
Logical reasoning and programming
First-Order Logic (FOL) and

Satisfiability Modulo Theories (SMT)

Karel Chvalovský

CIIRC CTU

Parts of this presentation are significantly based on materials from
recent SAT/SMT Summer Schools and SC2 Summer School.

http://satassociation.org/sat-smt-school.html
http://www.sc-square.org/CSA/school/

First-Order Logic (recap)

We moved to First-Order Logic (FOL) and introduced some basic
notions

▶ we fix a language L (function and predicate symbols),

▶ terms in L, the set of all terms in L is denoted TermL,

▶ formulae in L,

▶ semantics
▶ a model for L, denoted M = (D, i), and
▶ Tarski’s definition of truth.

1 / 31

Tarski’s definition of truth
Let M = (D, i) be a model for L, e be an evaluation in M, then
we say that a formula ϕ is satisfied in M by e, denoted M |= ϕ[e],
or e satisfies ϕ in M, if

▶ M |= p(t1, . . . , tn)[e] iff (tM1 [e], . . . , tMn [e]) ∈ i(p), where p is
n-ary predicate symbol in L,

▶ M |= (t1 = t2)[e] iff (tM1 [e], tM2 [e]) ∈ idD, (in FOL with eq.)

▶ M |= (¬ψ)[e] iff M 6|= ψ[e],

▶ M |= (ψ → χ)[e] iff M 6|= ψ[e] or M |= χ[e],

▶ M |= (ψ ∧ χ)[e] iff M |= ψ[e] and M |= χ[e],

▶ M |= (ψ ∨ χ)[e] iff M |= ψ[e] or M |= χ[e],

▶ M |= (∀Xψ)[e] iff for every a ∈ D holds M |= ψ[e(X 7→ a)],

▶ M |= (∃Xψ)[e] iff exists a ∈ D s.t. M |= ψ[e(X 7→ a)].

A formula ϕ is satisfiable, if there is M and e s.t. M |= ϕ[e]. A
set of formulae Γ is satisfiable, if there is M and e s.t. M |= ϕ[e],
for every ϕ ∈ Γ.

2 / 31

Semantic consequence relation

A formula ϕ is valid (or holds) in M, denoted M |= ϕ, if ϕ is
satisfied in M by any evaluation e.

A formula ϕ follows from (or is a consequence of) a set of formula
Γ, denoted Γ |= ϕ, if and only if for any model M and evaluation
e, if for every ψ ∈ Γ holds M |= ψ[e], then M |= ϕ[e]. We write
|= ϕ, if Γ = ∅ and say that ϕ is valid (or holds).

Γ |= ϕ iff ∀M∀e(∀ψ ∈ Γ(M |= ψ[e]) ⇒ M |= ϕ[e])

Note that

Γ |= ϕ iff Γ ∪ {¬ϕ} is unsatisfiable.

We say that two formulae ϕ and ψ are (semantically) equivalent,
denoted ϕ ≡ ψ, if {ϕ} |= ψ and {ψ} |= ϕ.

3 / 31

SMT and FOL language

It is common in SMT that we are mainly interested in formulae
containing no variables (and hence no quatifiers), they are called
ground formulae.

Note that when it comes to satisfiability, uninterpreted constant symbols

behave like free variables; they are not bounded by quantification (nor

implicitly). However, this can be slightly misleading, because later on all

variables will be implicitly universally quantified.

Strictly speaking, we should talk about expansions of a theory, because we add

new constants into our language, however, we will happily ignore this formal

problem (or we can treat them as free variables).

Example
ϕ = p(X, f(a, Y)) ∧ q(X, Z, c) is not ground, but ϕ′ = p(x, f(a, y)) ∧ q(x, z, c)
is ground. Moreover, ϕ and ϕ′ are equisatisfiable.

4 / 31

Why are we interested in this fragment of FOL?

For example, say that a compiler produced from

z = (x1 + y1) · (x2 + y2);

the following code

u1 = x1 + y1;

u2 = x2 + y2;

z = u1 · u2;

So we want to show that this translation is correct by proving

(u1 = x1 + y1) ∧ (u2 = x2 + y2) ∧ (z = u1 · u2)

→ (z = (x1 + y1) · (x2 + y2)).

