
Logical reasoning and programming
SAT solving (cont’d), FOL, and SMT

Karel Chvalovský

CIIRC CTU

Recap

We deal with formulae in conjunctive normal form (CNF)

(· · · ∨ · · · ∨ · · ·) ∧ · · · ∧ (· · · ∨ · · · ∨ · · ·)

and we represent them using

{{. . . }, . . . , {. . . }}.

Our problem, given a formula 𝜙 in CNF, is 𝜙 ∈ SAT?

We have discussed various approaches how to solve this problem
that work very well in practice, like CDCL.

How to encode common problems into SAT?

1 / 31

Planning

In classical planning we want to produce a sequence of actions that
translate an initial state into a goal state.

The plan existence problem is known to be PSPACE-complete.
Hence it is not (assuming NP ̸= PSPACE) easily solvable using
SAT. However, if we consider only plans up to some length, then it
is solvable by SAT, because the lengths of plans are usually
polynomially bounded.

Planning as a SAT problem
We encode as a CNF formula “there exists a plan of length 𝑘”,
denoted 𝜙𝑘, and search iterativelly.
▶ If 𝜙𝑘 ∈ SAT, then we extract a plan from a satisfying

assignment.
▶ If 𝜙𝑘 /∈ SAT, then we continue with 𝜙𝑘+1.

2 / 31

Classical planning (recap)

We have a set of state variables 𝑋 = {𝑥1, . . . , 𝑥𝑛} that are
assigned values from a finite set. A state 𝑠 is such an assignment
for 𝑋, we write {𝑥1 = 𝑣1, . . . , 𝑥𝑛 = 𝑣𝑛}. A set of conditions is a
subset of a state.

We have
▶ an initial state,
▶ a set of goal conditions—a goal state is such a state that

satisfies all the goal conditions.
Moreover, we have a set of actions 𝐴 where every 𝑎 ∈ 𝐴 has
preconditions and effects which are both sets of conditions.

Example
We have packages in a depot and we want to deliver them in the
next 24 hours using a truck.

3 / 31

There exists a plan of length 𝑘 in SAT
We introduce propositional variables for
▶ actions—𝑝𝑡

𝑎 meaning the action 𝑎 is used in the step 𝑡,
▶ states—𝑞𝑡

𝑥=𝑣 meaning 𝑥 = 𝑣 holds in the step 𝑡,
for every 𝑎 ∈ 𝐴, 𝑥 ∈ 𝑋, possible value 𝑣 of 𝑥, and step 𝑡 ≤ 𝑘.

Then we describe all the required properties of a valid plan by a
conjunction of clauses:
▶ the initial state,
▶ the goal conditions are satisfied after 𝑘 steps,
▶ state variables are assigned exactly one value,
▶ exactly one action is performed in one step,
▶ the values of state variables change only by actions,
▶ an applied action must satisfy preconditions and effects.

Note this is similar to the proof of Cook–Levin theorem.
4 / 31

Planning using SAT

We can do various improvements, e.g.,
▶ perform more actions in a step if they are non-conflicting,
▶ introduce variables for transitions instead of assignments,
▶ symmetry breaking.

Incremental SAT solving
Instead of solving a new problem for every 𝑘, we can observe that
many parts remain the same—we solve a sequence of similar SAT
problems. We want to add and remove clauses, but keep learned
clauses and variable scores.

Note that in our problem we only add clauses and change the goal
conditions, which are described by unit clauses, when we go from
𝜙𝑘 to 𝜙𝑘+1.

5 / 31

Assumptions

Clearly, adding clauses is possible in CDCL, but removing clauses
can lead to various problems. However, we have
▶ a formula 𝜙 and
▶ assumptions 𝑙1, . . . , 𝑙𝑛, where 𝑙𝑖 are literals.

The question is whether 𝜙 ∧ 𝑙1 ∧ · · · ∧ 𝑙𝑛 ∈ SAT. It is incremental,
because we can change assumptions and add new clauses.

