
Prolog - Lecture 1

(Using slides from Peter Flach’s lectures for his book Simply Logical)

Free from Peter Flach: http://people.cs.bris.ac.uk/~flach/
SimplyLogical.html

http://people.cs.bris.ac.uk/~flach/SimplyLogical.html
http://people.cs.bris.ac.uk/~flach/SimplyLogical.html

Propositional Programs

Terminology and Setting (1)
• A literal is an atom or its negation (e.g., are literals).p, ¬q

Terminology and Setting (1)
• A literal is an atom or its negation (e.g., are literals).

• A clause is a disjunction of literals (e.g., is a clause).

p, ¬q

p ∨ r ∨ ¬q

Terminology and Setting (1)
• A literal is an atom or its negation (e.g., are literals).

• A clause is a disjunction of literals (e.g., is a clause).

• We will mostly restrict our attention to formulas which are conjunctions of
clauses, which we will also represent as sets of clauses.

p, ¬q

p ∨ r ∨ ¬q

Terminology and Setting (1)
• A literal is an atom or its negation (e.g., are literals).

• A clause is a disjunction of literals (e.g., is a clause).

• We will mostly restrict our attention to formulas which are conjunctions of
clauses, which we will also represent as sets of clauses.

• A Horn clause is a clause with at most one positive literal (e.g.,
 , , are Horn clauses).

p, ¬q

p ∨ r ∨ ¬q

p ∨ ¬q ∨ ¬r ¬p ¬p ∨ ¬r

Terminology and Setting (1)
• A literal is an atom or its negation (e.g., are literals).

• A clause is a disjunction of literals (e.g., is a clause).

• We will mostly restrict our attention to formulas which are conjunctions of
clauses, which we will also represent as sets of clauses.

• A Horn clause is a clause with at most one positive literal (e.g.,
 , , are Horn clauses).

• A definite clause is a clause with exactly one positive literal (e.g.,
 , are definite clauses).

p, ¬q

p ∨ r ∨ ¬q

p ∨ ¬q ∨ ¬r ¬p ¬p ∨ ¬r

p ∨ ¬q ∨ ¬r p

Terminology and Setting (2)
• A definite clause can be written also as

. Therefore we will also call definite clauses rules.

• A set of definite clauses will be called a definite program and we will also
treat it, with a slight abuse of notation, as a conjunction of the clauses.

h ∨ ¬b1 ∨ ¬b2 ∨ … ∨ ¬bm
h ⇐ b1 ∧ b2 ∧ … ∧ bm

Terminology and Setting (3)
• An interpretation will be represented as a set of atoms which are true in it

(e.g.,)

• … since models are interpretations, likewise for models. That is, for
instance, when , the models of would be
represented as .

{p, q}

φ = (a ∨ ¬b) ∧ b ∧ (c ∨ ¬d) φ
{a, b}, {a, b, c}, {a, b, c, d}

What is true in all models…
Recall that .

Example:

The models of are .

Although is true in all models of , the set is not a model of … not
that we wanted or needed it to be, but stay with us!

φ ⊧ α iff the formula α is true in all models of φ

φ = (a ⇔ (b ∨ c)) ∧ (¬b ∨ ¬c) ∧ a

φ {a, b}, {a, c}

a φ {a} φ

Definite Programs Are Nice!
Example:

Consider the definite program

.

The models of this program are: .

Their intersection is a model of too (it is one of the models above
after all) — This is not a coincidence. See next!

𝒫 = {a ⇐ b, b ⇐ c, b}

{a, b}, {a, b, c}

{a, b} 𝒫

Least Model

• Proposition: Let be the set of all models of a given definite program .
Let us define . Then is a model of (and hence

). We call the least model of

ℳ 𝒫
ωleast = ⋂

ω∈ℳ

ω ωleast 𝒫

ωleast ∈ ℳ ωleast ω .