Clearly, our fragment is sufficient for that.

5 / 31

Interpretations and theories

When we speak about theories, it means that we want to restrict
the interpretation (meaning) of some symbols in the language.

There are two main approaches how to do that

▶ axiomatic — we restrict the interpretations indirectly by
providing axioms that have to be satisfied,
▶ e.g., the equality axioms,
▶ axioms usually require quantifiers,

▶ restricting interpretations — we allow only such classes of
interpretations that correspond to our intended meaning,
▶ e.g., we say that all the variables range over integers.

Note that some theories do not have appropriate axiomatic
systems.

6 / 31

Theory T
A theory T is given by a first-order language L.

We say that an interpretation M = (D, i) for L is a
T -interpretation if

▶ M satisfies all axioms of T , or

▶ i admits only intended interpretations of T .

We say that a formula ϕ is

▶ T -satisfiable, if M |= ϕ for a T -interpretation M;

▶ T -valid, if M |= ϕ for every T -interpretation M.

A set of formulae Γ T -entails a formula ϕ, denoted Γ |=T ϕ, if
every T -interpretation satisfying all formulae in Γ satisfies also ϕ.

Example

If T is real arithmetic, then D are real numbers and i(≤), i(+),
. . . have their standard meanings.

7 / 31

Satisfiability Modulo Theories (SMT)

We have a formula that has a propositional structure, but
propositional variables are expressions in a theory T .

Example

From

(x = 0 ∨ x = 1) ∧ (x+ y + z 6= 0) ∧ (f(y) > f(z)),

we obtain
(p ∨ q) ∧ ¬r ∧ s,

by so-called propositional abstraction, where p is x = 0, q is x = 1,
r is x+ y + z = 0, and s is f(y) > f(z).

8 / 31

Solving SMT

There are two basic approaches how to solve a satisfiability of a
formula ϕ modulo a theory T :

Eager (encode an SMT problem in SAT)

▶ we translate the problem over the theory into an
equisatisfiable propositional formula and use a SAT solver,

▶ it is eager, because the SAT solver has access to complete
theory information from the beginning,

▶ it requires sophisticated encodings.

Lazy (combine a SAT solver with a decision procedure)

▶ It is very common that we have theory solvers for problems
that are conjunctions of literals.

9 / 31

Very Lazy SMT
example

¬a = b
(x = a ∨ x = b)
(y = a ∨ y = b)
(z = a ∨ z = b)

¬x = y

x y x a y a

Check with SAT solver

View
Theory

10 / 31

Very Lazy SMT
example

¬ B1
(B2 ∨ B3)

(B4 ∨ B5)

(B6 ∨ B7)

¬ B8

B B B

Check with SAT solver

View
Boolean

10 / 31

Very Lazy SMT
example

¬ B1
(B2 ∨ B3)

(B4 ∨ B5)

(B6 ∨ B7)

¬ B8

B B B

Check with SAT solver

View
Boolean

10 / 31

Very Lazy SMT
example

¬ B1
(B2 ∨ B3)

(B4 ∨ B5)

(B6 ∨ B7)

¬ B8

B B B

Check with SAT solver
J ¬ B1 , ¬ B8 , ¬ B3 , B2 , ¬ B5 , B4 , ¬ B7 , B6 K

View
Boolean

10 / 31

Very Lazy SMT
example

¬a = b
(x = a ∨ x = b)
(y = a ∨ y = b)
(z = a ∨ z = b)

¬x = y

x y x a y a

Check with SAT solver
J ¬a = b, ¬x = y, ¬x = b, x = a, ¬y = b, y = a, ¬z = b, z = a K

View
Theory

10 / 31

Very Lazy SMT
example

¬a = b
(x = a ∨ x = b)
(y = a ∨ y = b)
(z = a ∨ z = b)

¬x = y

x y x a y a

Check with SAT solver
J ¬a = b, ¬x = y, ¬x = b, x = a, ¬y = b, y = a, ¬z = b, z = a K

View
Theory

Check with T-solver
x = a ∧ y = a ⇒ x = y

10 / 31

Very Lazy SMT
example

¬a = b
(x = a ∨ x = b)
(y = a ∨ y = b)
(z = a ∨ z = b)