We can select all the assumptions as decision variables and
continue as always. Hence we can keep all learned clauses from
CDCL!

6 / 31

Bounded model checking

It is very similar to planning. We want to verify a property of an
automaton with transition states, an initial state, and a given
property 𝑃 that has to be valid at each step.

Bounded model checking as a SAT problem
We bound the number of steps to 𝑘 and try to reach in 𝑘 steps a
state where 𝑃 fails. Hence 𝜙𝑘 means “there is a state reachable in
𝑘 steps where 𝑃 fails”.
▶ If 𝜙𝑘 ∈ SAT, then we extract a bug from a satisfying

assignment.
▶ If 𝜙𝑘 /∈ SAT, then we continue with 𝜙𝑘+1.

7 / 31

How to encode typical constraints
We want to express

𝑝1 + 𝑝2 + · · · + 𝑝𝑛 ◁▷ 𝑘,

where ◁▷∈ {≤,≥,=}, 𝑘 is a positive integer, and
∑︀

1≤𝑖≤𝑛 𝑝𝑖 is
equal to the number of true 𝑝𝑖s.
▶ = is expressed as both ≤ and ≥,
▶ ≥ 1 is {𝑝1, . . . , 𝑝𝑛},
▶ ≤ 1 is

▶ pairwise—𝒪(𝑛2) clauses by { {𝑝𝑖, 𝑝𝑗} : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 },
▶ sequential counter—𝒪(𝑛) clauses and 𝒪(𝑛) new variables,
▶ bitwise encoding—𝒪(𝑛 log𝑛) clauses and 𝒪(log𝑛) new

variables,
▶ ≥ 𝑘 is no more than 𝑛− 𝑘 literals can be false,
▶ ≤ 𝑘 use generalized pairwise, sequential counters, BDDs,

sorting networks, (pairwise) cardinality networks, . . .
Or use a pseudo-Boolean (PB) solver for

∑︀
𝑎𝑖𝑝𝑖 ◁▷ 𝑘.

8 / 31

Consistency and arc-consistency

A very nice property of encodings, e.g., for an encoding of
constraints. We say that an encoding is

consistent if any partial assignment that cannot be extended to
a satisfying assignment (is inconsistent) leads to a
conflict by unit propagation,

arc-consistent if consistent and unit propagation eliminates values
that are inconsistent.

Example
For ≤ 1 we have
consistency if two variables are true, then unit propagation

produces a conflict,
arc-consistency if a variable is true, then unit propagation assigns

false to all other variables. (+consistency)

9 / 31

Finite-domain encoding
We encode that a variable 𝑥 takes one of the values {1, . . . , 𝑛}.
One-hot encoding
▶ We use 𝑥𝑖 for 𝑥 takes value 𝑖 (𝑛 variables),
▶ we need 𝑥 has exactly one value,
▶ easy to use constraints and other rules.

Unary encoding (order encoding)
▶ 1 . . . 1⏟ ⏞

𝑖−1

0 . . . 0⏟ ⏞
𝑛−𝑖

for 𝑥 takes value 𝑖 (𝑛− 1 variables),

▶ we need {𝑥𝑗+1, 𝑥𝑗} for 1 ≤ 𝑗 < 𝑛− 1,
▶ easy to express ranges, e.g. 3 ≤ 𝑥 < 10.

Binary encoding
▶ We encode 𝑖 as a binary number (⌈log𝑛⌉ variables),
▶ if 𝑛 ̸= 2𝑘 some values are not valid,
▶ using constraints and other rules can be non-trivial.

10 / 31

MaxSAT
There are various variants of SAT. For example, many problems in
computer science are expressible as the maximum satisfiability
problem—what is the maximum number of clauses that can be
satisfied simultaneously.

We usually have (weighted) partial MaxSAT with two types of
clauses:
▶ hard—must be satisfied,
▶ soft—desirable to be satisfied (possibly with weights)

and we want to maximize the sum of the weights of satisfied soft
clauses.

