
Logical reasoning and programming
SAT solving—resolution and DPLL

Karel Chvalovský

CIIRC CTU

CNFs
A literal is a propositional variable 𝑝 (positive l.) or a negation of
propositional variable ¬𝑝 (negative l.). In this context we write 𝑝
instead of ¬𝑝.
A clause is any disjunction of finitely many literals. An important
special case is the empty clause, we write 2.
A formula 𝜙 is in conjunctive normal form (CNF) if 𝜙 is a
conjunction of clauses. Analogously disjunctive normal form (DNF)
is defined as a disjunction of conjunctions of literals.

Remark
The clause

𝑝1 ∨ 𝑝2 ∨ · · · ∨ 𝑝𝑚 ∨ 𝑞1 ∨ 𝑞2 ∨ · · · ∨ 𝑞𝑛

is equivalent (for example) to

(𝑝1 ∧ 𝑝2 ∧ · · · ∧ 𝑝𝑚)→ (𝑞1 ∨ 𝑞2 ∨ · · · ∨ 𝑞𝑛).

1 / 31

SAT problem

Given a formula 𝜙 in CNF decide whether 𝜙 ∈ SAT.

Why is satisfiability important? Among other things it is possible
to express other notions through it.

For any formula 𝜙 we have

|= 𝜙 iff ¬𝜙 is a contradiction iff ¬𝜙 /∈ SAT.

Moreover, for any formula 𝜙 and a finite set of formulae Γ we have

Γ |= 𝜙 iff
⋀︁

Γ ∧ ¬𝜙 is a contradiction iff
⋀︁

Γ ∧ ¬𝜙 /∈ SAT.

Example
𝑝, 𝑝→ 𝑞, 𝑞 → 𝑟 |= 𝑟 iff 𝑝 ∧ (𝑝→ 𝑞) ∧ (𝑞 → 𝑟) ∧ (¬𝑟) /∈ SAT.

2 / 31

Example: 𝑛-queens problem

8 0Z0Z0L0Z
7 Z0ZQZ0Z0
6 0Z0Z0ZQZ
5 L0Z0Z0Z0
4 0Z0Z0Z0L
3 ZQZ0Z0Z0
2 0Z0ZQZ0Z
1 Z0L0Z0Z0

a b c d e f g h

3 / 31

Example: 𝑛-queens problem

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

𝑞𝑎8 𝑞𝑏8 𝑞𝑐8 𝑞𝑑8 𝑞𝑒8 𝑞𝑓8 𝑞𝑔8 𝑞ℎ8

𝑞𝑎7 𝑞𝑏7 𝑞𝑐7 𝑞𝑑7 𝑞𝑒7 𝑞𝑓7 𝑞𝑔7 𝑞ℎ7

𝑞𝑎6 𝑞𝑏6 𝑞𝑐6 𝑞𝑑6 𝑞𝑒6 𝑞𝑓6 𝑞𝑔6 𝑞ℎ6

𝑞𝑎5 𝑞𝑏5 𝑞𝑐5 𝑞𝑑5 𝑞𝑒5 𝑞𝑓5 𝑞𝑔5 𝑞ℎ5

𝑞𝑎4 𝑞𝑏4 𝑞𝑐4 𝑞𝑑4 𝑞𝑒4 𝑞𝑓4 𝑞𝑔4 𝑞ℎ4

𝑞𝑎3 𝑞𝑏3 𝑞𝑐3 𝑞𝑑3 𝑞𝑒3 𝑞𝑓3 𝑞𝑔3 𝑞ℎ3

𝑞𝑎2 𝑞𝑏2 𝑞𝑐2 𝑞𝑑2 𝑞𝑒2 𝑞𝑓2 𝑞𝑔2 𝑞ℎ2

𝑞𝑎1 𝑞𝑏1 𝑞𝑐1 𝑞𝑑1 𝑞𝑒1 𝑞𝑓1 𝑞𝑔1 𝑞ℎ1

▶ We represent the fact that a queen occupies a square by
propositional variables 𝑞𝑎1, 𝑞𝑏1, . . . , 𝑞ℎ8.
▶ 𝑞𝑏1 means 𝑏1 contains a queen,
▶ 𝑞𝑏1 means 𝑏1 is empty.

