Logical reasoning and programming
SAT solving—CDCL and probabilistic methods

Karel Chvalovsky

CIIRC CTU

Recap

We deal with formulae in conjunctive normal form (CNF)
(\/\/)/\/\(\/\/)
and we represent them using

L)

Our problem, given a set of clauses :

Is ¢ € SAT?

1/21

DPLL algorithm

Require: A set of clauses ¢
function DPLL(yp)

while ¢ contains a unit clause {l/} do > unit propagation
delete clauses containing [from ¢ > unit subsumption
delete [from all clauses in ¢ > unit resolution
if O € ¢ then return false > empty clause

while ¢ contains a pure literal [do
delete clauses containing [from ¢

if © = () then return true > no clause
else
l <+ select a literal occurring in ¢ > a choice of literal

if DPLL(¢ U {{l}}) then return true
else if DPLL(¢ U {{I}}) then return true
else return false

2/21

Example: DPLL (without pure literal elimination!)

O
C1 = {pa q}
e ={q,7}
c3 ={p,s,t}
ey = A{p, s, u}
cs = {p,t,u}
ce = {p, s, u}
cr ={p,t,u}

Clearly, ¢ (a pure literal) and p (a pure literal after satisfying ¢; by
q) satisfy clauses ¢y, ..., c7. The sole purpose of this example (a
nonsensical run of DPLL) is to motivate CDCL.

3/21

Example: DPLL (without pure literal elimination!)

1 = {p* q}

e ={q,7}

c3 =1{p,s,t}
ey = {p, s, u}
cs = {p,t,u}
ce = {p, s, u}
cr ={p,t,u}

For simplicity, we fix the order of choicestop < g<r<s<t<u
and always select a positive literal first, but any unselected literal
can be chosen and in any order (positive/negative).

3/21

Example: DPLL (without pure literal elimination!)

p
1 = {p* q}
e ={q,7}
c3 =1{p,s,t}
ey = {p, s, u}
cs = {p,t,u}
ce = {p, s, u}
cr ={p,t,u}

For simplicity, we fix the order of choicestop < g<r<s<t<u
and always select a positive literal first, but any unselected literal
can be chosen and in any order (positive/negative).

3/21

Example: DPLL (without pure literal elimination!)

p
q
1 = {p* q}
e ={q,7}
c3 =1{p,s,t}
Cq = {ﬁv S,U}
cs = {p,t,u}
Ce = {ﬁv S)ﬂ}
cr ={p,t,u}

It makes no sense to select r here and it even violates the rule in
DPLL, but it demonstrates a property of the algorithm. Or assume
that there are also other clauses cg, ... to be satisfied.

3/21

Example: DPLL (without pure literal elimination!)

Cl1 = {pv q}

c2={q,1}

cs ={p,s,t}
cy =D, s,u}
cs = {p,t,u}
C6 = {ij 57ﬂ}
cr = {p,f, ﬁ}

3/21

Example: DPLL (without pure literal elimination!)

p
q

1 = {pv q}

r Coy = {Q7 T}
c3 ={p,s,t}
< cq = {?va“}
cs = {p,t,u}
Ce = {ijf7ﬂ}
t cr = {ﬁ,t,ﬁ}

3/21

Example: DPLL (without pure literal elimination!)

p
q
Cl1 = {pv Q}
r Co = {Q7T}
3 = {ﬁ7§7 t}
Cqy = {ﬁv S,U}
s 7o
C5 = {patau}
C6 = {ijf7ﬂ}
t Cr = {ﬁuuﬁ}
U
X

3/21

Example: DPLL (without pure literal elimination!)

Cl1 = {pv q}

e ={q,7}

cs ={Dp,s,t}
ey = {p, s, u}
cs = {p,t,u}
ce = {p, s, u}
cr = {ﬁ,z, ﬁ}

3/21

Example: DPLL (without pure literal elimination!)

Cl1 = {pv q}

e ={q,7}

cs ={Dp,s,t}
ey = A{p, s, u}
cs = {p,t,u}
ce = {p, s, u}
cr ={p,t,u}

3/21

Example: DPLL (without pure literal elimination!)

Cl1 = {pv q}

e ={q,7}

c3 =1{p,s,t}
ey = {p, s, u}
cs = {p,t,u}
ce = {p, s, u}
cr ={p,t,u}

3/21

Example: DPLL (without pure literal elimination!)