You can check benchmark results at MaxSAT Evaluation 2023. For
example RC2 (Python), MaxHS (also MIP solvers), Open-WBO
(incomplete solver) and its extensions. There exists the standard
WCNF format so we can experiment.

11 / 31

https://maxsat-evaluations.github.io/2023/
https://github.com/pysathq/pysat
http://www.maxhs.org/
https://github.com/sat-group/open-wbo

MaxSAT via SAT (initial idea)
We can replace all soft clauses

𝑐1, . . . , 𝑐𝑛

by
𝑐1∨𝑟1, . . . , 𝑐𝑛∨𝑟𝑛,

where 𝑟1, . . . , 𝑟𝑛 are fresh variables, called relaxation variables.

And we express that at most 𝑚 clauses are not satisfied by adding

𝑟1 + · · · + 𝑟𝑛 ≤ 𝑚.

By an iterative calling of a SAT solver, we can solve the MaxSAT
problem (minimize 𝑚).

For more details on MaxSAT, check this tutorial and this chapter
from Biere, M. Heule, et al. 2021.

12 / 31

https://ecai20-maxsat-tutorial.github.io/
https://sat-group.github.io/ruben/media/p02c24-mxm.pdf

Unsatisfiable cores

Let 𝜙 and 𝜓 be unsatisfiable formulae in CNF such that 𝜙 ⊆ 𝜓.
We say that
▶ 𝜙 is an unsatisfiable core of 𝜓,
▶ 𝜙 is a minimal unsatisfiable core of 𝜓, if every proper subset

of 𝜙 is satisfiable.
A very important (and hard) practical problem is to extract
minimal unsatisfiable cores. Used, for example, in MaxSAT and
formal verification.

Core-guided MaxSAT
▶ Start with all hard and soft clauses and repeat until SAT:

▶ Find an unsatisfiable core and relax only soft clauses (many
variants how to do that) in the unsatisfiable core.

▶ Very good for practical (industrial) problems.

13 / 31

What should you use to solve problems in NP?

You have seen many approaches how to solve such problems in
Combinatorial Optimization, for example,
▶ Integer Linear Programming and
▶ Constraint Programming (MiniZinc Challenge 2023 Results).

Here we have discussed (Max)SAT and we will discuss other
approaches later on.

What should you use?

A useful rule of thumb is to select a method based on the language
suitable for your problem, see, for example, Which solver should I
use? at Google OR-Tools.

See also, for example, LP/CP Programming Contest 2023.

14 / 31

https://www.minizinc.org/challenge2023/results2023.html
https://developers.google.com/optimization/mip#which_solver_should_i_use
https://developers.google.com/optimization/mip#which_solver_should_i_use
https://developers.google.com/optimization/
https://github.com/lpcp-contest/lpcp-contest-2023

SAT solving summary
SAT solvers are very powerful, among other things, thanks to
▶ small representations in CNFs,
▶ preprocessing, (inprocessing),

▶ subsumption,
▶ variable elimination, (variable addition),
▶ symmetry breaking,

▶ unit propagation,
▶ good data structures for backtracking,

▶ clause learning and back-jumping,
▶ restarts,
▶ deletion of learned clauses,
▶ learned clause minimization,

▶ fast decision heuristics,
▶ local search,
▶ and much much more techniques we did not mention.

We do clever tricks, but first and foremost they have to be fast!
15 / 31

Satisfiability Modulo Theories (SMT)—example

We would like to know whether the following formula

𝑓(𝑎) = 𝑏 ∧ 𝑓(𝑎) ̸= 𝑏

is satisfiable; that is loosely speaking that there exists an
interpretation satisfying simultaneously both conjuncts.

Clearly, it is unsatisfiable regardless of the meaning of symbols in
it, because it has a propositional form

𝑝 ∧ ¬𝑝,

where 𝑝 is 𝑓(𝑎) = 𝑏.

16 / 31

Satisfiability Modulo Theories (SMT)—example

We would like to know whether the following formula

𝑓(𝑎) = 𝑏 ∧ 𝑓(𝑎) ̸= 𝑏

is satisfiable; that is loosely speaking that there exists an
interpretation satisfying simultaneously both conjuncts.

