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Recap

We deal with formulae in conjunctive normal form (CNF)

(· · · ∨ · · · ∨ · · · ) ∧ · · · ∧ (· · · ∨ · · · ∨ · · · )

and we represent them using

{{. . . }, . . . , {. . . }}.

Our problem, given a set of clauses 𝜙:

Is 𝜙 ∈ SAT?
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DPLL algorithm

Require: A set of clauses 𝜙
function DPLL(𝜙)

while 𝜙 contains a unit clause {𝑙} do ◁ unit propagation
delete clauses containing 𝑙 from 𝜙 ◁ unit subsumption
delete 𝑙 from all clauses in 𝜙 ◁ unit resolution

if 2 ∈ 𝜙 then return false ◁ empty clause
while 𝜙 contains a pure literal 𝑙 do

delete clauses containing 𝑙 from 𝜙

if 𝜙 = ∅ then return true ◁ no clause
else

𝑙← select a literal occurring in 𝜙 ◁ a choice of literal
if DPLL(𝜙 ∪ {{𝑙}}) then return true
else if DPLL(𝜙 ∪ {{𝑙}}) then return true
else return false
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Example: DPLL (without pure literal elimination!)
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𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

Clearly, 𝑞 (a pure literal) and 𝑝 (a pure literal after satisfying 𝑐1 by
𝑞) satisfy clauses 𝑐1, . . . , 𝑐7. The sole purpose of this example (a
nonsensical run of DPLL) is to motivate CDCL.
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𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

For simplicity, we fix the order of choices to 𝑝 < 𝑞 < 𝑟 < 𝑠 < 𝑡 < 𝑢
and always select a positive literal first, but any unselected literal
can be chosen and in any order (positive/negative).
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It makes no sense to select 𝑟 here and it even violates the rule in
DPLL, but it demonstrates a property of the algorithm. Or assume
that there are also other clauses 𝑐8, . . . to be satisfied.
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How to improve backtracking in DPLL?
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𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

Clearly, detected conflicts do not depend on 𝑞 and 𝑟. Hence there
is no need to check different assignments for them and we have a
non-chronological backtracking.

4 / 21



Implication graph — analyzing conflicts
Red vertices are decision points and blue vertices are caused by
unit propagations. Red edges show the direction of decisions and
blue edges the reasons for unit propagations.

𝑝

𝑠

𝑞

𝑟 𝑡

𝑢 ✗
𝑐3

𝑐3

𝑐5

𝑐5

𝑐7

𝑐7

𝑐7

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

Hence (𝑝 ∧ 𝑠)→ ⊥ that is equivalent to {𝑝, 𝑠}. We can learn this
clause and add it to our set of clauses. This prevents us from
visiting the same conflict in a different branch.
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𝑝

𝑠

𝑞

𝑟 𝑡

𝑢 ✗
𝑐3

𝑐3

𝑐5

𝑐5

𝑐7

𝑐7

𝑐7

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

Moreover, {𝑝, 𝑠} is an asserting clause; it contains exactly one
literal that depends on the last decision. Hence an asserting clause
flips a literal on the last decision level. We learn only such clauses.
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Implication graph — analyzing conflicts

We can also analyze the second conflict now.

𝑝

𝑠

𝑢 ✗
𝑐4

𝑐4

𝑐6

𝑐6

𝑐6

𝑐8

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}
𝑐8 = {𝑝, 𝑠}

Hence we learn 𝑐9 = {𝑝}.
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Implication graph — various cuts
It was possible to learn a different clause.

𝑝
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𝑟 𝑡

𝑢 ✗
𝑐3

𝑐3

𝑐5

𝑐5

𝑐7

𝑐7

𝑐7

𝑐1 = {𝑝, 𝑞}
𝑐2 = {𝑞, 𝑟}
𝑐3 = {𝑝, 𝑠, 𝑡}
𝑐4 = {𝑝, 𝑠, 𝑢}
𝑐5 = {𝑝, 𝑡, 𝑢}
𝑐6 = {𝑝, 𝑠, 𝑢}
𝑐7 = {𝑝, 𝑡, 𝑢}

We usually prefer to learn {𝑝, 𝑡} instead of {𝑝, 𝑠}. Because 𝑡 is so
called dominator—all paths from 𝑠 to the conflict go through 𝑡.

