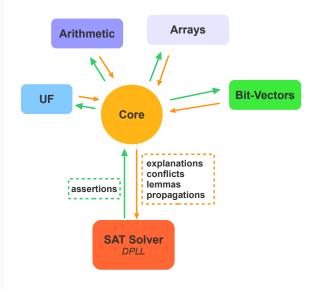
Logical reasoning and programming SMT (cont'd) and quantifiers in FOL

Karel Chvalovský

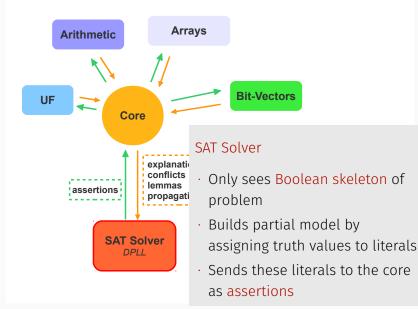
CIIRC CTU

Parts of this presentation are significantly based on materials from recent SAT/SMT Summer Schools and SC 2 Summer School.

SMT SOLVERS



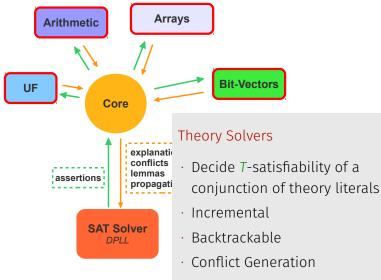
SMT SOLVERS



SMT SOLVERS



- Sends each assertion to the appropriate theory
- Sends deduced literals to other theories/SAT solver
- · Handles theory combination



• Theory Propagation

Combining theories

Instead of solving satisfiability of a formula φ in a theory \mathcal{T} , we can also try to solve the same problem for a theory that is created as a union of more theories $\mathcal{T}_1 \cup \cdots \cup \mathcal{T}_n$, where we already have solvers for all individual \mathcal{T}_i , for $1 \leq i \leq n$. For example, we can combine \mathcal{T}_{LRA} and \mathcal{T}_{UF} .

We could develop a special solver for the new theory $\mathcal{T}_1 \cup \cdots \cup \mathcal{T}_n$, or attempt to combine individual solvers together in a uniform way by

- separating reasoning for individual theories (purification),
- exchanging entailed equalities between solvers (equality propagation).

If individual theories remain satisfiable after exchanging all entailed equalitites between solvers (propagation), then the combination is also satisfiable, otherwise it is unsatisfiable.

$$f(f(x) - f(y)) = a$$

$$f(0) > a + 2$$

$$x = y$$

$$f(f(x) - f(y)) = a$$

$$f(0) > a + 2$$

$$x = y$$

$$f(f(x) - f(y)) = a$$

$$f(0) > a + 2$$

$$x = y$$

$$f(f(x) - f(y)) = a \implies f(e_1) = a \implies f(e_1) = a$$
$$e_1 = f(x) - f(y) \qquad e_1 = e_2 - e_3$$
$$e_2 = f(x)$$
$$e_3 = f(y)$$

$$f(f(x) - f(y)) = a$$

 $f(0) > a + 2$
 $x = y$

$$f(0) > a + 2 \implies f(e_4) > a + 2 \implies f(e_4) = e_5$$
$$e_4 = 0 \qquad \qquad e_4 = 0$$
$$e_5 > a + 2$$

L ₁	L ₂
$f(e_1) = a$	$e_2 - e_3 = e_1$
$f(x) = e_2$	$e_{4} = 0$
$f(y) = e_3$	$e_5 > a + 2$
$f(e_4) = e_5$	
x = y	

L ₁	L ₂
$f(e_1) = a$	$e_2 - e_3 = e_1$
$f(x) = e_2$	$e_{4} = 0$
$f(y) = e_3$	$e_5 > a + 2$
$f(e_4) = e_5$	
x = y	

 $L_1 \models_{\mathrm{UF}} e_2 = e_3$

L ₁	L ₂
$f(e_1) = a$	$e_2 - e_3 = e_1$
$f(x) = e_2$	$e_{4} = 0$
$f(y) = e_3$	$e_5 > a + 2$
$f(e_4) = e_5$	$e_2 = e_3$
x = y	