Clearly, it is unsatisfiable regardless of the meaning of symbols in
it, because it has a propositional form

𝑝 ∧ ¬𝑝,

where 𝑝 is 𝑓(𝑎) = 𝑏.

16 / 31

Satisfiability Modulo Theories (SMT)—example

We would like to know whether the following formula

(𝑎× (𝑓(𝑏) + 𝑓(𝑐)) = 𝑑) ∧ (𝑏× (𝑓(𝑎) + 𝑓(𝑐)) ̸= 𝑑) ∧ (𝑎 = 𝑏)

is satisfiable.

Do we need to know the interpretations of ×, +, and 𝑓?

No, it is unsatisfiable modulo the theory of equality.

17 / 31

Satisfiability Modulo Theories (SMT)—example

We would like to know whether the following formula

(𝑎× (𝑓(𝑏) + 𝑓(𝑐)) = 𝑑) ∧ (𝑏× (𝑓(𝑎) + 𝑓(𝑐)) ̸= 𝑑) ∧ (𝑎 = 𝑏)

is satisfiable.

Do we need to know the interpretations of ×, +, and 𝑓?
No, it is unsatisfiable modulo the theory of equality.

17 / 31

Satisfiability Modulo Theories (SMT)—example

We would like to know whether the following formula

(𝑥 = 0 ∨ 𝑥 = 1) ∧ (𝑥+ 𝑦 + 𝑧 ̸= 0) ∧ (𝑓(𝑦) > 𝑓(𝑧))

is satisfiable.

It is satisfiable in a union of theories called unquantified linear real
arithmetic with uninterpreted sort and function symbols
(QF_UFLRA):
▶ quantifier free (QF),
▶ linear real arithmetic (LRA),
▶ uninterpreted functions (UF).

18 / 31

Satisfiability Modulo Theories (SMT)—example

We would like to know whether the following formula

(𝑥 = 0 ∨ 𝑥 = 1) ∧ (𝑥+ 𝑦 + 𝑧 ̸= 0) ∧ (𝑓(𝑦) > 𝑓(𝑧))

is satisfiable.

It is satisfiable in a union of theories called unquantified linear real
arithmetic with uninterpreted sort and function symbols
(QF_UFLRA):
▶ quantifier free (QF),
▶ linear real arithmetic (LRA),
▶ uninterpreted functions (UF).

18 / 31

First-Order Logic (recap)

We moved to First-Order Logic (FOL) and hence we have

▶ logical symbols
▶ variables—an infinite (countable) set denoted Var
▶ quantifier symbols ∀ and ∃
▶ logical connectives
▶ auxiliary symbols — parentheses, punctuation symbols, . . .

▶ non-logical symbols accompanied by their arity (the number of
arguments)
▶ function symbols

▶ nullary functions are called constants
▶ predicate (ralation) symbols

▶ nullary predicate symbols are essentially propositional variables

The logical symbols are fixed, but the non-logical symbols form a
language L.

19 / 31

Variants of FOL
There are various variants of FOL, e.g., they differ in:

Equality
Some symbols like = can be either logical (FOL with equality), or
non-logical (FOL without equality). We will discuss both variants.

Many-sorted language
Sometimes it is convenient (and common in SMT) to talk about
different types of objects. Hence variables, function and predicate
symbols can be accompanied by simple types.
We can “easily” simulate finitely many sorts by introducing new
predicates so to simplify things, we will use sorts only implicitly.

Example
Instead of having different types of variables for real numbers and
integers, we can say ∀𝑋 ∈ R(∃𝑌 ∈ Z(. . .) that is a shortcut for
∀𝑋(𝑋 ∈ R → (∃𝑌 (𝑌 ∈ N ∧ (. . .)))). The exact translation
depends on (implicit) quantifiers!