We call such dominators unique implication points (UIP) and a
popular strategy is to learn the first UIP (the one closest to the
conflict) on the path to the last decision point. Why? They tend
to be shorter.
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Implication graph — various decision levels

Level
0
1

2

3

4

𝑝

𝑞

𝑟

𝑠

𝑡

𝑢 𝑣

𝑤 𝑦

𝑧

✗

We want
▶ a literal assigned at the last

level,
▶ literals involved assigned at

previous levels.
Not necessarily decision literals!

Conflict analysis—we go from the
conflict to the last decision literal
and add involved literals from
previous levels. Hence it is fast!
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level,
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Here one option is

{𝑠, 𝑟, 𝑣}.

However, the first UIP gives

{𝑤, 𝑣}.
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Implication graph — various decision levels

Level
0
1

2

3

4

𝑝

𝑞

𝑟

𝑠

𝑡

𝑢 𝑣

𝑤 𝑦

𝑧

✗

We want
▶ a literal assigned at the last

level,
▶ literals involved assigned at

previous levels.
Not necessarily decision literals!

We backtrack to the decision
level 2 (and obtain 𝑤), because
that is the maximal decision level
in the learned clause when we
ignore the literal from the last
decision level (𝑤 here).
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Learned clause minimization (local)

Level
0
1

2

𝑝

𝑞

𝑡

𝑢

𝑣

✗

Here we learn

{𝑞, 𝑝, 𝑡}.

However, we get 𝑡 using

{𝑝, 𝑡}.

Hence by self-subsumption
resolution we obtain

{𝑞, 𝑝}.
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Learned clause minimization (recursive)

Level
0
1

2

𝑝

𝑞

𝑟

𝑠

𝑡

𝑢

𝑣

✗

Here we learn

{𝑞, 𝑝, 𝑡}.

and the previous approach fails
here; we get a longer clause using

{𝑟, 𝑠, 𝑡},

which gives us 𝑡.

Hence a recursive minimization,
which is more time-consuming, is
necessary to get

{𝑞, 𝑝}

taking into account also clauses
{𝑝, 𝑟} and {𝑝, 𝑠}.
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Conflict-Driven Clause Learning (CDCL)

It is the DPLL algorithm with non-chronological backtracking,
called back jumping, and clause learning. However, CDCL with all
the restarts and the deletions of learned clauses has little in
common with a systematic search done by DPLL.

Restarts
It is useful to restart a CDCL solver from time to time. We forget
all assignments but keep the learned clauses.

Delete learned clauses
It is necessary to delete some learned clauses to avoid space
problems and hence we try to keep only the most useful clauses.

SAT/UNSAT modes
Modern solvers use different modes for SAT/UNSAT problems, or
alternate these modes during their run.
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Preprocessing
We want to obtain an equisatisfiable problem that is “simpler”.

There are many techniques
▶ unit propagations,
▶ pure literal eliminations,
▶ subsumptions,. . .

Bounded Variable Elimination (BVE)1

Loosely speaking, we eliminate a variable as in Davis–Putnam only
when it does not increase the number of clauses (this can be
relaxed over time). Combined with tautology elimination and
subsumptions.

Inprocessing
Basically all state-of-the-art solvers interleave search with
preprocessing.

1There exists also Bounded Variable Addition (BVA).
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Decision heuristics

How to select a literal? Many approaches, but it has to be fast.

Historically
Based on the number of occurrences of variables in unsatisfied
clauses. Many variants, for example,
▶ considered only the shortest unsatisfied clauses,
▶ weight their occurrences (Jeroslow–Wang)

𝑤(𝑙) =
∑︁

𝑐∈𝜙 such that 𝑙∈𝑐

2−|𝑐|

We can compute it at the beginning or dynamically, however, that
is expensive to do, cf. watched literals.

