
Logical reasoning and programming, lab session 10
(December 4, 2023)

Task 1: Load the database of the British royal family from the last lab into Prolog.

female(elizabeth).
female(margaret).
female(diana).
female(camilla).
female(sophie).
female(kate).
female(meghan).
female(louise).

male(george).
male(philip).
male(charles).
male(edward).
male(william).
male(harry).
male(james).

parent(george,elizabeth).
parent(george, margaret).
parent(elizabeth,charles).
parent(philip,charles).
parent(elizabeth,edward).
parent(philip,edward).
parent(charles,william).
parent(diana,william).
parent(charles,harry).
parent(diana,harry).
parent(edward,louise).
parent(sophie,louise).
parent(edward,james).
parent(sophie,james).

wife(elizabeth,philip).
wife(diana,charles).
wife(camilla,charles).
wife(sophie,edward).
wife(kate, william).
wife(meghan, harry).

1

Task 2: Compare 4 implementations of the ancestor(Anc,Desc) predicate, which is
supposed to connect the Ancestor with any of their descendants:

ancestor1(A,D) :- parent(A,D).
ancestor1(A,D) :- parent(A,B), ancestor1(B,D).

ancestor2(A,D) :- parent(A,D).
ancestor2(A,D) :- ancestor2(B,D), parent(A,B).

ancestor3(A,D) :- parent(A,B), ancestor3(B,D).
ancestor3(A,D) :- parent(A,D).

ancestor4(A,D) :- ancestor4(B,D), parent(A,B).
ancestor4(A,D) :- parent(A,D).

First without a computer, guess which implementation matches the behavior below.
Please, verify your answers on a computer after you have made your guess.

a. Works as expected. Finds parents and children before grandparents and grandchildren.

b. Ends up in an infinite loop immediately.

c. Works as expected. Finds grandparents and grandchildren before parents and children.

d. Works as expected, but after the last response, Prolog ends up in an infinite loop.

Hint: Sketch an SLD tree for the query ancestor[1/2/3/4] (X,charles).

Check your knowledge:

• What causes the infinite looping in the “bad” implementations?

• Would it help if left-to-right rule was changed to right-to-left rule?

• Or if the top-to-bottom rule was bottom-to-top rule?

Task 3: Match terms in various forms with their usual meaning.

Syntactic sugar Usual meaning Hacker’s syntax

[]
list with

'.'(X,Y)1 item

[X,Y]
empty

'.'(harry,[])list

[harry]
list with

[]2 items

[X|Y]
list with at

'.'(X,'.'(Y,[]))least 1 item

Note: As of version 7, SWI-Prolog has changed the “list functor” from '.' to '[|]'.
Keep it in mind if you wish to use the hacker’s syntax. You may read up on that change
here.

2

https://www.swi-prolog.org/pldoc/man?section=ext-lists

?- Z = '.'(harry, []).
ERROR: ...

?- Z = '[|]'(harry, []).
Z = [harry].

?- Z = '[|]'(X, Y).
Z = [X|Y].

Lesson learned: A list in Prolog is similar to structures in functional languages. If L
is a list, then [H|L] is also a list, bigger by 1 element, where H is the element prepended
to the beginning. You can add and/or remove elements from the beginning using the
same syntax. LL=[H|L] both “adds” or “removes” the first element depending on whether
LL or L are instantiated.

Task 4: Define basic predicates which work with lists:

• list_of_size_one(X) succeeds iff X has size exactly 1.

• any_list(X) succeeds iff X is any list.

Hence any_list(harry) must fail, but any_list([harry]) succeeds.

• my_member(X, List) succeeds iff X is inside the List.

my_member(b, [a,b,c]) must succeed and my_member(d, [a,b,c]) must fail.

If you did your implementation correctly, my_member(X, [a,b,c]) should give you
all 3 correct answers: X=a; X=b; X=c.

Task 5: Extend the (correct) implementation of ancestor so that in the 3rd argument,
you get a list of people that are between the Ancestor and Descendant.