1 = {pv q}

e ={q,7}

c3 =1{p,s,t}
ey = {p, s, u}
cs = {p,t,u}
ce = {p, s, u}
cr ={p,t,u}

3/21

Example: DPLL (without pure literal elimination!)

1 = {pv q}

e ={q,7}

c3 =1{p,s,t}
ey = {p, s, u}
cs = {p,t,u}
ce = {p, s, u}
cr ={p,t,u}

3/21

Example: DPLL (without pure literal elimination!)

1 = {pa q}

C2 = {Qa 7’}

cs ={Dp,s,t}
Cqy = {ﬁvszu}
cs = {p,t,u}
C6 = {ﬁvszﬂ}
cr ={p,t,u}

3/21

Example: DPLL (without pure literal elimination!)

v

q

1 = {pa q}

C2 = {q7 T'}

cs ={Dp,s,t}
Cqy = {ﬁvszu}
cs = {p,t,u}
C6 = {ﬁvszﬂ}
cr ={p,t,u}

3/21

C1 = {pa q}

Co = {qa 7’}

c3 ={p,s,t}
Cq = {ﬁa:%u}
cs = {D,t,u}
Ce = {pvf)ﬂ}
cr ={p,t,u}

Clearly, detected conflicts do not depend on ¢ and r. Hence there
is no need to check different assignments for them and we have a
non-chronological backtracking.

4/21

Implication graph — analyzing conflicts

Red vertices are decision points and blue vertices are caused by
unit propagations. Red edges show the direction of decisions and
blue edges the reasons for unit propagations.

cr
a={p.q}
Cy = {Qa T}
cs ={p,s,t}
cy =D, s,u}
cs = {p,t,u}
ce = {D, s,u}
c; = {p,t,u}

Hence (p A s) — L that is equivalent to {p,5}. We can learn this
clause and add it to our set of clauses. This prevents us from
visiting the same conflict in a different branch.

5/21

Implication graph — analyzing conflicts

Red vertices are decision points and blue vertices are caused by
unit propagations. Red edges show the direction of decisions and
blue edges the reasons for unit propagations.

cr
a={p.q}
Cy = {Qa T}
cs ={p,s,t}
cy =D, s,u}
cs = {p,t,u}
ce = {D, s,u}
c; = {p,t,u}

Moreover, {p, S} is an asserting clause; it contains exactly one
literal that depends on the last decision. Hence an asserting clause
flips a literal on the last decision level. We learn only such clauses.

5/21

Implication graph — analyzing conflicts

We can also analyze the second conflict now.

Ce

a={p.q}
e =1{q,7}
3 = {pv s, t}
ey = {p, s, u}
C5 = {pv %7 ’U,}
ce = {p, s, u}

Cr = {pa tvﬂ}

Hence we learn ¢y = {p}.

6/21

Implication graph — various cuts
It was possible to learn a different clause.

cr
a={p.q}
e =1{q,7}
3 = {pv s, t}
ey = {p, s, u}
cs = {p,t,u}
ce = {p, s, u}
c; ={p,t,u}

We usually prefer to learn {p, ¢} instead of {p,s}. Because t is so
called dominator—all paths from s to the conflict go through t.

We call such dominators unique implication points (UIP) and a
popular strategy is to learn the first UIP (the one closest to the
conflict) on the path to the last decision point. Why? They tend

to be shorter.
7/21

Implication graph — various decision levels

We want
Level > a literal assigned at the last
level,
0
e e P literals involved assigned at
previous levels.

Not necessarily decision literals!

2 (14 a 6 Conflict analysis—we go from the

conflict to the last decision literal
and add involved literals from
previous levels. Hence it is fast!

8/21

Implication graph — various decision levels

We want
Level > a literal assigned at the last
level,
0
e e P literals involved assigned at
previous levels.

Not necessarily decision literals!

2 (D—(D)—@
Here one option is

3 (r {5,7,v}.

8/21

Implication graph — various decision levels

We want
Level > a literal assigned at the last
level
0 1
1 P literals involved assigned at
previous levels.
Not necessarily decision literals!
2
Here one option is
3 {5,7,v}.
However, the first UIP gives
4

{w, v}.

8/21

Implication graph — various decision levels

We want
Level > a literal assigned at the last
level,
0
e e P literals involved assigned at
previous levels.

Not necessarily decision literals!

We backtrack to the decision
level 2 (and obtain @), because
that is the maximal decision level
in the learned clause when we
ignore the literal from the last
decision level (w here).