¬x = y
(x = y ∨ ¬x = a ∨ ¬y = a)

Check with SAT solver
J ¬a = b, ¬x = y, ¬x = b, x = a, ¬y = b, y = a, ¬z = b, z = a K

View
Theory

Block
Add clause

10 / 31

Very Lazy SMT
example

¬ B1
(B2 ∨ B3)

(B4 ∨ B5)

(B6 ∨ B7)

¬ B8
(B8 ∨ ¬ B2 ∨ ¬ B4)

Check with SAT solver

View
Boolean

10 / 31

Very Lazy SMT
example

¬ B1
(B2 ∨ B3)

(B4 ∨ B5)

(B6 ∨ B7)

¬ B8
(B8 ∨ ¬ B2 ∨ ¬ B4)

Check with SAT solver
J ¬ B1 , ¬ B8 , ¬ B3 , B2 , ¬ B4 , B5 , ¬ B7 , B6 K

View
Boolean

10 / 31

Very Lazy SMT
example

¬a = b
(x = a ∨ x = b)
(y = a ∨ y = b)
(z = a ∨ z = b)

¬x = y
(x = y ∨ ¬x = a ∨ ¬y = a)

Check with SAT solver
J ¬a = b, ¬x = y, ¬x = b, x = a, ¬y = a, y = b, ¬z = b, z = a K

View
Theory

10 / 31

Very Lazy SMT
example

¬a = b
(x = a ∨ x = b)
(y = a ∨ y = b)
(z = a ∨ z = b)

¬x = y
(x = y ∨ ¬x = a ∨ ¬y = a)

Check with SAT solver
J ¬a = b, ¬x = y, ¬x = b, x = a, ¬y = a, y = b, ¬z = b, z = a K

View
Theory

Check with T-solver
Satisfiable

a, x, z 7→ c1
b, y 7→ c2

10 / 31

Lazy approach

Let ϕ be a formula and we want to know whether ϕ is
T -satisfiable. Let ϕ′ be a propositional abstraction of ϕ.

▶ we call a SAT solver on ϕ′

▶ if ϕ′ ∈ SAT, then we obtain a set of literals l′1, . . . , l
′
n in ϕ′

that satisfies the formula ϕ′,
▶ we can then ask a T -solver, whether the set of corresponding

literals l1, . . . , ln in ϕ is satisfiable in T
▶ if it is, then return ϕ is satisfiable and provide a model,
▶ if it is not, then we can add a new propositional clause

l′

1
∨ · · · ∨ l′

n to ϕ′ (or something better) and repeat the whole
process with a new propositional formula,

▶ if ϕ′ /∈ SAT, then return ϕ is unsatisfiable.

11 / 31

DPLL(T)—lazy approach + theory propagations
It “effectively” transforms a satisfiability of an arbitrary
quantifier-free formula over T to a satisfiability of a conjunction of
literals over T . In basic lazy approach there is no theory guidance,
here T -solver guides the search by producing T -consequences.

For efficiency reasons we want several things from a solver for T :

▶ checks consistency of conjunctions of literals,

▶ computes T -propagations (T -consequences),

▶ pruduces explanations (ideally minimal) of T -inconsistencies
and T -propagations,

▶ should be incremental and backtrackable,

▶ (generate T -atoms and T -lemmata).

Although it is called DPLL(T), in practice, CDCL is usually used
and hence we want a support for backjumping and conflicts.
Moreover, we want to test already partial assignments not only full
propositional models for T -consistency.

12 / 31

DPLL(T) - Example

Consider again EUF and the formula:

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

/0 || 1, 2∨3, 4 ⇒ (UnitPropagate)

Introduction to SMT – p. 23
13 / 31

DPLL(T) - Example

Consider again EUF and the formula:

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

/0 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (UnitPropagate)

Introduction to SMT – p. 23
13 / 31

DPLL(T) - Example

Consider again EUF and the formula:

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

/0 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 4 || 1, 2∨3, 4 ⇒ (T-Propagate)

Introduction to SMT – p. 23
13 / 31

DPLL(T) - Example

Consider again EUF and the formula:

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

/0 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 4 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 4 2 || 1, 2∨3, 4 ⇒ (T-Propagate)