L ₁	L ₂
$f(e_1) = a$	$e_2 - e_3 = e_1$
$f(x) = e_2$	$e_{4} = 0$
$f(y) = e_3$	$e_5 > a + 2$
$f(e_4) = e_5$	$e_2 = e_3$
x = y	

 $L_2 \models_{\text{LRA}} e_1 = e_4$

L ₁	L ₂
$f(e_1) = a$	$e_2 - e_3 = e_1$
$f(x) = e_2$	$e_{4} = 0$
$f(y) = e_3$	$e_5 > a + 2$
$f(e_4) = e_5$	$e_2 = e_3$
x = y	
$e_1 = e_4$	

L ₁	L ₂
$f(e_1) = a$	$e_2 - e_3 = e_1$
$f(x) = e_2$	$e_{4} = 0$
$f(y) = e_3$	$e_5 > a + 2$
$f(e_4) = e_5$	$e_2 = e_3$
x = y	
$e_1 = e_4$	

 $L_1 \models_{\rm UF} a = e_5$

L ₁	L ₂
$f(e_1) = a$	$e_2 - e_3 = e_1$
$f(x) = e_2$	$e_{4} = 0$
$f(y) = e_3$	$e_5 > a + 2$
$f(e_4) = e_5$	$e_2 = e_3$
x = y	$a = e_5$
$e_1 = e_4$	

L ₁	L ₂
$f(e_1) = a$	$e_2 - e_3 = e_1$
$f(x) = e_2$	$e_{4} = 0$
$f(y) = e_3$	$e_5 > a + 2$
$f(e_4) = e_5$	$e_2 = e_3$
x = y	$a = e_5$
$e_1 = e_4$	

Third step: check for

satisfiability locally

 $\begin{array}{c} L_1 \not\models_{\mathrm{UF}} \bot \\ L_2 \models_{\mathrm{LRA}} \bot \end{array}$

L ₁	L ₂
$f(e_1) = a$	$e_2 - e_3 = e_1$
$f(x) = e_2$	$e_{4} = 0$
$f(y) = e_3$	$e_5 > a + 2$
$f(e_4) = e_5$	$e_2 = e_3$
x = y	$a = e_5$
$e_1 = e_4$	

Third step: check for

satisfiability locally

 $\begin{array}{c} L_1 \not\models_{\mathrm{UF}} \bot \\ L_2 \not\models_{\mathrm{LRA}} \bot \end{array} \ \ \, \text{Report unsatisfiable} \end{array}$

Nelson-Oppen approach

A theory \mathcal{T} is stably infinite, if every \mathcal{T} -satisfiable ground formula is \mathcal{T} -satisfied by an infinite \mathcal{T} -interpretation. For example, finite structures like (QF_BV) are not stably infinite.

A theory \mathcal{T} is convex, if \mathcal{T} is a finite set of literals and if $\Gamma \models_{\mathcal{T}} \varphi_1 \lor \cdots \lor \varphi_n$, then $\Gamma \models_{\mathcal{T}} \varphi_i$ for some $i \in \{1, \ldots, n\}$. For example, (QF_UF) and (QF_LRA) are convex, but (QF_LIA), (QF_AX), and (QF_BV) are not convex.

It is possible to combine theories (Nelson-Oppen method) that are

- signature-disjoint (equalities are shared),
- stably infinite, and
- convex.

It is even possible to combine non-convex theories by propagating disjunctions of equalities (splitting). From practical point of view, many optimizations are required. There are also other methods, e.g., model-based theory combinations.

$$1 \le x \le 2 f(1) = a f(2) = f(1) + 3 a = b + 2$$

 $1 \le x \le 2$ f(1) = a f(2) = f(1) + 3a = b + 2

 $1 \le x \le 2$ f(1) = af(2) = f(1) + 3a = b + 2

$$f(1) = a \implies f(e_1) = a$$
$$e_1 = 1$$

 $1 \le x \le 2$ f(1) = af(2) = f(1) + 3a = b + 2

$$f(2) = f(1) + 3 \implies e_2 = 2$$

$$f(e_2) = e_3$$

$$f(e_1) = e_4$$

$$e_3 = e_4 + 3$$

L ₁	L ₂
$1 \le x$	$f(e_1) = a$
$x \le 2$	f(x) = b
$e_1 = 1$	$f(e_2) = e_3$
a = b + 2	$f(e_1)=e_4$
$e_2 = 2$	
$e_3 = e_4 + 3$	
$a = e_4$	

