Logical reasoning and programming, lab session 6 (October 30, 2023)

6.1 Show that

$$(g(f(x_1-2)) = x_1+2) \land (g(f(x_2)) = x_2-2) \land (x_2+1 = x_1-1)$$

is unsatisfiable by the Nelson–Oppen procedure, where x_1 and x_2 are integers and f and g uninterpreted functions.

Why does the procedure work here even though QF_LIA is non-convex?

6.2 If we want to combine theories in SMT using the Nelson–Oppen method, we require that both of them are stably infinite. Assume two theories \mathcal{T}_1 with the language $\{f\}$ and \mathcal{T}_2 with the language $\{g\}$, where f and g are uninterpreted unary function symbols. Moreover, \mathcal{T}_1 has only models of size at most 2 (for example, it contains $\forall X \forall Y \forall Z (X = Y \lor X = Z)$ as an axiom). Show that the Nelson–Oppen method says that

$$f(x_1) \neq f(x_2) \land g(x_2) \neq g(x_3) \land g(x_1) \neq g(x_3).$$

is satisfiable in the union of \mathcal{T}_1 and \mathcal{T}_2 , but this is clearly incorrect.

- **6.3** Show that the following formulae are valid and provide counter-examples for the opposite implications:
 - (a) $\forall Xp(X) \lor \forall Xq(X) \to \forall X(p(X) \lor q(X)),$
 - (b) $\exists X(p(X) \land q(X)) \to \exists Xp(X) \land \exists Xq(X),$
 - (c) $\exists X \forall Y p(X, Y) \rightarrow \forall Y \exists X p(X, Y),$
 - (d) $\forall Xp(X) \to \exists Xp(X)$.
- **6.4** Show that the "exists unique" quantifier $\exists !$ does not commute with $\exists, \forall,$ nor $\exists !$.
- **6.5** Decide whether for any formula φ holds:
 - (a) $\varphi \equiv \forall \varphi$,
 - (b) $\varphi \equiv \exists \varphi$,
 - (c) $\models \varphi$ iff $\models \forall \varphi$,
 - (d) $\models \varphi$ iff $\models \exists \varphi$,

where $\forall \varphi \ (\exists \varphi)$ is the universal (existential) closure of φ . If not, does at least one implication hold?

- **6.6** Show that for any set of formulae Γ and a formula φ holds if $\Gamma \models \varphi$, then $\forall \Gamma \models \varphi$, where $\forall \Gamma = \{ \forall \psi : \psi \in \Gamma \}$. Does the opposite direction hold?
- **6.7** Does it hold $\Gamma \models \varphi$ iff $\forall \Gamma \models \forall \varphi$?
- **6.8** Find a set of formulae Γ and a formula φ such that $\Gamma \models \varphi$ and $\Gamma \models \neg \varphi$.

- 6.9 Produce equivalent formulae in prenex form:
 - (a) $\forall X(p(X) \to \forall Y(q(X,Y) \to \neg \forall Zr(Y,Z))),$
 - (b) $\exists X p(X, Y) \to (q(X) \to \neg \forall Z p(X, Z)),$
 - (c) $\exists X p(X,Y) \rightarrow (q(X) \rightarrow \neg \exists Z p(X,Z)),$
 - (d) $p(X,Y) \to \exists Y(q(Y) \to (\exists Xq(X) \to r(Y))),$
 - (e) $\forall Y p(Y) \to (\forall X q(X) \to r(Z)).$
- 6.10 In 6.9 you could obtain in some cases various prefixes; the order of quantifiers can be different. Are all these variants correct?
- 6.11 Can we produce a formula equivalent to 6.9e with just one quantifier?
- **6.12** Produce Skolemized formulae equisatisfiable with those in **6.9**. Try to produce as simple as possible Skolem functions.
- 6.13 Skolemize the following formula

 $\forall X(p(a) \lor \exists Y(q(Y) \land \forall Z(p(Y,Z) \lor \exists U \neg q(X,Y,U)))) \lor \exists Wq(a,W).$

Why is it possible in this particular case to do that without producing an equivalent formula in prenex form?