Introduction to SMT – p. 23
13 / 31

DPLL(T) - Example

Consider again EUF and the formula:

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

/0 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 4 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 4 2 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 4 2 3 || 1, 2∨3, 4 ⇒ (Fail)

Introduction to SMT – p. 23
13 / 31

DPLL(T) - Example

Consider again EUF and the formula:

g(a)=c
︸ ︷︷ ︸

1

∧ (f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

/0 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 4 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 4 2 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 4 2 3 || 1, 2∨3, 4 ⇒ (Fail)

UNSAT

Introduction to SMT – p. 23
13 / 31

DPLL(T) Framework
great but not perfect

a 0<
b 0

a 1<
b 1b0<a1

b1<a2

a1<c1
c 0<

a 1
c 1<

a 2a0<c0

a 2
<b

2 b
2 <a

3

a
2 <c

2
c 2<

a 3

a0>a3

Example (Diamonds)

a0 > an ∧

n−1∧

k=0

((ak < bk ∧ bk < ak+1) ∨ (ak < ck ∧ ck < ak+1))

14 / 31

DPLL(T) Framework
great but not perfect

a 0
<
b 0

a 1
<
b 1

b
0<
a
1

b
1<
a
2

a
1<
c
1

c 0
<
a 1

c 1
<
a 2

a
0<
c
0

a 2
<
b 2 b

2 <
a
3

a
2 <
c
2

c 2
<
a 3

a0>a3

Example (Diamonds)

a0 > an ∧

n−1∧

k=0

((ak < bk ∧ bk < ak+1) ∨ (ak < ck ∧ ck < ak+1))

14 / 31

DPLL(T) Framework
great but not perfect

a 0
<
b 0

a 1
<
b 1

b
0<
a
1

b
1<
a
2

a
1<
c
1

c 0
<
a 1

c 1
<
a 2

a
0<
c
0

a 2
<
b 2 b

2 <
a
3

a
2 <
c
2

c 2
<
a 3

a0>a3

Example (Diamonds)

a0 > an ∧

n−1∧

k=0

((ak < bk ∧ bk < ak+1) ∨ (ak < ck ∧ ck < ak+1))

14 / 31

DPLL(T) Framework
great but not perfect

a 0
<
b 0

a 1
<
b 1

b
0<
a
1

b
1<
a
2

a
1<
c
1

c 0
<
a 1

c 1
<
a 2

a
0<
c
0

a 2
<
b 2 b

2 <
a
3

a
2 <
c
2

c 2
<
a 3

a0>a3

Example (Diamonds)

a0 > an ∧

n−1∧

k=0

((ak < bk ∧ bk < ak+1) ∨ (ak < ck ∧ ck < ak+1))

14 / 31

DPLL(T) Framework
great but not perfect

a 0
<
b 0

a 1
<
b 1

b
0<
a
1

b
1<
a
2

a
1<
c
1

c 0
<
a 1

c 1
<
a 2

a
0<
c
0

a 2
<
b 2 b

2 <
a
3

a
2 <
c
2

c 2
<
a 3

a0>a3

Example (Diamonds)

a0 > an ∧

n−1∧

k=0

((ak < bk ∧ bk < ak+1) ∨ (ak < ck ∧ ck < ak+1))

And so on...
Exponential enumeration of paths.

14 / 31

DPLL(T) Framework
great but not perfect

a 0
<
b 0

a 1
<
b 1

b
0<
a
1

b
1<
a
2

a
1<
c
1

c 0
<
a 1

c 1
<
a 2

a
0<
c
0

a 2
<
b 2 b

2 <
a
3

a
2 <
c
2

c 2
<
a 3

a0>a3

a0<a1 a1<a2 a2<a3

Example (Diamonds)

a0 > an ∧

n−1∧

k=0

((ak < bk ∧ bk < ak+1) ∨ (ak < ck ∧ ck < ak+1))