3 / 31

Example: 𝑛-queens problem

8 0Z0Z0L0Z
7 Z0ZQZ0Z0
6 0Z0Z0ZQZ
5 L0Z0Z0Z0
4 0Z0Z0Z0L
3 ZQZ0Z0Z0
2 0Z0ZQZ0Z
1 Z0L0Z0Z0

a b c d e f g h

▶ There should be clauses expressing
▶ 𝑛 queens on the board (or at least one per row or column), and
▶ no two queens on the same row, and
▶ no two queens on the same column, and
▶ no two queens on the same diagonal.

3 / 31

Basic constraints
We want to express that

𝑝1 + 𝑝2 + · · ·+ 𝑝𝑛 ◁▷ 1,

where ◁▷∈ {≤,≥,=}.

= 1 is expressed as both ≤ 1 and ≥ 1,
≥ 1 is (AtLeastOne)

𝑝1 ∨ · · · ∨ 𝑝𝑛,

≤ 1 is (pairwise encoding) (AtMostOne)⋀︁
1≤𝑖<𝑗≤𝑛

𝑝𝑖 ∨ 𝑝𝑗 ,

▶ we want 𝑝𝑖 → 𝑝𝑗 , for 𝑖 ̸= 𝑗,
▶ it means 𝒪(𝑛2) clauses.

4 / 31

Example: 𝑛-queens problem

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

▶ Is it satisfiable that
▶ at least one queen per row (or column), and
▶ at most one queen per row, and
▶ at most one queen per column, and
▶ at most one queen per diagonal?

5 / 31

Example: 𝑛-queens problem

8 0Z0Z0L0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0L0Z0Z0

a b c d e f g h

▶ Is it satisfiable that
▶ at least one queen per row (or column), and
▶ at most one queen per row, and
▶ at most one queen per column, and
▶ at most one queen per diagonal, and
▶ 𝑞𝑐1 and 𝑞𝑓8?

5 / 31

SAT solving applications

SAT solving is one of success stories in computer science. We are
able to solve industrial problems containing millions of variables.

It is used, e.g., in
▶ formal verification — chip makers check correctness of their

designs,
▶ security,
▶ bioinformatics — mutations in DNA,
▶ train safety,
▶ planning and scheduling,
▶ automated theorem proving.

6 / 31

How to solve SAT?

It is not easy; 𝜙 ∈ SAT is an NP-complete problem (and hence
𝜙 ∈ TAUT is a co-NP-complete problem).

We can use truth tables, but that is in many cases too
complicated; we test all possible valuations and for example

𝑝 ∧ 𝑝 ∧ (𝑞1 ∨ · · · ∨ 𝑞𝑛)

is clearly unsatisfiable regardless of values of 𝑞1, . . . , 𝑞𝑛.

Another way, we can think about transformations of formulae that
preserve satisfiability; a trivial example is to handle clauses as sets
of literals and formulae in CNF as sets of clauses.

7 / 31

CNF as a set of sets

We know that conjunctions and disjunctions are associative,
commutative, and idempotent. Therefore a clause can be seen as a
set of literals and a formula in CNF as a set of clauses.

Hence from now on we freely use

𝜙 = {{𝑝, 𝑞}, {𝑞, 𝑟}, {𝑟, 𝑠}, {𝑠, 𝑡}}

instead of
(𝑝 ∨ 𝑞) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨ 𝑠) ∧ (𝑠 ∨ 𝑡).

