Logical reasoning and programming, lab session 3

(October 9, 2023)
3.1 Decide the satisfiability of

$$
\{\{\bar{p}, r, s, t\},\{\bar{r}, s, t\},\{\bar{p}, r, \bar{s}\},\{p, q\},\{p, \bar{q}\},\{\bar{p}, \bar{t}\},\{\bar{r}, \bar{s}, t\}\}
$$

by DPLL. Use the order of branching: p, q, r, \ldots.
3.2 Given the formula $\left\{\left\{p_{1}, p_{2}\right\},\left\{\overline{p_{1}}, p_{3}\right\},\left\{p_{2}, \overline{p_{3}}\right\},\left\{\overline{p_{2}}, \overline{p_{4}}\right\},\left\{\overline{p_{3}}, p_{4}\right\}\right\}$, what clause will a CDCL solver learn first if it begins by deciding that p_{1} is true?
3.3 Assume that our version of CDCL fails to produce a satisfiable valuation for φ and hence φ is unsatisfiable. How would you produce a resolution proof of this fact from the run of CDCL?
3.4 Decide the satisfiability of

$$
\begin{aligned}
&\left\{\left\{p_{1}, p_{13}\right\},\left\{\overline{p_{1}}, \overline{p_{2}}, p_{14}\right\},\left\{p_{3}, p_{15}\right\},\left\{p_{4}, p_{16}\right\},\right. \\
&\left\{\overline{p_{3}}, \overline{p_{5}}, p_{6}\right\},\left\{\overline{p_{5}}, \overline{p_{7}}\right\},\left\{\overline{p_{6}}, p_{7}, p_{8}\right\},\left\{\overline{p_{4}}, \overline{p_{8}}, \overline{p_{9}}\right\},\left\{\overline{p_{1}}, p_{9}, \overline{p_{10}}\right\} \\
&\left.\left\{p_{9}, p_{11}, \overline{p_{14}}\right\},\left\{p_{10}, \overline{p_{11}}, p_{12}\right\},\left\{\overline{p_{2}}, \overline{p_{11}}, \overline{p_{12}}\right\}\right\}
\end{aligned}
$$

by CDCL using the first UIP. Do not use pure literal elimination, but check what happens if you do. Use the order of branching: $p_{1}, p_{2}, p_{3}, \ldots$.
3.5 How many symmetries does your formulation of PHP_{n}^{n+1} have?
3.6 We can define the lexicographic order on two bit vectors x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n}, denoted $x_{1} \ldots x_{n} \leq_{l e x} y_{1} \ldots y_{n}$, as follows

$$
\bigwedge_{i=1}^{n}\left(\left(\overline{x_{i}} \vee y_{i} \vee \overline{a_{i-1}}\right) \wedge\left(\overline{x_{i}} \vee a_{i} \vee \overline{a_{i-1}}\right) \wedge\left(y_{i} \vee a_{i} \vee \overline{a_{i-1}}\right)\right)
$$

where $\overline{a_{0}}$ is always false, using new auxiliary variables $a_{0}, a_{1}, \ldots, a_{n-1}, a_{n}$.
(a) What is the purpose of auxiliary variables?

Hint: When is it necessary to satisfy $x_{i} \leq y_{i}$?
(b) Why is $\overline{a_{0}}$ always false and hence useless?
(c) Why can we replace $\left(\overline{x_{n}} \vee y_{n} \vee \overline{a_{n-1}}\right) \wedge\left(\overline{x_{n}} \vee a_{n} \vee \overline{a_{n-1}}\right) \wedge\left(y_{n} \vee a_{n} \vee \overline{a_{n-1}}\right)$ just by ($\overline{x_{n}} \vee y_{n} \vee \overline{a_{n-1}}$)? Hence we need only $3 n-2$ clauses and $n-1$ auxiliary variables (a_{n} is also useless).
(d) How does the meaning of the formula change if you replace $\left(\overline{x_{n}} \vee y_{n} \vee\right.$ $\left.\overline{a_{n-1}}\right)$ by $\left(\overline{x_{n}} \vee \overline{a_{n-1}}\right) \wedge\left(y_{n} \vee \overline{a_{n-1}}\right)$?
3.7 How can we exploit the lexicographic order to decrease the number of symmetries in PHP_{n}^{n+1} ?

Hint: Order hole-occupancy or pigeon-occupancy vectors.
3.8 A very nice symmetry breaker for PHP_{n}^{n+1} is based on columnwise symmetry, namely we can add the following clauses

$$
p_{i(i+1)} \vee \overline{p_{i j}}
$$

for $1 \leq i<j \leq n$, where $p_{k l}$ means that pigeon k is in hole l, for $1 \leq k \leq$ $n+1$ and $1 \leq l \leq n$. Why?
3.9 Try PicoSAT pycosat and PySAT on PHP_{n}^{n+1} with various symmetry breakers.
3.10 Symmetry breaking and PHP $_{n}^{n+1}$, for further details see Knuth's TAOCP on satisfiability or slides Symmetry in SAT: an overview.
3.11 Try BreakID.

