Logical reasoning and programming, lab session 2

(October 2, 2023)
2.1 Use http://fmv.jku.at/limboole/ on $\varphi=(a \rightarrow(c \wedge d)) \vee(b \rightarrow(c \wedge e))$.
2.2 Derive the empty clause from $\{\{\bar{a}, b\},\{\bar{b}, c\},\{a, \bar{c}\},\{a, b, c\},\{\bar{a}, \bar{b}, \bar{c}\}\}$ using resolution.
2.3 A clause $c_{1}=\left\{l, l_{1}, \ldots, l_{n}\right\}$ is blocked in φ by l if for every clause $c_{2} \in \varphi$ such that $\bar{l} \in c_{2}$ the resolvent of c_{1} and c_{2} is a tautology. Prove that if a clause d is blocked (by a literal) in ψ, then $\psi \in$ SAT iff $\psi \backslash d \in$ SAT.
2.4 Formulate graph coloring (a vertex coloring) as a SAT problem. Namely, given a graph G, does G admit a proper vertex coloring with k colors?
Discuss various possibilities how to formulate the problem. Moreover, are really all the constraints necessary?
2.5 Check this video, where zChaff colors the McGregor graph.
2.6 Let φ be a formula in CNF such that it contains only Horn clauses; they contain at most one positive literal. Show that SAT for φ is decidable in polynomial time.

Hint: Perform all the unit propagations first.
2.7 In fact, it is possible to improve the previous algorithm in such a way that it works in linear time.
2.8 Express the pigeonhole principle in propositional logic. Namely, define a propositional formula PHP_{n}^{n+1}, which says that you have $n+1$ pigeons, n holes, every pigeon has a hole, and no two pigeons sit in the same hole.
2.9 Try PicoSAT pycosat on $\operatorname{PHP}_{n}^{n+1}$ for small values of n. What is the maximal value of n for which you can solve PHP_{n}^{n+1} in one minute?

2.10 Install PySAT

2.11 If you want to play with SAT solving a bit, then a standard exercise is to formalize Sudoku as a SAT problem and hence produce a Sudoku solver. Write a program that generates a problem specification in the DIMACS format in such a way that it is possible to specify an input (a partially completed grid) by appending ${ }^{11}$ clauses saying which variables are true. You can use MiniSat or pycosat and some input is available from here, where each line has format $X Y Z$ meaning there is Z in cell (X, Y).
By the way, is it possible to obtain also a generator of Sudoku puzzles this way?
2.12 Check the details of two watched literals, for example, these and these slides illustrate the data structure.

[^0]
[^0]: ${ }^{1}$ Note that this changes the number of clauses, a parameter specified in the DIMACS format.