Note that 𝜙 is, for example, also a representation of

(𝑡 ∨ 𝑠 ∨ 𝑡) ∧ (𝑞 ∨ 𝑟) ∧ (𝑟 ∨ 𝑞) ∧ (𝑟 ∨ 𝑠) ∧ (𝑝 ∨ 𝑞).

8 / 31

Satisfying a clause

For the clause

𝑝1 ∨ 𝑝2 ∨ · · · ∨ 𝑝𝑚 ∨ 𝑞1 ∨ 𝑞2 ∨ · · · ∨ 𝑞𝑛

there are 2𝑚+𝑛 possible different truth assignments to literals in it.

How many of them make the clause false?

9 / 31

Resolution rule — example

Assume we want to satisfy two clauses that contain contradicting
literals simultaneously

𝑞 ∨ 𝑝 𝑝 ∨ 𝑟
𝑞 ∨ 𝑟

If 𝑣 |= 𝑞 ∨ 𝑝 and 𝑣 |= 𝑝 ∨ 𝑟, then clearly 𝑣 |= 𝑞 ∨ 𝑟.

10 / 31

Resolution rule
Let 𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛 be literals and 𝑝 be a propositional
variable.

{𝑙1, . . . , 𝑙𝑚, 𝑝} {𝑝, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛}
{𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛}

The clause {𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛} produced by the resolution
rule is called the resolvent of the two input clauses. We call 𝑝 and
𝑝 a complementary pair. We also say that it is a 𝑝-resolvent to
emphasize the complementary pair.

Theorem (correctness)
For any valuation 𝑣, if 𝑣 |= {𝑙1, . . . , 𝑙𝑚, 𝑝} and
𝑣 |= {𝑝, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛}, then 𝑣 |= {𝑙1, . . . , 𝑙𝑚, 𝑙𝑚+1, . . . , 𝑙𝑚+𝑛}.

Hence the resolution rule preserves satisfiability.

11 / 31

Resolution calculus

The resolution calculus has no axioms and the only deduction rule
is the resolution rule.

Resolution proof
A (resolution) proof of clause 𝑐 from clauses 𝑐1, . . . , 𝑐𝑛 is a finite
sequence of clauses 𝑑1, . . . , 𝑑𝑚 such that
▶ every 𝑑𝑖 is among 𝑐1, . . . , 𝑐𝑛 or is derived by the resolution

rule from input clauses 𝑑𝑗 and 𝑑𝑘, for 1 ≤ 𝑗 < 𝑘 < 𝑖 ≤ 𝑚,
▶ 𝑐 = 𝑑𝑚.

We say that a clause 𝑐 is provable (derivable) from a set of clauses
{𝑐1, . . . , 𝑐𝑛}, we write {𝑐1, . . . , 𝑐𝑛} ⊢ 𝑐, if there is a proof of 𝑐 from
𝑐1, . . . , 𝑐𝑛.

12 / 31

Resolution proof

Example

{𝑝} {𝑝, 𝑞}
{𝑞}

{𝑞, 𝑟} {𝑟}
{𝑞}

2

is a proof of {{𝑝}, {𝑝, 𝑞}, {𝑞, 𝑟}, {𝑟}} ⊢ 2.

Strictly speaking the presented derivation is not a sequence, but it
is easy to produce a sequence from it.

13 / 31

Completeness of resolution calculus

It is not true that we can derive every valid formula in the
resolution calculus, e.g., from the empty set we derive nothing.
However, it is so called refutationally complete.

Theorem (completeness)
Let 𝜙 be a set of clauses. If 𝜙 ̸∈ SAT, then 𝜙 ⊢ 2.

Note that from the correctness theorem we already know the
converse implication.

Theorem
Let 𝜙 be a set of clauses. If 𝜙 ⊢ 2, then 𝜙 ̸∈ SAT.

14 / 31

Deciding SAT using resolution

If we have a formula 𝜙 in CNF, a finite set of clauses, then we can
clearly derive only finitely many clauses from it, say
𝜓 = {𝑐 : 𝜙 ⊢ 𝑐}. Note that if 𝜓 ⊢ 𝑐, then 𝑐 ∈ 𝜓. We call such a set
of clauses saturated—it is closed under the resolution rule.