?- ancestor(diana, william, X).
X = [].

?- ancestor(A, william, X).
A = george,
X = [elizabeth, charles] ;
A = elizabeth,
X = [charles] ;
A = philip,
X = [charles] ;
A = charles,
X = [] ;
A = diana,
X = [].

See the beauty of Prolog! Ask for all great-grandparents:
?- ancestor(GGParent,Person,[GParent,Parent]).

3

Task 6: Define the my_append(A, B, AB) predicate.
It appends list B to the end of list A and gives the result in the third argument AB:
?- my_append([’micky mouse’, ’donald duck’, ted], [garfield, olaf], L).
L = [’micky mouse’, ’donald duck’, ted, garfield, olaf].

Does my_append(L1, L2, [a, b, c]) provide you with (all) the correct answers?

Lost? See the hacker’s syntax of lists [a,b,c] and [d,e]:

'.'(a, '.'(b, '.'(c, []))) and '.'(d, '.'(e, []))

Look carefully. Now, the secret to append is:�
�

�

If you remove [] in the first list and put the second
list instead, you are done!

a

b

c []

’.’

’.’

’.’

d

e []

’.’

’.’

Still lost? What is the result of appending anything to an empty list?
Start from my_append([],X,?)...
The my_append should recurse on the first argument, strip one item after another until
it reaches an empty list. Then it does the replacement.

Task 7: The main procedure behind Prolog is called unification. You have used it every
time Prolog replaced a variable by a value (try ?-X=a), but it’s much more powerful. For
example [X,Y]= [a,b] will extract values from inside the list.
The somewhat informal definition of unification is:�

�
�

Two terms unify if they can be made equal only by
substituting variables.

For each of these terms, decide if they unify or not. If they unify, write down the
substitution. Check your answers using Prolog. Has anything surprised you?

• plus(X,Y) = plus(Z,4)

• '[|]'(first,'[|]'(second,[])) = '[|]'(A,'[|]'(B,[]))

• '[|]'(first,'[|]'(second,[])) = '[|]'(A,B)

• '[|]'(first,[]) = '[|]'(A,'[|]'(B,[]))

• '[|]'(X,'[|]'(Y,[])) = '[|]'(Y,'[|]'(element,[]))

• X = f(X)

• unify_with_occurs_check(X,f(X))

4

Task 8: Define my_reverse(List, Reversed) that reverses elements in a list:

?- my_reverse([1,2,3,4,5], L).
L = [5,4,3,2,1].

Make sure Prolog does not end up in an infinite loop after returning the first answer!
Hint: Use append(List, [X], ListX) to add an element at the end of a list. Don’t
worry about time complexity. We will improve that soon enough!

Task 9: Define minimum(List, Min) which obtains a list a numbers and finds its min-
imum value.
Hint: Use an auxiliary predicate of arity three where one of the arguments stores the
temporary result.

Task 10: Analogously to the temporary argument used in the last task, use an auxiliary
argument to reduce the runtime of my_reverse(List, Reversed) from O(n2) to O(n).
Hint: The auxiliary argument will be holding some part of the tail of the Reversed list.
Note: Such an argument is often called an accumulator.

Task 11: Extend the my_member/2 predicate into the my_select/3 predicate, which
also gives the rest of the list:

?- my_select(Elem, [a,b,c], Rest).
Elem = a,
Rest = [b, c] ;
Elem = b,
Rest = [a, c] ;
Elem = c,
Rest = [a, b] ;
false.

Task 12 (optional): Rewrite the ancestor/3 predicate so that the Ancestor and the
Descendant are included in the list:
?- ancestor_all(X,Y,[P1, P2, P3, P4]).
X = P1, P1 = george,
Y = P4, P4 = william,
P2 = elizabeth,
P3 = charles ;
...

Task 13 (optional): Flatten a nested list.

?- my_flatten([[a,b],[],[c,[d,e],[f]]],X).
X = [a, b, c, d, e, f] ; ...

It is enough to return additional (incorrect) answers. We’ll learn how to remove them
next week.

5