14 / 31

smt solvers

SAT Solver
DPLL

Core

Bit-Vectors

ArraysArithmetic

UF

assertions

explanations
conflicts
lemmas
propagations

6
15 / 31

smt solvers

SAT Solver
DPLL

Core

Bit-Vectors

ArraysArithmetic

UF

assertions

explanations
conflicts
lemmas
propagations

6

SAT Solver

∙ Only sees Boolean skeleton of
problem

∙ Builds partial model by
assigning truth values to literals

∙ Sends these literals to the core
as assertions

15 / 31

smt solvers

SAT Solver
DPLL

Core

Bit-Vectors

ArraysArithmetic

UF

assertions

explanations
conflicts
lemmas
propagations

6

Core

∙ Sends each assertion to the
appropriate theory

∙ Sends deduced literals to other
theories/SAT solver

∙ Handles theory combination

15 / 31

smt solvers

SAT Solver
DPLL

Core

Bit-Vectors

ArraysArithmetic

UF

assertions

explanations
conflicts
lemmas
propagations

6

Theory Solvers

∙ Decide T-satisfiability of a
conjunction of theory literals

∙ Incremental
∙ Backtrackable
∙ Conflict Generation
∙ Theory Propagation

15 / 31

Various theories and their combinations

It is possible to combine various theories, called logics here, and
give them “canonical” names.

source: SMT-LIB

16 / 31

http://smtlib.cs.uiowa.edu/logics.shtml

Uninterpreted functions (UF)

We have literals of the form

s = t and s 6= t,

where s and t may contain constants (variables) and function
symbols. Equality is reflexive, symmetric, transitive, and satisfies
congruence axioms

∀X1 . . .∀Xm∀Y1 . . .∀Ym(X1 = Y1 ∧ · · · ∧Xm = Ym →

f(X1, . . . , Xm) = f(Y1, . . . , Ym))

for every m-ary function symbol f . It is sometimes called
functional consistency in this context.

(QF_UF) is usually the core of an SMT solver, which is used in
other theories. It is decidable in O(n logn).

17 / 31

http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_UF

Why no uninterpreted predicate symbols?

The only predicate symbol allowed in (QF_UF) is equality, because
every other uninterpreted predicate symbol can be expressed by a
fresh uninterpreted function

p(t1, . . . , tm) becomes fp(t1, . . . , tm) = >,

¬p(t1, . . . , tm) becomes fp(t1, . . . , tm) 6= >,

where > is a new constant and fp is a new function symbol for
every predicate p in our original language. Note that fp and > are
not valid arguments of other terms.

Example

p(a) ∨ ¬q(a, g(a, b)) becomes fp(a) = > ∨ fq(a, g(a, b)) 6= >.

18 / 31

http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_UF

Producing congruence closure
We have a formula ϕ

s1 = t1 ∧ · · · ∧ sk = tk ∧ sk+1 6= tk+1 ∧ · · · ∧ sl 6= tl.

The idea is to produce the congruence closure of

s1 = t1 ∧ · · · ∧ sk = tk

that is we apply reflexivity, symmetry, transitivity, and congruence
axioms as many times as possible.

Then we just check whether any of

sk+1 = tk+1, . . . , sl = tl

is among them. If this is the case, the problem is unsatisfiable.
Otherwise, it is satisfiable.

Example

We want to check a = b ∧ f(g(a)) 6= f(g(b)).

19 / 31

Producing congruence closure II.

We have a formula ϕ

s1 = t1 ∧ · · · ∧ sk = tk ∧ sk+1 6= tk+1 ∧ · · · ∧ sl 6= tl.

Although the congruence closure is in general infinite, it is
sufficient to check only finitely many equalities here, namely the
equalities produced from all the subterms occurring in ϕ.

Example

We want to check a = b ∧ f(g(a)) 6= f(g(b)). Hence it is sufficient
to produce only equalities containing a, b, g(a), g(b), f(g(a)), and
f(g(b)). It means we get

{a = a, b = b, a = b, g(a) = g(a), g(b) = g(b), g(a) = g(b),

f(g(a)) = f(g(a)), f(g(b)) = f(g(b)), f(g(a)) = f(g(b))}.

Hence it is unsatisfiable, because it contains f(g(a)) = f(g(b)).

20 / 31

Producing congruence closure III.
We have a formula ϕ

s1 = t1 ∧ · · · ∧ sk = tk ∧ sk+1 6= tk+1 ∧ · · · ∧ sl 6= tl.