20 / 31

Terms

The set of all terms in a language L, denoted TermL, is the
smallest set satisfying
▶ every variable (an element of Var) is a term in L,
▶ if 𝑓 is an 𝑛-ary function in L and 𝑡1, . . . , 𝑡𝑛 are terms in L,

then 𝑓(𝑡1, . . . , 𝑡𝑛) is a a term in L.

A term 𝑠 is a subterm of term 𝑡 if 𝑠 is a substring of 𝑡.

Example
𝑋, 𝑐, and 𝑔(𝑎, 𝑔(𝑌)) are all terms where 𝑋 and 𝑌 are variables,
𝑐/0 and 𝑎/0 are nullary functions (constants), 𝑔/2 is a binary
function, and 𝑔/1 is a unary function.

21 / 31

Formulae
Let 𝑝 be an 𝑛-ary predicate symbol in L and 𝑡1, . . . , 𝑡𝑛 be terms in
L, then 𝑝(𝑡1, . . . , 𝑡𝑛) is an atomic formula (or atom) in L.

In FOL with equality, let 𝑡1 and 𝑡2 be terms in L, then (𝑡1 = 𝑡2) is
also an atomic formula in L.

The set of all formulae in a language L, denoted FmlL, is the
smallest set such that
▶ every atomic formula in L is a formula in L,
▶ if 𝜙 and 𝜓 are formulae in L, 𝑋 is a variable, then (∀𝑋𝜙),

(∃𝑋𝜙), (¬𝜙), (𝜙 → 𝜓), (𝜙 ∧ 𝜓), and (𝜙 ∨ 𝜓) are formulae1

in L.
A formula 𝜓 is a subformula of 𝜙 if 𝜓 is a substring of 𝜙.

We usually write only parentheses that are necessary for
unambiguous reading.

1𝜙 ↔ 𝜓 is a shortcut for (𝜙 → 𝜓) ∧ (𝜓 → 𝜙).
22 / 31

Semantics
We have formulae (syntactic objects) and we want to assign a
meaning (semantics) to them.

The meaning of
▶ logical symbols is fixed,
▶ non-logical symbols is problem specific.

Example
We want to show that

𝑝(𝑋, 𝑓(𝑌)) → ∃𝑍(𝑝(𝑋,𝑍) ∧ 𝑝(𝑍, 𝑓(𝑌)))

does not hold if
▶ everything is interpreted over Z,
▶ 𝑝/2 is interpreted as < on Z,
▶ 𝑓/1 is interpreted as multiplication by −1, and
▶ the evaluation of 𝑋 and 𝑌 is 1 and −2, respectively.

23 / 31

Semantics
Model (or interpretation)
A model (or interpretation) for a language L, denoted ℳ = (𝐷, 𝑖),
consists of a non-empty set 𝐷 (domain) and a function 𝑖
(interpretation) on 𝐷 such that
▶ if 𝑓 is an 𝑛-ary function symbol in L, then 𝑖(𝑓) : 𝐷𝑛 → 𝐷,
▶ if 𝑝 is an 𝑛-ary preditace symbol in L, then 𝑖(𝑝) ⊆ 𝐷𝑛.

Evaluation
Let ℳ = (𝐷, 𝑖) be a model for L, an evaluation in ℳ is any
function 𝑒 : Var → 𝐷. Note that 𝑒(𝑋 ↦→ 𝑎), for 𝑋 ∈ Var and
𝑎 ∈ 𝐷, is the same as 𝑒, but gives 𝑎 to 𝑋.