Constructing the Least Model
• Definition (-operator, aka immediate consequence operator): Let be a

definite program and be an interpretation. Then the -operator is defined as
TP 𝒫

ω TP
TP(ω) = {h |h ⇐ b1 ∧ … ∧ bm ∈ 𝒫 and b1, …, bm ∈ ω} .

Constructing the Least Model
• Definition (-operator, aka immediate consequence operator): Let be a

definite program and be an interpretation. Then the -operator is defined as

• Proposition: The least model of is the least fix-point of the sequence
.

TP 𝒫
ω TP

TP(ω) = {h |h ⇐ b1 ∧ … ∧ bm ∈ 𝒫 and b1, …, bm ∈ ω} .

𝒫
TP(TP(…TP(∅)))

Constructing the Least Model
• Definition (-operator, aka immediate consequence operator): Let be a definite

program and be an interpretation. Then the -operator is defined as

• Proposition: The least model of is the least fix-point of the sequence .

• Example: Let We have

1.

TP 𝒫
ω TP

TP(ω) = {h |h ⇐ b1 ∧ … ∧ bm ∈ 𝒫 and b1, …, bm ∈ ω} .

𝒫 TP(TP(…TP(∅)))
𝒫 = {a, b ⇐ a, c ⇐ a ∧ b} .

ω0 = ∅

Constructing the Least Model
• Definition (-operator, aka immediate consequence operator): Let be a definite

program and be an interpretation. Then the -operator is defined as

• Proposition: The least model of is the least fix-point of the sequence .

• Example: Let We have

1.

2.

TP 𝒫
ω TP

TP(ω) = {h |h ⇐ b1 ∧ … ∧ bm ∈ 𝒫 and b1, …, bm ∈ ω} .

𝒫 TP(TP(…TP(∅)))
𝒫 = {a, b ⇐ a, c ⇐ a ∧ b} .

ω0 = ∅
ω1 = TP(ω0) = {a} .

Constructing the Least Model
• Definition (-operator, aka immediate consequence operator): Let be a definite

program and be an interpretation. Then the -operator is defined as

• Proposition: The least model of is the least fix-point of the sequence .

• Example: Let We have

1.

2.

3. .

TP 𝒫
ω TP

TP(ω) = {h |h ⇐ b1 ∧ … ∧ bm ∈ 𝒫 and b1, …, bm ∈ ω} .

𝒫 TP(TP(…TP(∅)))
𝒫 = {a, b ⇐ a, c ⇐ a ∧ b} .

ω0 = ∅
ω1 = TP(ω0) = {a} .
ω2 = TP(ω1) = {a, b}

Constructing the Least Model
• Definition (-operator, aka immediate consequence operator): Let be a definite

program and be an interpretation. Then the -operator is defined as

• Proposition: The least model of is the least fix-point of the sequence .

• Example: Let We have

1.

2.

3. .

4.

TP 𝒫
ω TP

TP(ω) = {h |h ⇐ b1 ∧ … ∧ bm ∈ 𝒫 and b1, …, bm ∈ ω} .

𝒫 TP(TP(…TP(∅)))
𝒫 = {a, b ⇐ a, c ⇐ a ∧ b} .

ω0 = ∅
ω1 = TP(ω0) = {a} .
ω2 = TP(ω1) = {a, b}
ω3 = TP(ω2) = {a, b, c} .

Constructing the Least Model
• Definition (-operator, aka immediate consequence operator): Let be a definite

program and be an interpretation. Then the -operator is defined as

• Proposition: The least model of is the least fix-point of the sequence .

• Example: Let We have

1.

2.

3. .

4.

5. . We have reached fix-point, is the least model of
.

TP 𝒫
ω TP

TP(ω) = {h |h ⇐ b1 ∧ … ∧ bm ∈ 𝒫 and b1, …, bm ∈ ω} .

𝒫 TP(TP(…TP(∅)))
𝒫 = {a, b ⇐ a, c ⇐ a ∧ b} .