It is convenient to represent the congruence closure by the
equivalence classes of the terms occurring in ϕ:

▶ each subterm occurring in ϕ forms an equivalence class,
▶ for every si = ti ∈ ϕ

▶ we merge the equivalance classes containing si and ti,
▶ we apply the congruence axioms (at least one argument is

from the merged class containing si and ti).

If this leads to new merges, we propagate congruences further
(at least one argument is from a newly merged class) as long
as possible.

▶ return unsatisfiable if sj and tj are in the same equivalence
class for sj 6= tj ∈ ϕ, otherwise return satisfiable.

It is possible to produce an even better representation using DAGs.
21 / 31

Example

22 / 31

Example

22 / 31

Example

22 / 31

Example

22 / 31

Example

22 / 31

Example

22 / 31

Example

22 / 31

Example

get_conflict():

22 / 31

Example

get_conflict():

22 / 31

Example

get_conflict():

22 / 31

Example

get_conflict():

22 / 31

Example

get_conflict():

22 / 31

Example

get_conflict():

22 / 31

Example

get_conflict():

22 / 31

Example

get_conflict():

22 / 31

Difference logic
We have

x− y ./ k

where ./∈ {≤, <,=, 6=, >,≥}, x, y, and k (number) are over
integers (QF_IDL) or reals (QF_RDL).

We can assume that all are of the form x− y ≤ k, because

x− y ≥ k is y − x ≤ −k,

x− y = k is x− y ≤ k ∧ y − x ≤ −k,

x− y 6= k is x− y < k ∨ y − x < −k,

x− y < k is x− y ≤ k − 1, for integers

x− y ≤ k − δ, for reals

where δ is treated on symbolic level (or a sufficiently small real).

Moreover, every solution can be shifted. Hence we can introduce a
fresh variable y0, replace all x ≤ k by x− y0 ≤ k and shift a
solution in such a way that y0 becomes 0.

23 / 31

http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_IDL
http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_RDL

Why is difference logic interesting?

It is an important fragment of arithmetic. We can, for example,
express a simple scheduling problem:

1 ≤ sa,

sa ≤ 10,

sa + 5 ≤ sb,

sb ≤ 10,

where sa and sb express when tasks a and b start.

Clearly, using 6= (and hence ∨) and integers we can encode NP

problems like a k-coloring of a graph G = (V,E):

1 ≤ cv ≤ k for v ∈ V,

cv 6= cw for (v, w) ∈ E.

24 / 31

How to decide difference logic?
We represent a problem (conjunction) by a graph.

Theorem
Satisfiable iff there is no negative cycle.

Example

x ≤ 1 ∧ x− y ≤ 2 ∧ y − z ≤ 3 ∧ z − x ≤ −6

y0

x y

z

1

2

3−6

25 / 31

How to decide difference logic?
We represent a problem (conjunction) by a graph.

Theorem
Satisfiable iff there is no negative cycle.

Example

x ≤ 1 ∧ x− y ≤ 2 ∧ y − z ≤ 3 ∧ z − x ≤ −6

y0

x y

z

1

2

3−6

y0 should be equal to 0!

25 / 31

How to decide difference logic?
We represent a problem (conjunction) by a graph.

Theorem
Satisfiable iff there is no negative cycle.

Example

x ≤ 1 ∧ x− y ≤ 2 ∧ y − z ≤ 3 ∧ z − x ≤ −6

y0

x y

z

1

2

3−6

25 / 31

How to decide difference logic?
We represent a problem (conjunction) by a graph.

Theorem
Satisfiable iff there is no negative cycle.

Example

x ≤ 1 ∧ x− y ≤ 2 ∧ y − z ≤ 3 ∧ z − x ≤ −6

y0

x y

z

1

2

3−6

25 / 31

How to decide difference logic?
We represent a problem (conjunction) by a graph.

Theorem
Satisfiable iff there is no negative cycle.

Example

x ≤ 1 ∧ x− y ≤ 2 ∧ y − z ≤ 3 ∧ z − x ≤ −6

y0

x y

z

1

2

3−6

25 / 31

How to decide difference logic?
We represent a problem (conjunction) by a graph.

Theorem
Satisfiable iff there is no negative cycle.