Why do we prefer short clauses?
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Decision heuristics — modern
Focus heuristics
In CDCL we try to find small unsatisfiable subsets and hence we
prefer variables involved in recent conflicts.

Modern solvers usually use a variant of VSIDS (Variable State
Independent Decaying Sum).
▶ Initialize with the number of occurrences of a variable in 𝜙,
▶ if a conflict clause 𝑐 is learned, then the score of all variables

in 𝑐 is increased, and
▶ we periodically divide our scores by a constant to prioritize

recently learned clauses.

Global heuristics
We look-ahead on a literal 𝑙. It means that we assume 𝑙, then we
apply unit propagations and check clauses that are shortened by
this assignment, but not completely satisfied. We prefer literals
that produce shorter clauses. We also learn if possible. Good for
random 𝑘-SAT. 14 / 21



Decision heuristics — value

We have selected a variable, but what value (positive/negative)
should we try first? It is also called phase picking and it is
especially important for satisfiable instances.

Historically
▶ based on the number of occurrences of variables in unsatisfied

clauses; many variants
▶ a version of MiniSAT always sets literals to false

Phase saving
We do not concentrate directly on clauses, but instead we cache
the behavior of variables during propagations and backtracking; we
want to reach similar regions of the search space. Also very useful
in combination with rapid restarts; we keep exploring the same
region of the search space.
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Parallel solving
SAT solving is difficult to parallelize. Moreover, our data
structures, e.g. watched literals, make it even harder.

Cube and conquer (look-ahead and CDLC)
We generate many partial assignments, e.g., by a breath-first
search with a limited maximal depth, and try to solve them.

Good for hard combinatorial problems, e.g., the Boolean triples
problem.

Portfolio approach
We run multiple solvers (usually the same one) with different
settings on the same formula. We share clauses, which is especially
important for unsatisfiable instances, among solvers. The main
problems are how to diversify our portfolio and share clauses
(which clauses, how many of them, when, . . . ).

It works very well on large problems that are easy to solve.
16 / 21



Probabilistic algorithms — stochastic local search
We start with a random complete valuation and try to minimize
the number of unsatisfied clauses by flipping variables.
These methods are incomplete and it is an open problem how to
use these techniques for showing unsatisfiability.

GSAT
Require: A set of clauses 𝜙

function GSAT(𝜙)
for 𝑖 ∈ (1, 𝑀𝐴𝑋𝐼𝑇𝐸𝑅𝑆) do

𝑣 ← a random valuation on 𝜙
for 𝑗 ∈ (1, 𝑀𝐴𝑋𝐹𝐿𝐼𝑃𝑆) do

if 𝑣 |= 𝜙 then return 𝑣
else minimize #unsat clauses by flipping a variable

return None

Many extensions and variants, the most famous one is WalkSAT.
You can try some of them in UBCSAT.

17 / 21
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WalkSAT
We try to avoid local minima by combining the greedy moves of
GSAT with random walk moves.

▶ Select randomly an unsatisfied clause 𝑐.
▶ If by flipping a variable 𝑥 occurring in 𝑐 no satisfied clause

becomes unsatisfied, then flip 𝑥. (“freebie” move)
▶ Otherwise with a probability

▶ 𝑝 flip a random variable 𝑥 in 𝑐 (“random walk” move),
▶ (1 − 𝑝) perform a GSAT step (“greedy” move) on variables

from 𝑐; flip the best variable 𝑥 ∈ 𝑐.

For details see Walksat Home Page. It is efficient on random
𝑘-SAT. Also historically good for planning and circuit design
problems.
probSAT
A generalization of WalkSAT that calculates the probability
distribution for the potential flip variables. It works also on some
hard non-random problems. For details, see here.

