Logical reasoning and programming, lab session 6

(October 30, 2023)
6.1 Show that

$$
\left(g\left(f\left(x_{1}-2\right)\right)=x_{1}+2\right) \wedge\left(g\left(f\left(x_{2}\right)\right)=x_{2}-2\right) \wedge\left(x_{2}+1=x_{1}-1\right)
$$

is unsatisfiable by the Nelson-Oppen procedure, where x_{1} and x_{2} are integers and f and g uninterpreted functions.

Why does the procedure work here even though QF_LIA is non-convex?
6.2 If we want to combine theories in SMT using the Nelson-Oppen method, we require that both of them are stably infinite. Assume two theories \mathcal{T}_{1} with the language $\{f\}$ and \mathcal{T}_{2} with the language $\{g\}$, where f and g are uninterpreted unary function symbols. Moreover, \mathcal{T}_{1} has only models of size at most 2 (for example, it contains $\forall X \forall Y \forall Z(X=Y \vee X=Z)$ as an axiom). Show that the Nelson-Oppen method says that

$$
f\left(x_{1}\right) \neq f\left(x_{2}\right) \wedge g\left(x_{2}\right) \neq g\left(x_{3}\right) \wedge g\left(x_{1}\right) \neq g\left(x_{3}\right) .
$$

is satisfiable in the union of \mathcal{T}_{1} and \mathcal{T}_{2}, but this is clearly incorrect.
6.3 Show that the following formulae are valid and provide counter-examples for the opposite implications:
(a) $\forall X p(X) \vee \forall X q(X) \rightarrow \forall X(p(X) \vee q(X))$,
(b) $\exists X(p(X) \wedge q(X)) \rightarrow \exists X p(X) \wedge \exists X q(X)$,
(c) $\exists X \forall Y p(X, Y) \rightarrow \forall Y \exists X p(X, Y)$,
(d) $\forall X p(X) \rightarrow \exists X p(X)$.
6.4 Show that the "exists unique" quantifier \exists ! does not commute with \exists, \forall, nor \exists !.
6.5 Decide whether for any formula φ holds:
(a) $\varphi \equiv \forall \varphi$,
(b) $\varphi \equiv \exists \varphi$,
(c) $\models \varphi$ iff $\models \forall \varphi$,
(d) $\models \varphi$ iff $\models \exists \varphi$,
where $\forall \varphi(\exists \varphi)$ is the universal (existential) closure of φ. If not, does at least one implication hold?
6.6 Show that for any set of formulae Γ and a formula φ holds if $\Gamma \models \varphi$, then $\forall \Gamma \models \varphi$, where $\forall \Gamma=\{\forall \psi: \psi \in \Gamma\}$. Does the opposite direction hold?
6.7 Does it hold $\Gamma \models \varphi$ iff $\forall \Gamma \models \forall \varphi$?
6.8 Find a set of formulae Γ and a formula φ such that $\Gamma \models \varphi$ and $\Gamma \models \neg \varphi$.
6.9 Produce equivalent formulae in prenex form:
(a) $\forall X(p(X) \rightarrow \forall Y(q(X, Y) \rightarrow \neg \forall Z r(Y, Z)))$,
(b) $\exists X p(X, Y) \rightarrow(q(X) \rightarrow \neg \forall Z p(X, Z))$,
(c) $\exists X p(X, Y) \rightarrow(q(X) \rightarrow \neg \exists Z p(X, Z))$,
(d) $p(X, Y) \rightarrow \exists Y(q(Y) \rightarrow(\exists X q(X) \rightarrow r(Y)))$,
(e) $\forall Y p(Y) \rightarrow(\forall X q(X) \rightarrow r(Z))$.
6.10 In 6.9 you could obtain in some cases various prefixes; the order of quantifiers can be different. Are all these variants correct?
6.11 Can we produce a formula equivalent to 6.9 e with just one quantifier?
6.12 Produce Skolemized formulae equisatisfiable with those in 6.9 Try to produce as simple as possible Skolem functions.
6.13 Skolemize the following formula

$$
\forall X(p(a) \vee \exists Y(q(Y) \wedge \forall Z(p(Y, Z) \vee \exists U \neg q(X, Y, U)))) \vee \exists W q(a, W)
$$

Why is it possible in this particular case to do that without producing an equivalent formula in prenex form?