Example

x ≤ 1 ∧ x− y ≤ 2 ∧ y − z ≤ 3 ∧ z − x ≤ −6

y0

x y

z

1

2

3−6

This conflict set is communicated back to the SAT solver!

25 / 31

How to decide difference logic?
We represent a problem (conjunction) by a graph.

Theorem
Satisfiable iff there is no negative cycle.

Example

x ≤ 1 ∧ x− y ≤ 2 ∧ y − z ≤ 3 ∧ z − x ≤ −5

y0

x y

z

1

2

3−5

26 / 31

How to decide difference logic?
We represent a problem (conjunction) by a graph.

Theorem
Satisfiable iff there is no negative cycle.

Example

x ≤ 1 ∧ x− y ≤ 2 ∧ y − z ≤ 3 ∧ z − x ≤ −5

y0

x y

z

i

1

2

3−5

0

0
0

0
Solution= −(min path from i)

Bellman–Ford in O(|V | · |E|)

26 / 31

How to decide difference logic?
We represent a problem (conjunction) by a graph.

Theorem
Satisfiable iff there is no negative cycle.

Example

x ≤ 1 ∧ x− y ≤ 2 ∧ y − z ≤ 3 ∧ z − x ≤ −5

y0

x y

z

i

1

2

3−5

0

0
0

0
Solution= −(min path from i)

x = 5

Bellman–Ford in O(|V | · |E|)

26 / 31

How to decide difference logic?
We represent a problem (conjunction) by a graph.

Theorem
Satisfiable iff there is no negative cycle.

Example

x ≤ 1 ∧ x− y ≤ 2 ∧ y − z ≤ 3 ∧ z − x ≤ −5

y0

x y

z

i

1

2

3−5

0

0
0

0
Solution= −(min path from i)

x = 5, y = 3

Bellman–Ford in O(|V | · |E|)

26 / 31

How to decide difference logic?
We represent a problem (conjunction) by a graph.

Theorem
Satisfiable iff there is no negative cycle.

Example

x ≤ 1 ∧ x− y ≤ 2 ∧ y − z ≤ 3 ∧ z − x ≤ −5

y0

x y

z

i

1

2

3−5

0

0
0

0
Solution= −(min path from i)

x = 5, y = 3, z = 0

Bellman–Ford in O(|V | · |E|)

26 / 31

How to decide difference logic?
We represent a problem (conjunction) by a graph.

Theorem
Satisfiable iff there is no negative cycle.

Example

x ≤ 1 ∧ x− y ≤ 2 ∧ y − z ≤ 3 ∧ z − x ≤ −5

y0

x y

z

i

1

2

3−5

0

0
0

0
Solution= −(min path from i)

x = 5, y = 3, z = 0, y0 = 4

Bellman–Ford in O(|V | · |E|)

26 / 31

How to decide difference logic?
We represent a problem (conjunction) by a graph.

Theorem
Satisfiable iff there is no negative cycle.

Example

x ≤ 1 ∧ x− y ≤ 2 ∧ y − z ≤ 3 ∧ z − x ≤ −5

y0

x y

z

i

1

2

3−5

0

0
0

0
Solution= −(min path from i)

x = 5, y = 3, z = 0, y0 = 4

Shift solution!

Bellman–Ford in O(|V | · |E|)

26 / 31

How to decide difference logic?
We represent a problem (conjunction) by a graph.

Theorem
Satisfiable iff there is no negative cycle.

Example

x ≤ 1 ∧ x− y ≤ 2 ∧ y − z ≤ 3 ∧ z − x ≤ −5

y0

x y

z

i

1

2

3−5

0

0
0

0
Solution= −(min path from i)

x = 5, y = 3, z = 0, y0 = 4

Shift solution!

x = 1, y = −1, z = −4, y0 = 0 Bellman–Ford in O(|V | · |E|)

26 / 31

Linear arithmetic

We have
a1x1 + · · · + anxn ./ b

where ./∈ {≤, <,=, 6=, >,≥}, a1 positive, and x1, . . . , xn are over
integers (QF_LIA) or reals (QF_LRA).

We can again assume that we have only ≤ (if a1 positive, then
also ≥).

Although simplex is exponential (and LRA is in P), it is fast in
practice.

For LIA (is NP-complete) simplex with branch-and-bound (cutting
planes) is usually used.

