Logical reasoning and programming, lab session 11 (December 11, 2023)

Task 1: Prolog has "imperative-style" arithmetics, which you can access using the keyword **is**. Read and understand the following examples:

```
?- X is 1 + 1.
X = 2.
?- N is 3 + 4, M is N * 3.
N = 7,
M = 21.
?- M is N * 3, N is 3 + 4.
ERROR: Arguments are not sufficiently instantiated
ERROR: ...
?- A is 13 div 5, B is 13 mod 5.
A = 2,
B = 3.
?- D is round(2 * cos(pi)).
D = -2.
?- E is 1r2 + 1r4. % SWI-Prolog rationals
E = 3r4.
```

The is predicate does not solve equations, it merely evaluates expressions just like C or Java.

Make sure not to confuse "is" with unification "=". Unification is purely syntactic, no arithmetics is evaluated:

?- X = 1 + 1. X = 1+1. ?- X is 1 + 1. X = 2.

Task 2: Implement factorial using the its recursive definition (without an accumulator):

- 1. When asked for N!, first obtain the factorial of N-1.
- 2. Multiply it with N and return the result.

Task 3: Implement factorial using an *accumulator*.

- 1. Define an auxiliary predicate with a 3^{rd} argument A, which is initialized to 1.
- 2. When asked for N!, multiply A with N and send it to the recursive call for (N-1)!.
- 3. In the non-recursive clause, merely return the result.

This implementation should somewhat resemble imperative programming. Do you agree?

Task 4: Compare CPU time of both implementations:

```
?- time(factorial1(100000, _)).
% 300,000 inferences, 5.720 CPU in 5.721 seconds
true .
?- time(factorial2(100000, _)).
% 300,002 inferences, 1.345 CPU in 1.345 seconds
true .
```

Notice the speedup!

Do both of your factorials run equally fast? Make sure that factorial2 has the recursive call as the very last subcall, just before the final "."!

If you're interested in the magic of tail-call optimization (which applies not only to Prolog, but also to C, JavaScript, Scheme, LISP, Haskell, ...), Wikipedia has a good resource:

https://en.wikipedia.org/wiki/Tail_call

Task 5: Draw SLD trees for factorial1(3,X) and factorial2(3,X). Can you see where the speedup is coming from?

Task 6: Remember the *cut* operator "!" from the lecture. You may also use another quite instructive resource.

Deduce the result of the following program and queries:

q(b). q(c). p(a). p(X) :- q(X), !. p(d).

Query	Your guess	True answer
?- p(X).		
?- p(a).		
?- p(b).		
?- p(c).		
?- p(d).		

Not sure why it works the way it does? Ask your teacher!

Task 7 (optional): Draw SLD trees for these queries.

Task 8: Make two definitions of max(X,Y,Z), where Z is the maximum of $\{X,Y\}$. One with the cut and one without. Which one is simpler? Which one is more efficient?

Task 9: Compare these 2 implementations of append:

append([], B, B).
append([H|A], B, [H|AB]) :- append(A, B, AB).
append_cut([], B, B) :- !.
append_cut([H|A], B, [H|AB]) :- append_cut(A, B, AB).

Find some query, where append behaves differently from append_cut.

Can you formulate the class of queries, on which the two predicates behave differently?

Task 10: Flatten a nested list:

?- my_flatten([[a,b],[],[c,[d,e],[f]]],X).		
X = [a, b, c, d, e, f].		

You might be getting additional answers like X = [a, b, c, d, e, f, [], []]; ... If you do, place the cut in your code!

Task 11: Take any predicate, no matter how complicated. Is there a place for a cut, which does not affect the predicate's behavior at all?

Note: The answer can be formulated absolutely precisely!

Task 12: Define your own my_not(Goal) that succeeds only if the Goal fails. You may need two predicates: call(Goal) which executes the Goal and fail which always fails.

Task 13 (optional): In the Sibling/3 predicate, you have already encountered $X \ge Y$ which fails if X and Y can be unified. Now, try defining your own implementation of diff(X,Y) with the same behavior.

Hint: You may need fail which always fails.

Task 14 (optional): Define matrix multiplication mat_prod predicate:

?- mat_prod([[1,2],[3,4]],	[[0,1],[2,3]], X).
X = [[4,7], [8,15]].	

Hint: Define and use a helper predicate column:

```
?- column([[1,2,3],[4,5,6]], Col, Rest).
Col = [1,4],
Rest = [[2,3],[5,6]].
```

Task 15 (optional): Mathematicians usually encode natural numbers as follows: Zero is 0. If X is a natural number, then s(X) is also. For example, number 3 is s(s(s(0))). Define plus(...), minus(...) and product(...) using this representation.