Logical reasoning and programming, lab session 3 (October 9, 2023)

3.1 Decide the satisfiability of

 $\{\{\overline{p}, r, s, t\}, \{\overline{r}, s, t\}, \{\overline{p}, r, \overline{s}\}, \{p, q\}, \{p, \overline{q}\}, \{\overline{p}, \overline{t}\}, \{\overline{r}, \overline{s}, t\}\}$

by DPLL. Use the order of branching: p, q, r, \ldots .

- **3.2** Given the formula $\{\{p_1, p_2\}, \{\overline{p_1}, p_3\}, \{p_2, \overline{p_3}\}, \{\overline{p_2}, \overline{p_4}\}, \{\overline{p_3}, p_4\}\}$, what clause will a CDCL solver learn first if it begins by deciding that p_1 is true?
- **3.3** Assume that our version of CDCL fails to produce a satisfiable valuation for φ and hence φ is unsatisfiable. How would you produce a resolution proof of this fact from the run of CDCL?
- 3.4 Decide the satisfiability of

$$\{\{p_1, p_{13}\}, \{\overline{p_1}, \overline{p_2}, p_{14}\}, \{p_3, p_{15}\}, \{p_4, p_{16}\}, \\ \{\overline{p_3}, \overline{p_5}, p_6\}, \{\overline{p_5}, \overline{p_7}\}, \{\overline{p_6}, p_7, p_8\}, \{\overline{p_4}, \overline{p_8}, \overline{p_9}\}, \{\overline{p_1}, p_9, \overline{p_{10}}\}, \\ \{p_9, p_{11}, \overline{p_{14}}\}, \{p_{10}, \overline{p_{11}}, p_{12}\}, \{\overline{p_2}, \overline{p_{11}}, \overline{p_{12}}\}\}$$

by CDCL using the first UIP. Do not use pure literal elimination, but check what happens if you do. Use the order of branching: p_1, p_2, p_3, \ldots

- **3.5** How many symmetries does your formulation of PHP_n^{n+1} have?
- **3.6** We can define the lexicographic order on two bit vectors x_1, \ldots, x_n and y_1, \ldots, y_n , denoted $x_1 \ldots x_n \leq_{lex} y_1 \ldots y_n$, as follows

$$\bigwedge_{i=1}^{n} ((\overline{x_{i}} \lor y_{i} \lor \overline{a_{i-1}}) \land (\overline{x_{i}} \lor a_{i} \lor \overline{a_{i-1}}) \land (y_{i} \lor a_{i} \lor \overline{a_{i-1}})),$$

where $\overline{a_0}$ is always false, using new auxiliary variables $a_0, a_1, \ldots, a_{n-1}, a_n$.

(a) What is the purpose of auxiliary variables?

Hint: When is it necessary to satisfy $x_i \leq y_i$?

- (b) Why is $\overline{a_0}$ always false and hence useless?
- (c) Why can we replace $(\overline{x_n} \lor y_n \lor \overline{a_{n-1}}) \land (\overline{x_n} \lor a_n \lor \overline{a_{n-1}}) \land (y_n \lor a_n \lor \overline{a_{n-1}})$ just by $(\overline{x_n} \lor y_n \lor \overline{a_{n-1}})$? Hence we need only 3n - 2 clauses and n - 1 auxiliary variables $(a_n \text{ is also useless})$.
- (d) How does the meaning of the formula change if you replace $(\overline{x_n} \lor y_n \lor \overline{a_{n-1}})$ by $(\overline{x_n} \lor \overline{a_{n-1}}) \land (y_n \lor \overline{a_{n-1}})$?
- **3.7** How can we exploit the lexicographic order to decrease the number of symmetries in PHP_n^{n+1} ?

Hint: Order hole-occupancy or pigeon-occupancy vectors.

3.8 A very nice symmetry breaker for PHP_n^{n+1} is based on columnwise symmetry, namely we can add the following clauses

 $p_{i(i+1)} \vee \overline{p_{ij}}$

for $1 \le i < j \le n$, where p_{kl} means that pigeon k is in hole l, for $1 \le k \le n+1$ and $1 \le l \le n$. Why?

- **3.9** Try PicoSAT/pycosat and PySAT on PHP_n^{n+1} with various symmetry breakers.
- **3.10** Symmetry breaking and PHP_n^{n+1} , for further details see Knuth's TAOCP on satisfiability or slides Symmetry in SAT: an overview.
- 3.11 Try BreakID.