8/21

Learned clause minimization (local)

Here we learn

Le(\)/el p——
1 e e However, we get t using
{p.t}.
2 (4 () X

9/21

Learned clause minimization (local)

Here we learn

Le(\)/el p——
1 e e However, we get ¢ using
{1}
2 ¢ W X Hence by self-subsumption

resolution we obtain

9/21

Learned clause minimization (recursive)

Level

0
. @

()
—/

Here we learn
{a,p,t}.

and the previous approach fails
here; we get a longer clause using

{?7 §7 t}?

which gives us t.

10/21

Learned clause minimization (recursive)

Level

0
. @

()
—/

Here we learn
{a,p,t}.

and the previous approach fails
here; we get a longer clause using

{7,3,t},
which gives us t.
Hence a recursive minimization,

which is more time-consuming, is
necessary to get

{a,p}
taking into account also clauses

{p,r} and {p, s}.

10/21

Conflict-Driven Clause Learning (CDCL)

It is the DPLL algorithm with non-chronological backtracking,
called back jumping, and clause learning. However, CDCL with all
the restarts and the deletions of learned clauses has little in
common with a systematic search done by DPLL.

Restarts
It is useful to restart a CDCL solver from time to time. We forget
all assignments but keep the learned clauses.

Delete learned clauses
It is necessary to delete some learned clauses to avoid space
problems and hence we try to keep only the most useful clauses.

SAT /UNSAT modes

Modern solvers use different modes for SAT /UNSAT problems, or
alternate these modes during their run.

11/21

Preprocessing

We want to obtain an equisatisfiable problem that is “simpler”.

There are many techniques
» unit propagations,
» pure literal eliminations,

» subsumptions,. ..

Bounded Variable Elimination (BVE)?

Loosely speaking, we eliminate a variable as in Davis—Putnam only
when it does not increase the number of clauses (this can be
relaxed over time). Combined with tautology elimination and
subsumptions.

Inprocessing

Basically all state-of-the-art solvers interleave search with
preprocessing.

'There exists also Bounded Variable Addition (BVA).

12/21

Decision heuristics

How to select a literal? Many approaches, but it has to be fast.

Historically
Based on the number of occurrences of variables in unsatisfied
clauses. Many variants, for example,

» considered only the shortest unsatisfied clauses,

» weight their occurrences (Jeroslow—-Wang)

w(l) = > o7l

c€p such that lec

We can compute it at the beginning or dynamically, however, that
is expensive to do, cf. watched literals.

Why do we prefer short clauses?

13/21

Decision heuristics — modern

Focus heuristics
In CDCL we try to find small unsatisfiable subsets and hence we
prefer variables involved in recent conflicts.

Modern solvers usually use a variant of VSIDS (Variable State
Independent Decaying Sum).

> Initialize with the number of occurrences of a variable in ¢,

» if a conflict clause c is learned, then the score of all variables
in ¢ is increased, and

> we periodically divide our scores by a constant to prioritize
recently learned clauses.

Global heuristics

We look-ahead on a literal [. It means that we assume [, then we

apply unit propagations and check clauses that are shortened by

this assignment, but not completely satisfied. We prefer literals

that produce shorter clauses. We also learn if possible. Good for
random k-SAT. 14/21

Decision heuristics — value

We have selected a variable, but what value (positive/negative)
should we try first? It is also called phase picking and it is
especially important for satisfiable instances.

Historically
» based on the number of occurrences of variables in unsatisfied
clauses; many variants

» a version of MiniSAT always sets literals to false

Phase saving

We do not concentrate directly on clauses, but instead we cache
the behavior of variables during propagations and backtracking; we
want to reach similar regions of the search space. Also very useful
in combination with rapid restarts; we keep exploring the same
region of the search space.

15/21

Parallel solving

SAT solving is difficult to parallelize. Moreover, our data
structures, e.g. watched literals, make it even harder.

Cube and conquer (look-ahead and CDLC)

We generate many partial assignments, e.g., by a breath-first
search with a limited maximal depth, and try to solve them.

Good for hard combinatorial problems, e.g., the Boolean triples
problem.

Portfolio approach

We run multiple solvers (usually the same one) with different
settings on the same formula. We share clauses, which is especially
important for unsatisfiable instances, among solvers. The main
problems are how to diversify our portfolio and share clauses
(which clauses, how many of them, when, ...).

It works very well on large problems that are easy to solve.

16/21

Probabilistic algorithms — stochastic local search

We start with a random complete valuation and try to minimize
the number of unsatisfied clauses by flipping variables.