This gives us a decision procedure for SAT. Either we produce
▶ a (saturated) set of clauses containing the empty clause and

hence 𝜙 /∈ SAT, or
▶ a saturated set of clauses not containing the empty clause and

hence 𝜙 ∈ SAT.

Example
Let 𝜙 = {{𝑝, 𝑞}, {𝑝, 𝑟}, {𝑞, 𝑠}}. From 𝜙 we obtain the saturated
set of clauses {{𝑝, 𝑞}, {𝑝, 𝑟}, {𝑞, 𝑠}, {𝑞, 𝑟}, {𝑝, 𝑠}, {𝑟, 𝑠}}. Hence
𝜙 ∈ SAT.

15 / 31

Ordered resolution

Assume the set of clauses {{𝑝, 𝑞}, {𝑝, 𝑟}, {𝑞, 𝑠}} and two possible
derivations that differ only in the order of performed steps

{𝑝, 𝑞} {𝑝, 𝑟}
{𝑞, 𝑟} {𝑞, 𝑠}

{𝑟, 𝑠}

{𝑝, 𝑞} {𝑞, 𝑠}
{𝑝, 𝑠} {𝑝, 𝑟}

{𝑟, 𝑠}

Is it necessary to try all such possible orderings?

No, we can use an ordered resolution. We can always impose an
ordering on variables and resolve using this order. Say 𝑝 < 𝑞,
meaning all 𝑝-resolvents must precede all 𝑞-resolvents.

Why is this enough? We try to produce the empty clause, it does
not matter in which order we eliminate literals to achieve that goal.

16 / 31

Davis–Putnam algorithm [Davis and Putnam 1960]

It was originally developed for first-order logic.

We have a set of clauses 𝜙. We choose a variable 𝑝 such that both
𝑝 and 𝑝 occur in 𝜙 and eliminate it—we produce all possible
𝑝-resolvents and add them to 𝜙 and then we remove all clauses in
𝜙 that contain 𝑝 or 𝑝. This operation preserves satisfiability and is
also complete even with an imposed ordering.

Example
From {{𝑝, 𝑞}, {𝑝, 𝑟}, {𝑞, 𝑠}} we obtain {{𝑞, 𝑟}, {𝑞, 𝑠}} by
eliminating 𝑝 and then we obtain {𝑟, 𝑠} by eliminating 𝑞. We
cannot proceed and hence the original formula is satisfiable.

(Note that 𝑟 and 𝑠 are pure literals.)

We can use many tricks, many proposed already by Davis and
Putnam (unit propagation, pure literal elimination), to simplify
searching, but in general the size of space needed to store clauses
can grow exponentially.

17 / 31

Proof of completeness I.
Let 𝜙 be a set of clauses and we define

𝜙+
𝑝 = { 𝑐 ∈ 𝜙 : 𝑝 ∈ 𝑐 },

𝜙−
𝑝 = { 𝑐 ∈ 𝜙 : 𝑝 ∈ 𝑐 },
𝜙0

𝑝 = 𝜙 ∖ (𝜙+
𝑝 ∪ 𝜙−

𝑝),
𝜙𝑝 = 𝜙0

𝑝 ∪ { 𝑐 : 𝑐 is a 𝑝-resolvent of clauses from 𝜙+
𝑝 and 𝜙−

𝑝 }.

Lemma
If 𝜙 ̸∈ SAT, then 𝜙𝑝 ̸∈ SAT.