ω0 = ∅
ω1 = TP(ω0) = {a} .
ω2 = TP(ω1) = {a, b}
ω3 = TP(ω2) = {a, b, c} .
ω4 = TP(ω3) = {a, b, c} = ω3 ω3
𝒫

Constructing the Least Model
• Definition (-operator, aka immediate consequence operator): Let be a definite

program and be an interpretation. Then the -operator is defined as

• Proposition: The least model of is the least fix-point of the sequence .

• Example: Let We have

1.

2.

3. .

4.

5. . We have reached fix-point, is the least model of
.

TP 𝒫
ω TP

TP(ω) = {h |h ⇐ b1 ∧ … ∧ bm ∈ 𝒫 and b1, …, bm ∈ ω} .

𝒫 TP(TP(…TP(∅)))
𝒫 = {a, b ⇐ a, c ⇐ a ∧ b} .

ω0 = ∅
ω1 = TP(ω0) = {a} .
ω2 = TP(ω1) = {a, b}
ω3 = TP(ω2) = {a, b, c} .
ω4 = TP(ω3) = {a, b, c} = ω3 ω3
𝒫

Least Model (Recap)
• A definite program always has a least model.

• The least model can be found using the immediate consequence operator.
This is also sometimes called forward-chaining.

• Definite programs cannot entail negative literals—therefore the least
model tells us everything we need to know about the program and what
follows from it (do you see why?)

𝒫

First-Order Programs

Setting, Notation and Terminology (1)
• Now we will upgrade definite programs from propositional to first-order.

You have already seen first-order logic in the first part of the course.

Setting, Notation and Terminology (1)
• Now we will upgrade definite programs from propositional to first-order.

You have already seen first-order logic in the first part of the course.

• Convention: Variables in Prolog start with a capital letter (e.g.),
constants with a lower-case letter (e.g.).

V
𝖼𝖺𝗋𝗋𝗈𝗍

Setting, Notation and Terminology (1)
• Now we will upgrade definite programs from propositional to first-order.

You have already seen first-order logic in the first part of the course.

• Convention: Variables in Prolog start with a capital letter (e.g.),
constants with a lower-case letter (e.g.).

• Convention: A definite clause will be written in Prolog
notation as All variables that appear in a definite clause are
automatically assumed to be universally quantified (recall the definition of
clause).

V
𝖼𝖺𝗋𝗋𝗈𝗍

h ⇐ b1 ∧ … ∧ bm
h :- b1, …, bm .

Setting, Notation and Terminology (2)

• Definition (Term): A term is a constant (e.g.), a variable (e.g. V) or a
function applied to a tuple of terms (e.g.).

𝖼𝖺𝗋𝗋𝗈𝗍
g(𝖼𝖺𝗋𝗋𝗈𝗍, V)

Setting, Notation and Terminology (2)

• Definition (Term): A term is a constant (e.g.), a variable (e.g. V) or a
function applied to a tuple of terms (e.g.).

• Definition (Ground Term): A term is ground if it does not contain
variables—e.g. is a ground term, but and are not
ground.

𝖼𝖺𝗋𝗋𝗈𝗍
g(𝖼𝖺𝗋𝗋𝗈𝗍, V)

carrot V g(𝖼𝖺𝗋𝗋𝗈𝗍, V)

Setting, Notation and Terminology (3)
• Definition (Substitution): A substitution is a mapping that maps variables to

terms. For instance, is a substitution.ϑ = {X ↦ 𝗆𝖺𝗋𝗂𝖺}

Setting, Notation and Terminology (3)
• Definition (Substitution): A substitution is a mapping that maps variables to

terms. For instance, is a substitution.

• A substitution can be applied to a clause. For a clause and a substitution
, this is denoted as .

ϑ = {X ↦ 𝗆𝖺𝗋𝗂𝖺}

C
ϑ Cϑ

Setting, Notation and Terminology (3)
• Definition (Substitution): A substitution is a mapping that maps variables to

terms. For instance, is a substitution.

