
Logical reasoning and programming, lab session 12
(December 18, 2023)

Task 1: Load the map below, represented by the europe/3 predicate, into Prolog. The
map shows most of the EU capitals and London. Two capitals are connected if their
respective countries are neighbours or if they are connected by a car ferry and their flight
distance does not exceed 600km.
Note the two dashed lines (commented lines in the code). Those connections are longer
than 600km and are thus removed from the program, which causes our graph to be
disconnected. All your solutions should account for that fact, although you may include
the connections when debugging.

amsterdam

athens

rome

berlin

luxembourg

warsaw

bratislava

brussels

paris

bucharest

budapest

ljubljana

copenhagen

stockholm

dublin

london

helsinki

lisbon

madrid

prague

riga

vilnius

sofia

tallinn

vienna

zagreb

1



europe(lisbon, madrid, 503).
% europe(madrid, paris, 1053).
europe(dublin, london, 464).
europe(london, paris, 342).
europe(paris, brussels, 263).
europe(paris, luxembourg, 287).
europe(brussels, luxembourg, 187).
europe(brussels, amsterdam, 174).
europe(luxembourg, berlin, 600).
europe(amsterdam, berlin, 577).
europe(berlin, copenhagen, 355).
europe(berlin, warsaw, 516).
europe(berlin, prague, 280).
europe(berlin, vienna, 523).
europe(copenhagen, stockholm, 521).
europe(stockholm, helsinki, 396).
europe(helsinki, tallinn, 82).
europe(tallinn, riga, 280).
europe(riga, vilnius, 261).
europe(vilnius, warsaw, 393).
europe(prague, warsaw, 514).
europe(prague, bratislava, 291).
europe(prague, vienna, 250).
europe(bratislava, warsaw, 533).
europe(bratislava, budapest, 161).
europe(bratislava, vienna, 55).
europe(vienna, budapest, 214).
europe(vienna, ljubljana, 279).
europe(ljubljana, rome, 490).
europe(ljubljana, zagreb, 117).
europe(ljubljana, budapest, 380).
europe(budapest, zagreb, 299).
% europe(budapest, bucharest, 643).
europe(bucharest, sofia, 296).
europe(sofia, athens, 526).

way(X, Y, Dist) :- europe(X, Y, Dist).
way(X, Y, Dist) :- europe(Y, X, Dist).

Task 2: Implement a depth-first-search (DFS) procedure with properties:

1. It should connect any two cities, e.g. both lisbon to madrid and madrid to lisbon.
Please note that the provided map only connects cities in one direction. Use the
way/3 predicate!

2. The procedure is finite, it never ends in an infinite loop. You can try it by disproving
a path between lisbon and stockholm. Implementing a closed list is a good idea.

3. It returns the list of visited cities and the total journey length.

2



Check your result: How did you implement the visited cities? Do you get them in
forward or reverse order? Did you use the accumulator in one of them? Ideally, you
should implement them both to see the comparison:

?- dfs(dublin,berlin,Journey,Reverse,Length).
Journey = [dublin, london, paris, brussels, luxembourg, berlin],
Reverse = [berlin, luxembourg, brussels, paris, london, dublin],
Length = 1856 ;
Journey = [dublin, london, paris, brussels, amsterdam, berlin],
Reverse = [berlin, amsterdam, brussels, paris, london, dublin],
Length = 1820 ;
...

Task 3: Study the findall meta-predicate, which finds all berlin’s neighbours:

?- findall(Dest, europe(berlin, Dest, _), Neighbours).
Neighbours = [copenhagen, warsaw, prague, vienna].

You may refer to the documentation.

Task 4: Using findall/3, find the longest path in the map. It should be 6513km long.
Hint: Find lengths of all journeys using findall/3 and your dfs predicate. Then extract
its largest element using the built-in max_member predicate.

Next step: Verify that the longest journey connects dublin and rome.
Hint: Members of the list in findall do not have to be simple constants! Try the
following code:

findall(my_functor(Len,Dest),europe(berlin,Dest,Len),List).

Task 5: Implement the bredth-first-search (BFS) procedure.
If you don’t know how to start, here are some suggestions:

1. Define the current state using a structured term s(CurrentNode, PathSoFar).
For example, starting in Dublin, the currently explored city can be s(brussels,
[paris, london, dublin]).

2. Note that in DFS, you don’t implement the open list (Prolog keeps it on the stack
automatically). For BFS, you will have to implement it as a separate argument.

3. Initialize the open list to 1 city, where the journey starts.

4. In every recursive call, merely pop the first city from the open list, find its neighbours
using findall/3 and append them to the end of the open list.

5. Please note that appending findall’s result before other items in the open list
gives you a DFS procedure. Try it!

3

https://www.swi-prolog.org/pldoc/doc_for?object=findall/3


Task 6 (optional): Reimplement the closed list using red-black trees. Don’t worry,
there is a built-in library in SWI Prolog:
https://eu.swi-prolog.org/pldoc/doc/_SWI_/library/rbtrees.pl
Runtime of the member operation will drop from O (n) to O (log (n)). However, insert
will also take O (log (n)), whereas without an RB tree, it can be done in O (1) time.

Task 7 (optional): Reimplement the open list in BFS using a difference list. Difference
list represents a regular list using two lists, namely a plus list and a minus list, such as

[a,b,c,d,e]-[d,e] = [a,b,c]

To see the advantage, consider the following two difference lists in Prolog:

L1 = [a,b,c|X]-X
L2 = [d,e|Y]-Y

How could we append L2 to L1 using Prolog’s unification procedure?

XPlus

XMinus

YPlus

YMinus

XPlus

YMinus

append_dl(XPlus-XMinus, YPlus-YMinus, XPlus-YMinus) :- XMinus = YPlus.
% or shorter
append_dl(XPlus-YPlus, YPlus-YMinus, XPlus-YMinus).

Can you see it? Difference lists can do append in constant O (1) time! (At the cost of
increasing memory requirements for the unification procedure.)
Note: The “-” sign here is just a regular functor in Prolog. We could have used e.g.
dl([a,b,c,X], X) just as efficiently!
Hint: Check for emptiness by

empty_dl(X-Y) :- X == Y.

4

https://eu.swi-prolog.org/pldoc/doc/_SWI_/library/rbtrees.pl
https://book.simply-logical.space/src/text/1_part_i/3.6.html