L ₁	L ₂
$1 \le x$	$f(e_1) = a$
$x \le 2$	f(x) = b
$e_1 = 1$	$f(e_2) = e_3$
a = b + 2	$f(e_1) = e_4$
$e_2 = 2$	
$e_3 = e_4 + 3$	
$a = e_4$	

No more entailed equalities, but $L_1 \models_{\text{LIA}} x = e_1 \lor x = e_2$

L_1	L ₂
$1 \le x$	$f(e_1) = a$
$x \le 2$	f(x) = b
$e_1 = 1$	$f(e_2) = e_3$
a = b + 2	$f(e_1) = e_4$
$e_2 = 2$	
$e_3 = e_4 + 3$	
$a = e_4$	

Consider each case of $x = e_1 \lor x = e_2$ separately

L ₁	L ₂
$1 \le x$	$f(e_1) = a$
$x \le 2$	f(x) = b
$e_1 = 1$	$f(e_2) = e_3$
a = b + 2	$f(e_1) = e_4$
$e_2 = 2$	
$e_3 = e_4 + 3$	
$a = e_4$	

Case 1) $x = e_1$

L1	L ₂
$1 \le x$	$f(e_1) = a$
$x \le 2$	f(x) = b
$e_1 = 1$	$f(e_2) = e_3$
a = b + 2	$f(e_1) = e_4$
$e_2 = 2$	$x = e_1$
$e_3 = e_4 + 3$	
$a = e_4$	
$x = e_1$	

L ₁	L ₂
$1 \le x$	$f(e_1) = a$
$x \le 2$	f(x) = b
$e_1 = 1$	$f(e_2) = e_3$
a = b + 2	$f(e_1) = e_4$
$e_2 = 2$	$x = e_1$
$e_3 = e_4 + 3$	
$a = e_4$	
$x = e_1$	

 $L_2 \models_{\text{UF}} a = b$, which entails \perp when sent to L_1

L ₁	L ₂
$1 \le x$	$f(e_1) = a$
$x \le 2$	f(x) = b
$e_1 = 1$	$f(e_2) = e_3$
a = b + 2	$f(e_1) = e_4$
$e_2 = 2$	
$e_3 = e_4 + 3$	
$a = e_4$	

L ₁	L ₂
$1 \le x$	$f(e_1) = a$
$x \le 2$	f(x) = b
$e_1 = 1$	$f(e_2) = e_3$
a = b + 2	$f(e_1)=e_4$
$e_2 = 2$	
$e_3 = e_4 + 3$	
$a = e_4$	

Case 2) $x = e_2$

L1	L ₂
$1 \le x$	$f(e_1) = a$
$x \le 2$	f(x) = b
$e_1 = 1$	$f(e_2) = e_3$
a = b + 2	$f(e_1) = e_4$
$e_2 = 2$	$x = e_2$
$e_3 = e_4 + 3$	
$a = e_4$	
$x = e_2$	

L ₁	L ₂
$1 \le x$	$f(e_1) = a$
<i>x</i> ≤ 2	f(x) = b
$e_1 = 1$	$f(e_2) = e_3$
a = b + 2	$f(e_1) = e_4$
$e_2 = 2$	$x = e_2$
$e_3 = e_4 + 3$	
$a = e_4$	
$x = e_2$	

 $L_2 \models_{\text{UF}} e_3 = b$, which entails \perp when sent to L_1

Why is SMT useful?

- it combines (not only) propositional logic reasoning with a domain-specific reasoning in a modular way,
- it covers commonly used theories and their combinations, for example, in software verification, we reason about
 - equalities,
 - arithmetic,
 - data structures,
- many applications in
 - scheduling,
 - test generation,
 - symbolic software verification,
 - static analysis,
 - program verificaiton,
 - hardware verification,

 used by major companies like Microsoft (develops Z3), Amazon, . . .

Quantifiers?

It is convenient to use \forall and \exists and modern SMT solvers can deal with quantifiers.

For some theories, it is even possible to eliminate quantifiers.