The value of a term 𝑡 under an evaluation 𝑒 in ℳ = (𝐷, 𝑖),
denoted 𝑡ℳ[𝑒], is defined recursively
▶ 𝑋ℳ[𝑒] = 𝑒(𝑋), if 𝑋 ∈ Var ,
▶ 𝑓(𝑡1, . . . , 𝑡𝑛)ℳ[𝑒] = 𝑖(𝑓)(𝑡ℳ1 [𝑒], . . . , 𝑡ℳ𝑛 [𝑒]), if 𝑓 is 𝑛-ary

function symbol.
24 / 31

Tarski’s definition of truth
Let ℳ = (𝐷, 𝑖) be a model for L, 𝑒 be an evaluation in ℳ, then
we say that a formula 𝜙 is satisfied in ℳ by 𝑒, denoted ℳ |= 𝜙[𝑒],
or 𝑒 satisfies 𝜙 in ℳ, if
▶ ℳ |= 𝑝(𝑡1, . . . , 𝑡𝑛)[𝑒] iff (𝑡ℳ1 [𝑒], . . . , 𝑡ℳ𝑛 [𝑒]) ∈ 𝑖(𝑝), where 𝑝 is
𝑛-ary predicate symbol in L,

▶ ℳ |= (𝑡1 = 𝑡2)[𝑒] iff (𝑡ℳ1 [𝑒], 𝑡ℳ2 [𝑒]) ∈ id𝐷, (in FOL with eq.)
▶ ℳ |= (¬𝜓)[𝑒] iff ℳ ̸|= 𝜓[𝑒],
▶ ℳ |= (𝜓 → 𝜒)[𝑒] iff ℳ ̸|= 𝜓[𝑒] or ℳ |= 𝜒[𝑒],
▶ ℳ |= (𝜓 ∧ 𝜒)[𝑒] iff ℳ |= 𝜓[𝑒] and ℳ |= 𝜒[𝑒],
▶ ℳ |= (𝜓 ∨ 𝜒)[𝑒] iff ℳ |= 𝜓[𝑒] or ℳ |= 𝜒[𝑒],
▶ ℳ |= (∀𝑋𝜓)[𝑒] iff for every 𝑎 ∈ 𝐷 holds ℳ |= 𝜓[𝑒(𝑋 ↦→ 𝑎)],
▶ ℳ |= (∃𝑋𝜓)[𝑒] iff exists 𝑎 ∈ 𝐷 s.t. ℳ |= 𝜓[𝑒(𝑋 ↦→ 𝑎)].

A formula 𝜙 is satisfiable, if there is ℳ and 𝑒 s.t. ℳ |= 𝜙[𝑒]. A
set of formulae Γ is satisfiable, if there is ℳ and 𝑒 s.t. ℳ |= 𝜙[𝑒],
for every 𝜙 ∈ Γ.

25 / 31

Semantic consequence relation

A formula 𝜙 is valid (or holds) in ℳ, denoted ℳ |= 𝜙, if 𝜙 is
satisfied in ℳ by any evaluation 𝑒.

A formula 𝜙 follows from (or is a consequence of) a set of formula
Γ, denoted Γ |= 𝜙, if and only if for any model ℳ and evaluation
𝑒, if for every 𝜓 ∈ Γ holds ℳ |= 𝜓[𝑒], then ℳ |= 𝜙[𝑒]. We write
|= 𝜙, if Γ = ∅ and say that 𝜙 is valid (or holds).

Γ |= 𝜙 iff ∀ℳ∀𝑒(∀𝜓 ∈ Γ(ℳ |= 𝜓[𝑒]) ⇒ ℳ |= 𝜙[𝑒])

Note that

Γ |= 𝜙 iff Γ ∪ {¬𝜙} is unsatisfiable.

We say that two formulae 𝜙 and 𝜓 are (semantically) equivalent,
denoted 𝜙 ≡ 𝜓, if {𝜙} |= 𝜓 and {𝜓} |= 𝜙.

26 / 31

SMT and FOL language

It is common in SMT that we are mainly interested in formulae
containing no variables (and hence no quatifiers), they are called
ground formulae.

Note that when it comes to satisfiability, uninterpreted constant symbols
behave like free variables; they are not bounded by quantification (nor
implicitly). However, this can be slightly misleading, because later on all
variables will be implicitly universally quantified.

Strictly speaking, we should talk about expansions of a theory, because we add
new constants into our language, however, we will happily ignore this formal
problem (or we can treat them as free variables).