• A substitution can be applied to a clause. For a clause and a substitution
, this is denoted as .

• For instance, let us have the definite clause
If we apply the substitution

 to it, we get

ϑ = {X ↦ 𝗆𝖺𝗋𝗂𝖺}

C
ϑ Cϑ

𝗂𝗌𝖲𝗍𝗎𝖽𝖾𝗇𝗍𝖮𝖿(X, T) :- 𝗍𝖾𝖺𝖼𝗁𝖾𝗌(T, X) .
{X ↦ 𝗆𝖺𝗋𝗂𝖺} 𝗂𝗌𝖲𝗍𝗎𝖽𝖾𝗇𝗍𝖮𝖿(𝗆𝖺𝗋𝗂𝖺, T) :- 𝗍𝖾𝖺𝖼𝗁𝖾𝗌(T, 𝗆𝖺𝗋𝗂𝖺) .

Setting, Notation and Terminology (3)
• Definition (Substitution): A substitution is a mapping that maps variables to

terms. For instance, is a substitution.

• A substitution can be applied to a clause. For a clause and a substitution
, this is denoted as .

• For instance, let us have the definite clause
If we apply the substitution

 to it, we get

• The resulting clause is said to be an instance of the original clause, and a
ground instance if it does not contain variables.

ϑ = {X ↦ 𝗆𝖺𝗋𝗂𝖺}

C
ϑ Cϑ

𝗂𝗌𝖲𝗍𝗎𝖽𝖾𝗇𝗍𝖮𝖿(X, T) :- 𝗍𝖾𝖺𝖼𝗁𝖾𝗌(T, X) .
{X ↦ 𝗆𝖺𝗋𝗂𝖺} 𝗂𝗌𝖲𝗍𝗎𝖽𝖾𝗇𝗍𝖮𝖿(𝗆𝖺𝗋𝗂𝖺, T) :- 𝗍𝖾𝖺𝖼𝗁𝖾𝗌(T, 𝗆𝖺𝗋𝗂𝖺) .

Setting, Notation and Terminology (3)
• Definition (Substitution): A substitution is a mapping that maps variables to terms.

For instance, is a substitution.

• A substitution can be applied to a clause. For a clause and a substitution , this
is denoted as .

• For instance, let us have the definite clause If we
apply the substitution to it, we get

• The resulting clause is said to be an instance of the original clause, and a ground
instance if it does not contain variables.

• Each instance of a clause is among its logical consequences.

ϑ = {X ↦ 𝗆𝖺𝗋𝗂𝖺}

C ϑ
Cϑ

𝗂𝗌𝖲𝗍𝗎𝖽𝖾𝗇𝗍𝖮𝖿(X, T) :- 𝗍𝖾𝖺𝖼𝗁𝖾𝗌(T, X) .
{X ↦ 𝗆𝖺𝗋𝗂𝖺}

𝗂𝗌𝖲𝗍𝗎𝖽𝖾𝗇𝗍𝖮𝖿(𝗆𝖺𝗋𝗂𝖺, T) :- 𝗍𝖾𝖺𝖼𝗁𝖾𝗌(T, 𝗆𝖺𝗋𝗂𝖺) .

Setting, Notation and Terminology (4)
• Definition (Herbrand Universe): Given a definite program , its Herbrand

universe is the set of all ground terms that are either constants appearing in
or can be constructed from the constants and function symbols appearing in .

• Example:  
 
If  
then the Herbrand universe of is .