However, in SMT, it usually means that instances are produced in an ad hoc way. . .

Here, we continue with a systematic approach how to treat quantifiers. Hence we want to discuss provability in the full FOL.

Example (group theory)

Assume we have axioms

$$\begin{aligned} \forall X(1 \cdot X = X) \\ \forall X(X^{-1} \cdot X = 1) \\ \forall X \forall Y \forall Z((X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)) \end{aligned}$$

and we want to know whether

1.
$$\forall X(X \cdot 1 = X),$$

2.
$$\forall X(X \cdot X^{-1} = 1)$$
, and

3.
$$\forall X \forall Y (X \cdot Y = Y \cdot X)$$

follow from them. These are tasks in which automated theorem provers usually outperform people.

Two types of occurrences of variables

There is no difference between

 $\forall Xp(X) \text{ and } \forall Yp(Y)$

when it comes to their meaning. Hence they can be freely replaced in formuale.

However, there is clearly a difference between

p(X) and p(Y),

because if we replace p(X) by p(Y) in

 $p(X) \vee \neg p(Y),$

then we get

 $p(Y) \vee \neg p(Y).$

Free and bounded occurrences of variables

We distinguish two types of occurrences of variables in a formula φ

- free not under a scope of a quantifier, denoted $FV(\varphi)$,
- bounded under a scope of a quantifier, denoted $BV(\varphi)$.

$$FV(\varphi) = \begin{cases} \{X \mid X \text{ occurs in } \varphi\}, & \text{ if } \varphi \text{ is atomic,} \\ FV(\psi), & \text{ if } \varphi = \neg \psi, \\ FV(\psi) \cup FV(\chi), & \text{ if } \varphi = \psi \circ \chi \text{ for } \circ \in \{\land, \lor, \rightarrow\}, \\ FV(\psi) \setminus \{X\}, & \text{ if } \varphi = QX\psi \text{ for } Q \in \{\forall, \exists\}. \end{cases}$$

$$BV(\varphi) = \begin{cases} \emptyset, & \text{if } \varphi \text{ is atomic,} \\ BV(\psi), & \text{if } \varphi = \neg \psi, \\ BV(\psi) \cup BV(\chi), & \text{if } \varphi = \psi \circ \chi \text{ for } \circ \in \{\land, \lor, \rightarrow\}, \\ BV(\psi) \cup \{X\}, & \text{if } \varphi = QX\psi \text{ for } Q \in \{\forall, \exists\}. \end{cases}$$

It is possible that $FV(\varphi) \cap BV(\varphi) \neq \emptyset$.

Tarski's definition of truth

Let $\mathcal{M} = (D, i)$ be a model for L, e be an evaluation in \mathcal{M} , then we say that a formula φ is satisfied in \mathcal{M} by e, denoted $\mathcal{M} \models \varphi[e]$, or e satisfies φ in \mathcal{M} , if

• $\mathcal{M} \models p(t_1, \ldots, t_n)[e]$ iff $(t_1^{\mathcal{M}}[e], \ldots, t_n^{\mathcal{M}}[e]) \in i(p)$, where p is n-ary predicate symbol in L,

$$\mathcal{M} \models (t_1 = t_2)[e] \text{ iff } (t_1^{\mathcal{M}}[e], t_2^{\mathcal{M}}[e]) \in \mathrm{id}_D, \text{ (in FOL with eq.)}$$
$$\mathcal{M} \models (\neg \psi)[e] \text{ iff } \mathcal{M} \not\models \psi[e],$$

•
$$\mathcal{M} \models (\psi \rightarrow \chi)[e]$$
 iff $\mathcal{M} \not\models \psi[e]$ or $\mathcal{M} \models \chi[e]$

• $\mathcal{M} \models (\psi \land \chi)[e]$ iff $\mathcal{M} \models \psi[e]$ and $\mathcal{M} \models \chi[e]$,

•
$$\mathcal{M} \models (\psi \lor \chi)[e]$$
 iff $\mathcal{M} \models \psi[e]$ or $\mathcal{M} \models \chi[e]$,

- $\mathcal{M} \models (\forall X \psi)[e]$ iff for every $a \in D$ holds $\mathcal{M} \models \psi[e(X \mapsto a)]$,
- $\blacktriangleright \ \mathcal{M} \models (\exists X \psi)[e] \text{ iff exists } a \in D \text{ s.t. } \mathcal{M} \models \psi[e(X \mapsto a)].$

A formula φ is satisfiable, if there is \mathcal{M} and e s.t. $\mathcal{M} \models \varphi[e]$. A set of formulae Γ is satisfiable, if there is \mathcal{M} and e s.t. $\mathcal{M} \models \varphi[e]$, for every $\varphi \in \Gamma$.