Proof.
By contraposition. If 𝜙𝑝 ∈ SAT, then there exists 𝑣 s.t. 𝑣 |= 𝜙𝑝.
Let 𝑣𝑝 and 𝑣𝑝 only differ from 𝑣 by setting 𝑣𝑝(𝑝) = 1 and
𝑣𝑝(𝑝) = 0, respectively. Clearly, 𝑣𝑝 |= 𝜙𝑝 and 𝑣𝑝 |= 𝜙𝑝. If both
𝑣𝑝 ̸|= 𝜙 and 𝑣𝑝 ̸|= 𝜙, then there are 𝑐𝑝 ∈ 𝜙+

𝑝 and 𝑐𝑝 ∈ 𝜙−
𝑝 s.t.

𝑣𝑝 ̸|= 𝑐𝑝 and 𝑣𝑝 ̸|= 𝑐𝑝. Hence the resolvent of 𝑐𝑝 and 𝑐𝑝 is not
satisfied by 𝑣, a contradiction. Hence 𝜙 ∈ SAT.

18 / 31

Completeness theorem
It is easy to see that the previous lemma gives us the completeness
theorems for all resolution calculi we have defined so far. We prove
it for the Davis–Putnam algorithm with ordered variables. Because
if this calculus derives 2 from 𝜙, then a less restrictive calculus
derives 2 as well.

Theorem (completeness)
Let 𝜙 be a set of clauses. If 𝜙 ̸∈ SAT, then 𝜙 ⊢ 2.

Proof.
Let 𝜙 ̸∈ SAT and 𝑝1, . . . , 𝑝𝑛 be a sequence of all variables occurring
in 𝜙. We repeatedly apply the previous lemma (and remove all
tautological clauses). We obtain a set of clauses that contains no
variables from 𝜙 and is unsatisfiable. Hence it is equal to {2}.

Note that we assume that 𝜙 is a finite set of clauses. However, the
compactness theorem for propositional logic gives us that an infinite
unsatisfiable set of clauses contains a finite unsatisfiable subset.

19 / 31

Some properties of resolution
Subsumption
A clause 𝑐1 is said to (syntactically) subsume a clause 𝑐2 if 𝑐1 ⊆ 𝑐2.

If 𝑐1, 𝑐2 ∈ 𝜙 and 𝑐1 ⊆ 𝑐2, then 𝜙 ≡ 𝜙 ∖ 𝑐2, because 𝑐1 |= 𝑐2. Hence
𝜙 ∈ SAT iff 𝜙 ∖ 𝑐2 ∈ SAT. Moreover, this can shorten a proof.

Example
From {{𝑝}, {𝑝, 𝑟}, {𝑝, 𝑞}, {𝑟, 𝑞}} we obtain {{𝑝}, {𝑝, 𝑞}, {𝑟, 𝑞}}
that is equivalent (and hence equisatisfiable).

Multiple resolvents
If it is possible to obtain more different resolvents from two
clauses, then all these resolvents are tautologies, hence always
satisfiable, and hence we can ignore them.

Example
{𝑝, 𝑞} {𝑝, 𝑞}

{𝑞, 𝑞}
{𝑝, 𝑞} {𝑝, 𝑞}

{𝑝, 𝑝}
20 / 31

Conditioning — simplifications

To avoid space problems of the Davis–Putnam algorithm we use a
different approach. We try to produce a satisfying valuation by
assigning values to variables and we backtrack if necessary.

We select a literal 𝑙 and replace it by true (⊤). Hence 𝑙 is
replaced by false (⊥). This can lead to many simplifications of
our set of clauses.

Require: A set of clauses 𝜙, a literal 𝑙
function Simplify(𝜙, 𝑙)

𝜙′ ← 𝜙
for 𝑐 ∈ 𝜙′ do

if 𝑙 ∈ 𝑐 then remove 𝑐 from 𝜙′ ◁ satisfied clause
else if 𝑙 ∈ 𝑐 then remove 𝑙 from 𝑐 ◁ unsatisfied literal

return 𝜙′

21 / 31

Chronological backtracking algorithm

Using the previous simplification function, we can chronologically
try to create a satisfying valuation.

