1) | ~ big_city(X1))).
cnf(i_0_3,plain,

(big_city(capital_of(X1)) | ~ country(X1))).
cnf(i_0_2,plain,

(beautiful(capital_of(X1)) | ~ country(X1))).
cnf(i_0_8,negated_conjecture,

(~ beautiful(X1) | ~ city(X1) | ~ has_crime(X1))).

33 / 34

http://www.tptp.org/cgi-bin/SystemB4TPTP

System on TPTP

System on TPTP is an interface for solvers.
Proof found!
SZS status Theorem
SZS output start CNFRefutation
fof(some_beautiful_crime, conjecture, ?[X1]:((city(X1)&beautiful(X1))&has_crime(X1)), file(’/tmp/SystemOnTPTPFormReply111578/SOT_mQKyc4’, some_beautiful_crime)).
fof(crime_axiom, axiom, ![X1]:(big_city(X1)=>has_crime(X1)), file(’/tmp/SystemOnTPTPFormReply111578/SOT_mQKyc4’, crime_axiom)).
fof(country_big_city, axiom, ![X1]:(country(X1)=>(big_city(capital_of(X1))&beautiful(capital_of(X1)))), file(’/tmp/SystemOnTPTPFormReply111578/SOT_mQKyc4’, country_big_city)).
fof(usa_capital_axiom, axiom, ?[X1]:(city(X1)&X1=capital_of(usa)), file(’/tmp/SystemOnTPTPFormReply111578/SOT_mQKyc4’, usa_capital_axiom)).
fof(usa, axiom, country(usa), file(’/tmp/SystemOnTPTPFormReply111578/SOT_mQKyc4’, usa)).
fof(c_0_5, negated_conjecture, ~(?[X1]:((city(X1)&beautiful(X1))&has_crime(X1))), inference(assume_negation,[status(cth)],[some_beautiful_crime])).
fof(c_0_6, negated_conjecture, ![X6]:(~city(X6)|~beautiful(X6)|~has_crime(X6)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_5])])).
fof(c_0_7, plain, ![X4]:(~big_city(X4)|has_crime(X4)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[crime_axiom])])).
fof(c_0_8, plain, ![X2]:((big_city(capital_of(X2))|~country(X2))&(beautiful(capital_of(X2))|~country(X2))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[country_big_city])])])).
fof(c_0_9, plain, (city(esk1_0)&esk1_0=capital_of(usa)), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[usa_capital_axiom])])).
cnf(c_0_10, negated_conjecture, (~city(X1)|~beautiful(X1)|~has_crime(X1)), inference(split_conjunct,[status(thm)],[c_0_6])).
cnf(c_0_11, plain, (has_crime(X1)|~big_city(X1)), inference(split_conjunct,[status(thm)],[c_0_7])).
cnf(c_0_12, plain, (beautiful(capital_of(X1))|~country(X1)), inference(split_conjunct,[status(thm)],[c_0_8])).
cnf(c_0_13, plain, (esk1_0=capital_of(usa)), inference(split_conjunct,[status(thm)],[c_0_9])).
cnf(c_0_14, plain, (country(usa)), inference(split_conjunct,[status(thm)],[usa])).
cnf(c_0_15, plain, (big_city(capital_of(X1))|~country(X1)), inference(split_conjunct,[status(thm)],[c_0_8])).
cnf(c_0_16, negated_conjecture, (~city(X1)|~beautiful(X1)|~big_city(X1)), inference(spm,[status(thm)],[c_0_10, c_0_11])).
cnf(c_0_17, plain, (city(esk1_0)), inference(split_conjunct,[status(thm)],[c_0_9])).
cnf(c_0_18, plain, (beautiful(esk1_0)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_12, c_0_13]), c_0_14])])).
cnf(c_0_19, plain, (big_city(esk1_0)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_15, c_0_13]), c_0_14])])).
cnf(c_0_20, negated_conjecture, ($false), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_16, c_0_17]), c_0_18]), c_0_19])]), [’proof’]).

34 / 34

http://www.tptp.org/cgi-bin/SystemOnTPTP

Bibliography I

Harrison, John (Mar. 2009). Handbook of Practical Logic and
Automated Reasoning. New York: Cambridge University Press,
p. 702. url: http://www.cambridge.org/9780521899574.
Robinson, John Alan and Andrei Voronkov, eds. (2001).
Handbook of Automated Reasoning. Vol. 1. Elsevier Science.

http://www.cambridge.org/9780521899574

	References