Semantic consequence relation

A formula φ is valid (or holds) in \mathcal{M} , denoted $\mathcal{M} \models \varphi$, if φ is satisfied in \mathcal{M} by any evaluation e.

A formula φ follows from (or is a consequence of) a set of formula Γ , denoted $\Gamma \models \varphi$, if and only if for any model \mathcal{M} and evaluation e, if for every $\psi \in \Gamma$ holds $\mathcal{M} \models \psi[e]$, then $\mathcal{M} \models \varphi[e]$. We write $\models \varphi$, if $\Gamma = \emptyset$ and say that φ is valid (or holds).

$$\Gamma \models \varphi \quad \text{iff} \quad \forall \mathcal{M} \forall e (\forall \psi \in \Gamma(\mathcal{M} \models \psi[e]) \Rightarrow \mathcal{M} \models \varphi[e])$$

Note that

$$\Gamma \models \varphi$$
 iff $\Gamma \cup \{\neg \varphi\}$ is unsatisfiable.

We say that two formulae φ and ψ are (semantically) equivalent, denoted $\varphi \equiv \psi$, if $\{\varphi\} \models \psi$ and $\{\psi\} \models \varphi$.

Basic properties

Let φ , ψ , and χ be formulae such that $X \notin FV(\psi)$, then

- $\blacktriangleright \neg \forall X \varphi \equiv \exists X \neg \varphi,$
- $\blacktriangleright \neg \exists X \varphi \equiv \forall X \neg \varphi,$
- $\blacktriangleright \quad \forall X \forall Y \varphi \equiv \forall Y \forall X \varphi,$
- $\blacktriangleright \exists X \exists Y \varphi \equiv \exists Y \exists X \varphi,$
- $\blacktriangleright \ \forall X(\varphi \land \chi) \equiv \forall X \varphi \land \forall X \chi,$
- $\blacktriangleright \exists X(\varphi \lor \chi) \equiv \exists X\varphi \lor \exists X\chi,$
- $\blacktriangleright \exists X(\varphi \rightarrow \chi) \equiv \forall X \varphi \rightarrow \exists X \chi,$

- $\blacktriangleright (\psi \land \forall X\varphi) \equiv \forall X(\psi \land \varphi),$
- $\blacktriangleright (\psi \land \exists X \varphi) \equiv \exists X (\psi \land \varphi),$

$$\blacktriangleright (\psi \lor \forall X\varphi) \equiv \forall X(\psi \lor \varphi),$$

- $\blacktriangleright (\psi \lor \exists X\varphi) \equiv \exists X(\psi \lor \varphi),$
- $\blacktriangleright (\psi \to \forall X \varphi) \equiv \forall X (\psi \to \varphi),$
- $\blacktriangleright (\psi \to \exists X \varphi) \equiv \exists X (\psi \to \varphi),$
- $\blacktriangleright (\forall X \varphi \to \psi) \equiv \exists X (\varphi \to \psi),$
- $\blacktriangleright \ (\exists X \varphi \to \psi) \equiv \forall X (\varphi \to \psi).$

Equivalent formulae

We can freely replace (sub)formulae by equivalent formulae. More formally

Lemma

Let ψ be a subformula of a formula φ , and χ be a formula such that $\psi \equiv \chi$. A formula φ' is obtained by replacing ψ in φ by χ . It holds that $\varphi \equiv \varphi'$.

Example

For example, this is useful for renaming bounded variables. Clearly $\forall Xr(X,Y) \equiv \forall Zr(Z,Y)$ and hence $\forall X(p(X) \land \forall Xr(X,Y))$ is equivalent to $\forall X(p(X) \land \forall Zr(Z,Y))$.

Note that $\forall Xr(X,Y)$ is not equivalent to $\forall Yr(Y,Y)$!