For further details, see Kroening and Strichman 2016.

27 / 31

http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_LIA
http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_LRA

Bit-vectors

We have fixed-sized vectors of bits (QF_BV).

Various types of operations

▶ logical (bit-wise), e.g., and

▶ arithmetic, e.g., add

▶ comparisons, e.g., <

▶ string-like, e.g., concat

Note that we can eagerly translate them into propositional logic
and use directly SAT (bit-blasting). Moreover, in many cases this
produces better results. However, some operations, e.g.,
multiplication, produce hard SAT instances and other approaches
are needed.

Floating Point numbers are bit-vectors based on the IEEE standard.

28 / 31

http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_BV
https://smtlib.cs.uiowa.edu/theories-FloatingPoint.shtml

Arrays (A)

We have two basic operations on arrays

▶ select(a, i) is the value of array a at the possition i

▶ store(a, i, v) is the array a with v at the possition i

and equality is also a part of the language.

It satisfies the following read-over-write axioms:

select(store(a, i, v), i) = v

i 6= j → select(store(a, i, v), j) = select(a, j)

If we add the axiom of extensionality

∀i(select(a, i) = select(b, i)) → a = b,

then we obtain (QF_AX).

29 / 31

http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_AX

Arrays properties

Note that the size of a model depends on the number of accesses
to memory and not on the size of the memory we model.

Computing TA is NP-complete and hence in practice we usually
treat select and store as uninterpreted functions and add instances
of violated array axioms on demand.

30 / 31

SMT-LIB

Among other things it is a common input and output language for
SMT solvers that is described here.

; Integer arithmetic

(set-logic QF_LIA)

(declare-fun x () Int)

(declare-fun y () Int)

(assert (= (- x y) (+ x (- y) 1)))

(check-sat)

; unsat

(exit)

31 / 31

http://smtlib.cs.uiowa.edu/

Used presentations

The following slides are taken from

▶ 10 and 14 are from Jovanović 2016,

▶ 13 is from Oliveras 2019,

▶ 15 is from Tinelli 2017, and

▶ 22 is from Griggio 2015.

31 / 31

Bibliography I

Griggio, Alberto (2015). “Introduction to SMT”. SAT/SMT
Summer School 2015. url: http:

//www.cs.nyu.edu/~barrett/summerschool/griggio.pdf.
Jovanović, Dejan (2016). “Introduction to Satisfiability Modulo
Theories”. SAT/SMT/AR Summer School 2016. url:
http://ssa-school-2016.it.uu.se/wp-

content/uploads/2016/06/jovanovic.pdf.
Kroening, Daniel and Ofer Strichman (2016). Decision

Procedures - An Algorithmic Point of View, Second Edition.
Texts in Theoretical Computer Science. An EATCS Series.
Springer. isbn: 978-3-662-50496-3. doi:
10.1007/978-3-662-50497-0.
Oliveras, Albert (2019). “Introduction to SMT”.
SAT/SMT/AR Summer School 2019. url:
https://alexeyignatiev.github.io/ssa-school-

2019/slides/ao-satsmtar19-slides.pdf.

http://www.cs.nyu.edu/~barrett/summerschool/griggio.pdf
http://www.cs.nyu.edu/~barrett/summerschool/griggio.pdf
http://ssa-school-2016.it.uu.se/wp-content/uploads/2016/06/jovanovic.pdf
http://ssa-school-2016.it.uu.se/wp-content/uploads/2016/06/jovanovic.pdf
https://doi.org/10.1007/978-3-662-50497-0
https://alexeyignatiev.github.io/ssa-school-2019/slides/ao-satsmtar19-slides.pdf
https://alexeyignatiev.github.io/ssa-school-2019/slides/ao-satsmtar19-slides.pdf

Bibliography II

Tinelli, Cesare (2017). “Foundations of Satisfiability Modulo
Theories”. SC2 Summer School 2017. url: http://www.sc-

square.org/CSA/school/lectures/SCSC-Tinelli.pdf.

http://www.sc-square.org/CSA/school/lectures/SCSC-Tinelli.pdf
http://www.sc-square.org/CSA/school/lectures/SCSC-Tinelli.pdf

	References