These methods are incomplete and it is an open problem how to
use these techniques for showing unsatisfiability.

GSAT

Require: A set of clauses ¢
function GSAT(yp)
foric (1, MAXITERS) do
v <— a random valuation on ¢
for j € (1, MAXFLIPS) do
if v = ¢ then return v

else minimize #unsat clauses by flipping a variable
return None

Many extensions and variants, the most famous one is WalkSAT.

You can try some of them in UBCSAT.

17/21

https://github.com/dtompkins/ubcsat

WalkSAT

We try to avoid local minima by combining the greedy moves of
GSAT with random walk moves.

» Select randomly an unsatisfied clause c.
» If by flipping a variable = occurring in ¢ no satisfied clause
becomes unsatisfied, then flip z. (“freebie” move)
» Otherwise with a probability
» p flip a random variable = in ¢ (“random walk” move),
> (1 —p) perform a GSAT step (“greedy” move) on variables
from ¢; flip the best variable x € c.

For details see Walksat Home Page. It is efficient on random
k-SAT. Also historically good for planning and circuit design
problems.

probSAT
A generalization of WalkSAT that calculates the probability
distribution for the potential flip variables. It works also on some

hard non-random problems. For details, see here.
18/21

https://web.archive.org/web/20210225200329/https://www.cs.rochester.edu/u/kautz/walksat/
https://github.com/adrianopolus/probSAT

CDCL or/and stochastic local search

On some instances stochastic local search methods work very well,
you can try UBCSAT. But the previous methods, based on CDCL,
usually outperform them and, moreover, are able to show that a
problem is UNSAT.

19/21

https://github.com/dtompkins/ubcsat

CDCL or/and stochastic local search

On some instances stochastic local search methods work very well,
you can try UBCSAT. But the previous methods, based on CDCL,
usually outperform them and, moreover, are able to show that a
problem is UNSAT.

However, it is possible to combine CDCL with a local search and
many modern solvers take advantage of that

» for example, we can use a local search to produce a long
partial assignment (trail) and then use this knowledge when
we decide the values of variables (phase picking).

19/21

https://github.com/dtompkins/ubcsat

The Nobel Prize in Physics 2021

Giorgio Parisi (Prize share: 1/2)
For the discovery of the interplay of disorder and fluctua-
tions in physical systems from atomic to planetary scales.

20/21

The Nobel Prize in Physics 2021 and SAT

Giorgio Parisi (Prize share: 1/2)
For the discovery of the interplay of disorder and fluctua-
tions in physical systems from atomic to planetary scales.

Analytic and Algorithmic
Solution of Random
Satisfiability Problems

M. Mézard," G. Parisi,’2 R. Zecchina’3*

We study the satisfiability of random Boolean expressions built from many
clauses with K variables per clause (K-satisfiability). Expressions with a ratio «
of clauses to variables less than a threshold «_ are almost always satisfiable,
whereas those with a ratio above this threshold are almost always unsatisfiable.
We show the existence of an intermediate phase below o, where the prolif-
eration of metastable states is responsible for the onset of complexity in search
algorithms. We introduce a class of optimization algorithms that can deal with
these metastable states; one such algorithm has been tested successfully on the
largest existing benchmark of K-satisfiability.

20/21

Phase transition for random k-SAT

(literals are selected randomly, each clause has length exactly k)

Random 3-SAT: median runtime (log scale)

#vars

8
16
32
64
128

1073 4

runtime (s)

1074 4

1075 4 /—_\“

1 2 3 4 5 6 7 8 9
#clauses/#vars

21/21

Phase transition for random k-SAT

(literals are selected randomly, each clause has length exactly k)

Random 3-SAT: the ratio of satisfiable to all instances

1.01

0.8

0.6

SAT/all

0.4

0.2

0.0 1

#vars
8
16
32
64
128

#clauses/#vars

21/21

Bibliography |

Biere, Armin, Marijn Heule, et al., eds. (2021). Handbook of
Satisfiability. 2nd. Vol. 336. Frontiers in Artificial Intelligence
and Applications. Washington: 10S Press. ISBN:
978-1-64368-161-0.

Biere, Armin, Marijn J. H. Heule, et al., eds. (Feb. 2009).
Handbook of Satisfiability. Vol. 185. Frontiers in Artificial
Intelligence and Applications. 10S Press, p. 980. ISBN:
978-1-58603-929-5.

	References

