
Logical reasoning and programming, lab session 3
(October 9, 2023)

3.1 Decide the satisfiability of

{{𝑝, 𝑟, 𝑠, 𝑡}, {𝑟, 𝑠, 𝑡}, {𝑝, 𝑟, 𝑠}, {𝑝, 𝑞}, {𝑝, 𝑞}, {𝑝, 𝑡}, {𝑟, 𝑠, 𝑡}}

by DPLL. Use the order of branching: 𝑝, 𝑞, 𝑟,

3.2 Given the formula {{𝑝1, 𝑝2}, {𝑝1, 𝑝3}, {𝑝2, 𝑝3}, {𝑝2, 𝑝4}, {𝑝3, 𝑝4}}, what clause
will a CDCL solver learn first if it begins by deciding that 𝑝1 is true?

3.3 Assume that our version of CDCL fails to produce a satisfiable valuation
for 𝜙 and hence 𝜙 is unsatisfiable. How would you produce a resolution
proof of this fact from the run of CDCL?

3.4 Decide the satisfiability of

{{𝑝1, 𝑝13}, {𝑝1, 𝑝2, 𝑝14}, {𝑝3, 𝑝15}, {𝑝4, 𝑝16},

{𝑝3, 𝑝5, 𝑝6}, {𝑝5, 𝑝7}, {𝑝6, 𝑝7, 𝑝8}, {𝑝4, 𝑝8, 𝑝9}, {𝑝1, 𝑝9, 𝑝10},

{𝑝9, 𝑝11, 𝑝14}, {𝑝10, 𝑝11, 𝑝12}, {𝑝2, 𝑝11, 𝑝12}}

by CDCL using the first UIP. Do not use pure literal elimination, but
check what happens if you do. Use the order of branching: 𝑝1, 𝑝2, 𝑝3,

3.5 How many symmetries does your formulation of PHP𝑛+1
𝑛 have?

3.6 We can define the lexicographic order on two bit vectors 𝑥1, . . . , 𝑥𝑛 and
𝑦1, . . . , 𝑦𝑛, denoted 𝑥1 . . . 𝑥𝑛 ≤lex 𝑦1 . . . 𝑦𝑛, as follows

𝑛⋀︁
𝑖=1

((𝑥𝑖 ∨ 𝑦𝑖 ∨ 𝑎𝑖−1) ∧ (𝑥𝑖 ∨ 𝑎𝑖 ∨ 𝑎𝑖−1) ∧ (𝑦𝑖 ∨ 𝑎𝑖 ∨ 𝑎𝑖−1)),

where 𝑎0 is always false, using new auxiliary variables 𝑎0, 𝑎1, . . . , 𝑎𝑛−1, 𝑎𝑛.

(a) What is the purpose of auxiliary variables?

Hint: When is it necessary to satisfy 𝑥𝑖 ≤ 𝑦𝑖?
(b) Why is 𝑎0 always false and hence useless?
(c) Why can we replace (𝑥𝑛∨𝑦𝑛∨𝑎𝑛−1)∧(𝑥𝑛∨𝑎𝑛∨𝑎𝑛−1)∧(𝑦𝑛∨𝑎𝑛∨𝑎𝑛−1)

just by (𝑥𝑛 ∨ 𝑦𝑛 ∨ 𝑎𝑛−1)? Hence we need only 3𝑛 − 2 clauses and
𝑛 − 1 auxiliary variables (𝑎𝑛 is also useless).

(d) How does the meaning of the formula change if you replace (𝑥𝑛 ∨𝑦𝑛 ∨
𝑎𝑛−1) by (𝑥𝑛 ∨ 𝑎𝑛−1) ∧ (𝑦𝑛 ∨ 𝑎𝑛−1)?

3.7 How can we exploit the lexicographic order to decrease the number of
symmetries in PHP𝑛+1

𝑛 ?

Hint: Order hole-occupancy or pigeon-occupancy vectors.

1

3.8 A very nice symmetry breaker for PHP𝑛+1
𝑛 is based on columnwise sym-

metry, namely we can add the following clauses

𝑝𝑖(𝑖+1) ∨ 𝑝𝑖𝑗

for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, where 𝑝𝑘𝑙 means that pigeon 𝑘 is in hole 𝑙, for 1 ≤ 𝑘 ≤
𝑛 + 1 and 1 ≤ 𝑙 ≤ 𝑛. Why?

3.9 Try PicoSAT/pycosat and PySAT on PHP𝑛+1
𝑛 with various symmetry

breakers.

3.10 Symmetry breaking and PHP𝑛+1
𝑛 , for further details see Knuth’s TAOCP

on satisfiability or slides Symmetry in SAT: an overview.

3.11 Try BreakID.

2

http://fmv.jku.at/picosat/
https://pypi.org/project/pycosat/
https://pysathq.github.io/
https://www-cs-faculty.stanford.edu/~knuth/fasc6a.ps.gz
https://www-cs-faculty.stanford.edu/~knuth/fasc6a.ps.gz
https://www.birs.ca/cmo-workshops/2018/18w5208/files/DevriendtJo.pdf
https://bitbucket.org/krr/breakid/