18 / 21

https://web.archive.org/web/20210225200329/https://www.cs.rochester.edu/u/kautz/walksat/
https://github.com/adrianopolus/probSAT


CDCL or/and stochastic local search

On some instances stochastic local search methods work very well,
you can try UBCSAT. But the previous methods, based on CDCL,
usually outperform them and, moreover, are able to show that a
problem is UNSAT.

However, it is possible to combine CDCL with a local search and
many modern solvers take advantage of that
▶ for example, we can use a local search to produce a long

partial assignment (trail) and then use this knowledge when
we decide the values of variables (phase picking).

19 / 21

https://github.com/dtompkins/ubcsat


CDCL or/and stochastic local search

On some instances stochastic local search methods work very well,
you can try UBCSAT. But the previous methods, based on CDCL,
usually outperform them and, moreover, are able to show that a
problem is UNSAT.

However, it is possible to combine CDCL with a local search and
many modern solvers take advantage of that
▶ for example, we can use a local search to produce a long

partial assignment (trail) and then use this knowledge when
we decide the values of variables (phase picking).

19 / 21

https://github.com/dtompkins/ubcsat
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Giorgio Parisi (Prize share: 1/2)
For the discovery of the interplay of disorder and fluctua-
tions in physical systems from atomic to planetary scales.

Analytic and Algorithmic
Solution of Random

Satisfiability Problems
M. Mézard,1 G. Parisi,1,2 R. Zecchina1,3*

We study the satisfiability of random Boolean expressions built from many
clauses with K variables per clause (K-satisfiability). Expressions with a ratio �
of clauses to variables less than a threshold �c are almost always satisfiable,
whereas those with a ratio above this threshold are almost always unsatisfiable.
We show the existence of an intermediate phase below �c, where the prolif-
eration of metastable states is responsible for the onset of complexity in search
algorithms. We introduce a class of optimization algorithms that can deal with
thesemetastable states; one such algorithm has been tested successfully on the
largest existing benchmark of K-satisfiability.

The K-satisfiability problem (Ksat) asks
whether one can satisfy simultaneously a set
of M constraints between N Boolean vari-
ables, where each constraint is a clause built
as the logical OR involving K variables (or
their negations). Ksat is at the core of com-
binatorial optimization theory (1) and often
serves as a benchmark for search algorithms
in artificial intelligence and computer sci-
ence. An efficient algorithm for solving Ksat
for K � 3 would immediately lead to other
algorithms for efficiently solving thousands
of different hard combinatorial problems.
The class of combinatorial problems sharing
such a crucial feature is called NP-complete
(2), and it is a basic conjecture of modern
computer science that no such efficient algo-
rithm exists. Algorithms that are used to
solve real-world NP-complete problems dis-
play a huge variability of running times,
ranging from linear to exponential. A theory
for the typical-case behavior of algorithms,
on classes of random instances chosen from a
given probability distribution, is therefore the
natural complement to the worst-case analy-
sis (3–5). Whereas 1sat and 2sat problems are
solved efficiently by polynomial time algo-
rithms (6), K � 2 randomly generated Bool-
ean formulae may become extraordinarily
difficult to solve: It has been observed nu-
merically (7, 8) that computationally hard
random instances are generated when the
problems are critically constrained [i.e., close
to the satisfiable-unsatisfiable (SAT-
UNSAT ) phase boundary]. The study of crit-
ical instances represents a theoretical chal-

lenge toward a greater understanding of the
onset of computational complexity and the
analysis of algorithms. Moreover, such hard
instances are a popular test bed for the per-
formance of search algorithms (9).

The random Ksat problem has close sim-
ilarities with models of complex materials
such as spin glasses, which are fundamental
systems in the statistical physics of disor-
dered systems (10). Spin glasses deal with
binary variables (“spins”) interacting with
random exchange couplings. Each pair of
interacting spins can be seen as a constraint,
and finding the state of minimal energy in a
spin glass amounts to minimizing the number
of violated constraints. Although the con-
straints in spin glasses and Ksat differ with
respect to their precise form, in both cases the
difficulty comes from the possible existence
of “frustration” (11), which makes it difficult
to find the global optimal state by a purely
local optimization procedure. Links between
combinatorial optimization and statistical
physics have been known for years (10, 12,
13). Techniques from statistical physics are
particularly useful when the size of the in-
stance is large.