Example
𝜙 = 𝑝(𝑋, 𝑓(𝑎, 𝑌)) ∧ 𝑞(𝑋,𝑍, 𝑐) is not ground, but 𝜙′ = 𝑝(𝑥, 𝑓(𝑎, 𝑦)) ∧ 𝑞(𝑥, 𝑧, 𝑐)
is ground. Moreover, 𝜙 and 𝜙′ are equisatisfiable.

27 / 31

Why are we interested in this fragment of FOL?
For example, say that a compiler produced from

𝑧 = (𝑥1 + 𝑦1) · (𝑥2 + 𝑦2);

the following code

𝑢1 = 𝑥1 + 𝑦1;
𝑢2 = 𝑥2 + 𝑦2;
𝑧 = 𝑢1 · 𝑢2;

So we want to show that this translation is correct by proving

(𝑢1 = 𝑥1 + 𝑦1) ∧ (𝑢2 = 𝑥2 + 𝑦2) ∧ (𝑧 = 𝑢1 · 𝑢2)
→ (𝑧 = (𝑥1 + 𝑦1) · (𝑥2 + 𝑦2)).

Clearly, our fragment is sufficient for that.

28 / 31

Interpretations and theories

When we speak about theories, it means that we want to restrict
the interpretation (meaning) of some symbols in the language.

There are two main approaches how to do that
▶ axiomatic — we restrict the interpretations indirectly by

providing axioms that have to be satisfied,
▶ e.g., the equality axioms,
▶ axioms usually require quantifiers,

▶ restricting interpretations — we allow only such classes of
interpretations that correspond to our intended meaning,
▶ e.g., we say that all the variables range over integers.

Note that some theories do not have appropriate axiomatic
systems.

29 / 31

Theory 𝒯
A theory 𝒯 is given by a first-order language 𝐿.

We say that an interpretation ℳ = (𝐷, 𝑖) for 𝐿 is a
𝒯 -interpretation if
▶ ℳ satisfies all axioms of 𝒯 , or
▶ 𝑖 admits only intended interpretations of 𝒯 .

We say that a formula 𝜙 is
▶ 𝒯 -satisfiable, if ℳ |= 𝜙 for a 𝒯 -interpretation ℳ;
▶ 𝒯 -valid, if ℳ |= 𝜙 for every 𝒯 -interpretation ℳ.

A set of formulae Γ 𝒯 -entails a formula 𝜙, denoted Γ |=𝒯 𝜙, if
every 𝒯 -interpretation satisfying all formulae in Γ satisfies also 𝜙.

Example
If 𝒯 is real arithmetic, then 𝐷 are real numbers and 𝑖(≤), 𝑖(+),
. . . have their standard meanings.

30 / 31

Satisfiability Modulo Theories (SMT)

We have a formula that has a propositional structure, but
propositional variables are expressions in a theory 𝒯 .

Example
From

(𝑥 = 0 ∨ 𝑥 = 1) ∧ (𝑥+ 𝑦 + 𝑧 ̸= 0) ∧ (𝑓(𝑦) > 𝑓(𝑧)),

we obtain
(𝑝 ∨ 𝑞) ∧ ¬𝑟 ∧ 𝑠,

by so-called propositional abstraction, where 𝑝 is 𝑥 = 0, 𝑞 is 𝑥 = 1,
𝑟 is 𝑥+ 𝑦 + 𝑧 = 0, and 𝑠 is 𝑓(𝑦) > 𝑓(𝑧).

31 / 31

Bibliography I

Biere, Armin, Marijn Heule, et al., eds. (2021). Handbook of
Satisfiability. 2nd. Vol. 336. Frontiers in Artificial Intelligence
and Applications. Washington: IOS Press. isbn:
978-1-64368-161-0.
Biere, Armin, Marijn J. H. Heule, et al., eds. (Feb. 2009).
Handbook of Satisfiability. Vol. 185. Frontiers in Artificial
Intelligence and Applications. IOS Press, p. 980. isbn:
978-1-58603-929-5.

	References