Require: A set of clauses 𝜙
function IsSAT(𝜙)

if 𝜙 = ∅ then return true ◁ no clause
else if 2 ∈ 𝜙 then return false ◁ empty clause
else

𝑙← select a literal occurring in 𝜙
if IsSAT(Simplify(𝜙, 𝑙)) then return true
else if IsSAT(Simplify(𝜙, 𝑙)) then return true
else return false

22 / 31

DPLL algorithm [Davis, Logemann, and Loveland 1962]
The name stands for Davis, (Putnam), Logemann, and Loveland.

We improve our backtracking algorithm by the following two ideas:
Unit propagation
If a clause contains only a single literal 𝑙, then it is forced that 𝑙
has to be true.

Example
For {{𝑝}, {𝑝, 𝑞}, {𝑞, 𝑟}, {𝑟}} we obtain unsatisfiability immediately
after unit propagations and simplifications.

Unit propagation is a very powerful technique especially with
clause learning.

Pure literal elimination
A literal 𝑙 is pure, if 𝑙 does not occur in the formula. Hence we can
satisfy all clauses containing 𝑙 by assigning true to 𝑙.

Pure literal elimination is often ignored for efficiency reasons.
23 / 31

DPLL algorithm

Require: A set of clauses 𝜙
function DPLL(𝜙)

while 𝜙 contains a unit clause {𝑙} do ◁ unit propagation
delete clauses containing 𝑙 from 𝜙 ◁ unit subsumption
delete 𝑙 from all clauses in 𝜙 ◁ unit resolution

if 2 ∈ 𝜙 then return false ◁ empty clause
while 𝜙 contains a pure literal 𝑙 do

delete clauses containing 𝑙 from 𝜙

if 𝜙 = ∅ then return true ◁ no clause
else

𝑙← select a literal occurring in 𝜙 ◁ a choice of literal
if DPLL(𝜙 ∪ {{𝑙}}) then return true
else if DPLL(𝜙 ∪ {{𝑙}}) then return true
else return false

24 / 31

DPLL — data structures
In real implementations we use trail — we keep whole set and
construct a partial assignment during a computation. An efficient
implementation of unit propagations is crucial.

Watched literals
Instead of checking whole clauses all the time we select two
distinct literals, called watched literals, in each clause. We also
remember in which clauses a literal is selected. If we assign a value
to a literal 𝑙, then we check only clauses where 𝑙 is a watched
literal. In these clauses we try to select another literal as a watched
literal. If that is no longer possible, then we have a unit clause.

It has nice properties during backtracking, because there is no need
to update current watched literals.

For details see, e.g., Knuth 2015; Biere, M. J. H. Heule, et al.
2009; Biere, M. Heule, et al. 2021.

25 / 31

How to select a SAT solver?

Try different solvers (based on CDCL), they use the same input
format and hence it is easy to experiment. However, the good
encoding of your problem is usually at least as important as a good
solver.

MiniSat is free, fast, and very popular implementation in C. It won
all three industrial categories in the SAT Competition 2005. A new
version is called MiniSat 2. However, it is not the state of the art.
A good choice if you want to use a SAT solver in your software.

For playing in Python you can use pycosat, a package that provides
bindings to PicoSAT on the C level. A rapidly developing toolkit is
PySAT.

Check results of SAT Competition 2023 and from previous years
for the state of the art.

26 / 31

http://minisat.se/
https://pysathq.github.io/
https://satcompetition.github.io/2023/
https://satcompetition.github.io/

Some modern solvers

There are many modern solvers available, e.g.,
▶ solvers developed by Armin Biere, for example,

▶ PicoSAT,
▶ Lingeling,
▶ CaDiCaL,
▶ Kissat,
▶ SATCH—a simple and clean code base for explaining and

experimenting with SAT solvers,
▶ Glucose

▶ based on MiniSat,
▶ MapleSAT

▶ based on Glucose,
▶ CryptoMiniSat,
▶ Sat4j—a Java library; good for Windows,
▶ UBCSAT—a Stochastic Local Search SAT Solver framework.