Two main categories of questions can be
addressed. One type is algorithmic (e.g., find-
ing an algorithm that decides whether an
instance is SAT or UNSAT, or that tries to
minimize the number of violated constraints).
Another one is more theoretical and deals
with random instances for which one wants to
predict the typical behavior (e.g., phase tran-
sitions and structure of the solution space).

We address the two types of questions in
the 3sat problem. When the numbers of vari-
ables N and of clauses M both increase at a
fixed value of � � M/N, random Ksat prob-
lems become generically SAT at small � and
generically UNSAT at large �. The existence
of a SAT-UNSAT phase transition in the
infinite N limit has been established rigorous-
ly for any K (14), but the critical value �c

(that separates the two phases) has been
found only in the (polynomial) K � 2 prob-
lem where �c � 1 (15–17). For the NP-
complete case K � 3, much less is known.
The present best numerical estimate for �c at
K � 3 is 4.26 (18), and the rigorous bounds
are 3.42 � �c � 4.506 (19, 20); previous
statistical mechanics analysis, using the rep-
lica method, has found �c(3) � 4.48 (21) and
�c(3) � 4.396 (22) in the framework of vari-
ational approximations. The SAT-UNSAT
decision problem is also known experimen-
tally to be algorithmically harder to solve in
the neighborhood of �c, depending on the
characteristics of the SAT-UNSAT phase
transition. Indeed, 2sat and 3sat are different
in this respect (23).

Setting out the statistical physics
problem. The Ksat problem deals with N
Boolean variables xi, i � {1, . . . , N}. Each
clause a � {1, . . . , M} involves K variables
{xi1(a), . . . , xiK(a)}. Each such variable can be
negated or not, and the clause is built as the
OR function of the K resulting variables. In
physical terms, the variable xi can be repre-
sented by a “spin” si � �1 through the
one-to-one mapping si � �1 if xi is false and
si � �1 if xi is true. For each variable xir(a)

appearing in clause a, one introduces a “cou-
pling” Ja

r � �1 if the variable appears negat-
ed in the clause; otherwise the coupling is Ja

r

� 1. The sets of indices i1(a), . . . , iK(a) and of
“couplings” Ja � {Ja

1, . . . , Ja
K} define an in-

stance of the problem under study. Given a
spin configuration, the “energy” εJa(si1(a), . . . ,
sik(a)) of clause a is equal to 0 if the clause is
satisfied, or equal to 1 if it is violated (24).
The total energy E equals the number of
violated clauses.

In statistical physics, one assigns to each
of the 2N spin configurations a Boltzmann
probability exp(�	E)/Z, where 	 is an aux-
iliary parameter playing the role of the in-
verse of temperature, and Z is a normalization
term; here we are interested in the 	 3 

“zero-temperature” limit, where Boltzmann’s
law selects optimal states.

The spin glass approach. We first study
the large N limit of the random 3sat problem,
where the indices in each clause are chosen
randomly, as well as the sign of each cou-
pling, with uniform distributions. Our ap-
proach to these problems uses a general strat-
egy initiated years ago in spin glass theory
(10). The first concept we need to introduce is
that of a state. Roughly speaking, states cor-
respond to connected regions of configura-
tions, such that one must cross energy barri-
ers that diverge when N3 
 to go from one
state to another. The archetype of such a
situation is the ferromagnetic transition
where the spins collectively polarize, either
toward an “up” state or toward a “down”
state. In frustrated systems such as satisfiabil-
ity problems, many states can exist: The
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91405 Orsay Cedex, France. 2Sezione INFN, SMC and
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Phase transition for random 𝑘-SAT
(literals are selected randomly, each clause has length exactly 𝑘)
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