How to decide whether $\Gamma \models \varphi$ for FOL using computers?

First, we know that this problem is undecidable...

However, we can still use our favorite recipe

1. show that it is sufficient to deal only with a restricted class of formulae by presenting various transformations and

(=clauses)

2. use techniques developed for less expressive systems

(=resolution)

to create a procedure that is quite useful.

Note that this is not the only possible approach! Moreover, the other approaches may have various advantages. Similarly, using only CNFs in propositional logic may lead to various problems.

Prenexing

We say that a formula φ is in prenex (normal) form, if

$$\varphi = Q_1 X_1, \dots, Q_n X_n \psi,$$

where Q_1, \ldots, Q_n are quantifiers, X_1, \ldots, X_n are mutually distinct variables, and ψ is an open (quantifier-free) formula.

Lemma

For every formula φ , there exists a formula ψ in prenex (normal) form such that $\varphi \equiv \psi$.

Proof.

By induction on the structure of the formula φ using previous equivalences and renaming of bounded variables.

Substitutions

A substitution, $\sigma \colon Var \to Term$, is a function that assigns terms to variables. An application of a substitution σ on a formula φ , denoted $\varphi \sigma$, is a formula φ with all free occurrences of variables replaced simultaneously by their σ images. We usually denote substitutions σ , θ , and η .

Note that we usually provide only the non-identity part of a substitution. A substitution $\sigma: Var \rightarrow Var$ is called a *renaming*.

Example

Let
$$\sigma = \{X \mapsto f(X, Z), Y \mapsto a\}$$
, then
 $((p(X, Y) \to q(Y)) \lor (\forall Vr(V, X)))\sigma$

is

$$((p(f(X,Z),a) \to q(a)) \lor (\forall Vr(V,f(X,Z)))).$$

Substitutability

A term t is substitutable into a formula φ for a variable X, if no occurrence of a variable in t becomes bounded in φ when all free occurrences of X in φ are replaced by t.

This directly extends to substitutions. From now on, we assume that if we apply a substitution, it is substitutable. However, we can always avoid all these potential problems by renaming bounded variables appropriately.

Example

- Let $\sigma = \{ X \mapsto f(X,Y), Y \mapsto g(X), Z \mapsto g(X) \}$, then
 - $\blacktriangleright \ (\forall Zp(X,Y,Z))\sigma = \forall Zp(f(X,Y),g(X),Z) \text{, and}$
 - $\blacktriangleright \ (\forall Yp(X,Y,Z))\sigma$ is not substitutable, but
 - $\blacktriangleright \ (\forall Up(X,U,Z))\sigma = \forall U(f(X,Y),U,g(X)).$

Sentences

A term is ground (or closed), if it contains no variables. A formula φ is a sentence (or closed), if it contains no free occurrences of variables. A formula φ is open, if it contains no quantifiers.

Lemma

Let φ be a sentence, σ be a substitution, $\mathcal M$ be an interpretation, and e be an evaluation, then

1.
$$\varphi \sigma = \varphi$$
,
2. $\mathcal{M} \models \varphi[e]$ iff $\mathcal{M} \models \varphi[e']$ for every evaluation e' ,
3. $\mathcal{M} \models \varphi$ or $\mathcal{M} \models \neg \varphi$.

Example

 $p(a) \text{ and } \forall X \forall Y(p(X,b,g(Y,X)) \rightarrow q(f(f(b)),X)) \text{ are sentences.} \\ \forall Y(p(X,b,g(Y,X)) \rightarrow q(f(f(b)),X)) \text{ is not a sentence.} \end{cases}$

Skolem functions

It is possible to get rid of existential quantifiers by introducing Skolem functions (or Skolem constants) that behave as witnesses (or choice functions).

We know that

$$\exists X \forall Y \exists Z p(X, Y, Z) \tag{1}$$

follows from

$$\forall Y p(c, Y, f(Y)) \tag{2}$$

where c and f/1 are fresh. Although (2) does not follow from (1), they are equisatisfiable.

Skolemization

We say that a formula is in Skolem normal form if it is in prenex normal form and it contains no existential quantifiers.