27 / 31

http://fmv.jku.at/picosat/
https://github.com/arminbiere/lingeling
https://github.com/arminbiere/cadical
https://github.com/arminbiere/kissat
https://github.com/arminbiere/satch
https://www.labri.fr/perso/lsimon/glucose/
https://maplesat.github.io/
https://github.com/msoos/cryptominisat
http://www.sat4j.org/
http://ubcsat.dtompkins.com/

Progress over years. . . source

0 1,000 2,000 3,000 4,000 5,000
0

50

100

150

200

250

CPU time

so
lv
ed

in
st
an

ce
s

SAT Competition Winners on the SC2020 Benchmark Suite

kissat-2020
maple-lcm-disc-cb-dl-v3-2019
maple-lcm-dist-cb-2018
maple-lcm-dist-2017
maple-comsps-drup-2016
lingeling-2014
abcdsat-2015
lingeling-2013
glucose-2012
glucose-2011
cryptominisat-2010
precosat-2009
minisat-2008
berkmin-2003
minisat-2006
rsat-2007
satelite-gti-2005
zchaff-2004
limmat-2002

data produced by Armin Biere and Marijn Heule

28 / 31

http://fmv.jku.at/kissat/winners-2020.pdf

DIMACS format
The standard format for SAT solvers.
Variables are enumerated 1, 2, A variable 𝑥𝑖 is represented by
𝑖 and 𝑥𝑖 by −𝑖. A clause is a list of non-zero integers separated by
spaces, tabs, or newlines. The end of a clause is represented by
zero. The order of literals and clauses is irrelevant.
Input
c start with comments
c
p cnf 5 3 #variables #clauses
1 -5 4 0
-1 5 3 4 0
-3 -4 0

encodes

(𝑥1 ∨ 𝑥5 ∨ 𝑥4) ∧ (𝑥1 ∨ 𝑥5 ∨ 𝑥3 ∨ 𝑥4) ∧ (𝑥3 ∨ 𝑥4).

29 / 31

DIMACS output format

There are three possible outcomes
▶ s SATISFIABLE

▶ a satisfying assignment is returned: v 1 -2 -3 4 0
▶ s UNSATISFIABLE

▶ a possible certificate in an external file
▶ s UNKNOWN

30 / 31

Certifying unsatisfiability

It is easy to convince someone that a formula is satisfiable by
showing an assignment. To certificate that it is unsatisfiable is not
so easy. It can be exponentially long and usually such a certificate
is provided in a form of resolution proof.

A standard format currently used is called DRAT (Delete
Resolution Asymmetric Tautologies).

31 / 31

Bibliography I

Biere, Armin, Marijn Heule, et al., eds. (2021). Handbook of
Satisfiability. 2nd. Vol. 336. Frontiers in Artificial Intelligence
and Applications. Washington: IOS Press. isbn:
978-1-64368-161-0.
Biere, Armin, Marijn J. H. Heule, et al., eds. (Feb. 2009).
Handbook of Satisfiability. Vol. 185. Frontiers in Artificial
Intelligence and Applications. IOS Press, p. 980. isbn:
978-1-58603-929-5.
Davis, Martin, George Logemann, and Donald Loveland (July
1962). “A Machine Program for Theorem-Proving”. In:
Communications of the ACM 5.7, pp. 394–397. issn:
0001-0782. doi: 10.1145/368273.368557.
Davis, Martin and Hilary Putnam (July 1960). “A Computing
Procedure for Quantification Theory”. In: Journal of the ACM
7.3, pp. 201–215. issn: 0004-5411. doi:
10.1145/321033.321034.

https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/321033.321034

Bibliography II

Knuth, Donald E. (2015). The Art of Computer Programming,
Volume 4, Fascicle 6: Satisfiability. 1st. Addison-Wesley
Professional. isbn: 978-0-13-439760-3.

	References