We can obtain a formula in Skolem normal form from a formula φ in prenex normal form by eliminating the first existential quantifier in

$$\varphi = \forall X_1 \dots \forall X_n \exists Y \psi.$$

We obtain

$$\varphi' = \forall X_1 \dots \forall X_n \psi \{ Y \mapsto f(X_1, \dots, X_n) \}$$

where f is a fresh n-ary function symbol. Then we repeat the whole process with φ' until there is no existential quantifier in the formula. The resulting formula is equisatisfiable with φ .

We prefer Skolem functions with smaller arities.

Usual transformations

NNF (negation normal form)

Apply the following rewriting steps as long as possible:

$$\neg \neg \varphi \quad \rightsquigarrow \quad \varphi$$
$$\varphi \rightarrow \psi \quad \rightsquigarrow \quad \neg \varphi \lor \psi$$
$$\neg (\varphi \land \psi) \quad \rightsquigarrow \quad \neg \varphi \lor \neg \psi$$
$$\neg (\varphi \lor \psi) \quad \rightsquigarrow \quad \neg \varphi \land \neg \psi$$
$$\neg (\forall X \varphi) \quad \rightsquigarrow \quad \exists X \neg \varphi$$
$$\neg (\exists X \varphi) \quad \rightsquigarrow \quad \forall X \neg \varphi$$

Rectified formulae

A formula φ is rectified if

- \blacktriangleright no variable occurs both free and bounded in $\varphi,$
- no two quantifiers in φ quantify over the same variable.
 We obtain a rectified formula by renaming bounded variables.

Clauses in FOL

We adapt our terminology from propositional logic.

A *literal* is an atomic formula (positive), or a negation of an atomic formula (negative).

A *clause* is a disjunction of finitely many literals. An important special case is the empty clause, denoted \Box .

A formula φ is in conjunctive normal form (CNF) if φ is a conjunction of clauses.

Recall two special cases:

- ▶ the empty clause □ (empty disjunction) is unsatisfiable,
- the empty conjunction is satisfiable.

CNF

The universal closure of a formula φ , denoted $\forall \varphi$, is a formula $\forall X_1 \dots \forall X_n \varphi$, where $\{X_1, \dots, X_n\} = FV(\varphi)$.

We produce a CNF $cnf(\varphi)$ (implicitly universally quantified) from a sentence φ by performing the following steps

- 1. produce a NNF,
- 2. rectify,
- 3. skolemize (an obvious generalization for sentences not in prenex normal form),
- 4. remove all universal quantifiers,
- 5. produce a CNF as in propositional logic.

Let $\operatorname{cnf}(\varphi) = \{\chi_1, \ldots, \chi_m\}$, where χ_i are clauses. It holds that

 φ is satisf. iff $\forall \bigwedge \operatorname{cnf}(\varphi)$ is satisf. iff $\forall \chi_1 \land \cdots \land \forall \chi_m$ is satisf.

Our problem

Let $\Gamma=\{\psi_1,\ldots,\psi_n\}$ be a set of senteces and φ be a sentence. We know that

$$\begin{split} \Gamma \models \varphi \\ & \text{iff} \\ \{\psi_1, \dots, \psi_n\} \cup \{\neg \varphi\} \text{ is unsatisfiable} \\ & \text{iff} \\ \forall \bigwedge \operatorname{cnf}(\psi_1 \wedge \dots \wedge \psi_n \wedge \neg \varphi) \text{ is unsatisfiable}, \\ & \text{iff} \\ \forall \chi_1 \wedge \dots \wedge \forall \chi_m \text{ is unsatisfiable}, \end{split}$$

where $\operatorname{cnf}(\psi_1 \wedge \cdots \wedge \psi_n \wedge \neg \varphi) = \{\chi_1, \ldots, \chi_m\}$. (=a set of clauses).

From now on, we always assume that a set of clauses is implicitly universally quantified.

Used presentation

The slides 1, 3, and 5 are taken from Tinelli 2017.

Bibliography I

 Robinson, John Alan and Andrei Voronkov, eds. (2001). Handbook of Automated Reasoning. Vol. 1. Elsevier Science.
 Tinelli, Cesare (2017). "Foundations of Satisfiability Modulo Theories". SC² Summer School 2017. URL: http://www.scsquare.org/CSA/school/lectures/SCSC-Tinelli.pdf.