• If then the Herbrand universe is the
infinite set

𝒫
𝒫
𝒫

𝒫 = {𝗍𝖾𝖺𝖼𝗁𝖾𝗋𝖮𝖿(𝗉𝖾𝗍𝖾𝗋, 𝗆𝖺𝗋𝗂𝖺) . 𝗂𝗌𝖲𝗍𝗎𝖽𝖾𝗇𝗍𝖮𝖿(X, T) :- 𝗍𝖾𝖺𝖼𝗁𝖾𝗋𝖮𝖿(T, X) . }
𝒫 {𝗉𝖾𝗍𝖾𝗋, 𝗆𝖺𝗋𝗂𝖺}

𝒫 = {𝗇𝗎𝗆(0), 𝗇𝗎𝗆(𝗌𝗎𝖼(X)) :- 𝗇𝗎𝗆(X) . }
{0, 𝗌𝗎𝖼(0), 𝗌𝗎𝖼(𝗌𝗎𝖼(0)), 𝗌𝗎𝖼(𝗌𝗎𝖼(𝗌𝗎𝖼(0))), …}

Setting, Notation and Terminology (5)
• Definition (Herbrand Base): Given a definite program , its Herbrand base is the set of all

ground atoms that can be constructed using the terms from the Herbrand universe of .

• Example:  
 
If  
then the Herbrand base of is

.

• If then the Herbrand base is the infinite set

𝒫
𝒫

𝒫 = {𝗍𝖾𝖺𝖼𝗁𝖾𝗋𝖮𝖿(𝗉𝖾𝗍𝖾𝗋, 𝗆𝖺𝗋𝗂𝖺) . 𝗂𝗌𝖲𝗍𝗎𝖽𝖾𝗇𝗍𝖮𝖿(X, T) :- 𝗍𝖾𝖺𝖼𝗁𝖾𝗋𝖮𝖿(T, X) . }
𝒫 {𝗍𝖾𝖺𝖼𝗁𝖾𝗋𝖮𝖿(𝗆𝖺𝗋𝗂𝖺, 𝗆𝖺𝗋𝗂𝖺), 𝗍𝖾𝖺𝖼𝗁𝖾𝗋𝖮𝖿(𝗉𝖾𝗍𝖾𝗋, 𝗉𝖾𝗍𝖾𝗋),

𝗍𝖾𝖺𝖼𝗁𝖾𝗋𝖮𝖿(𝗉𝖾𝗍𝖾𝗋, 𝗆𝖺𝗋𝗂𝖺), 𝗍𝖾𝖺𝖼𝗁𝖾𝗋𝖮𝖿(𝗆𝖺𝗋𝗂𝖺, 𝗉𝖾𝗍𝖾𝗋), 𝗌𝗍𝗎𝖽𝖾𝗇𝗍𝖮𝖿(𝗉𝖾𝗍𝖾𝗋, 𝗉𝖾𝗍𝖾𝗋), 𝗌𝗍𝗎𝖽𝖾𝗇𝗍𝖮𝖿(𝗆𝖺𝗋𝗂𝖺, 𝗆𝖺𝗋𝗂𝖺),
𝗍𝖾𝖺𝖼𝗁𝖾𝗋𝖮𝖿(𝗉𝖾𝗍𝖾𝗋, 𝗆𝖺𝗋𝗂𝖺), 𝗍𝖾𝖺𝖼𝗁𝖾𝗋𝖮𝖿(𝗆𝖺𝗋𝗂𝖺, 𝗉𝖾𝗍𝖾𝗋)}

𝒫 = {𝗇𝗎𝗆(0), 𝗇𝗎𝗆(𝗌𝗎𝖼(X)) :- 𝗇𝗎𝗆(X) . }
{𝗇𝗎𝗆(0), 𝗇𝗎𝗆(𝗌𝗎𝖼(0)), 𝗇𝗎𝗆(𝗌𝗎𝖼(𝗌𝗎𝖼(0))), 𝗇𝗎𝗆(𝗌𝗎𝖼(𝗌𝗎𝖼(𝗌𝗎𝖼(0)))), …}

Remember:

Herbrand universe ~ ground terms

Herbrand base ~ ground atoms

Setting, Notation and Terminology (6)
• Definition (Herbrand Interpretation and Herbrand Model): Given a definite program , let

be its Herbrand base. A Herbrand interpretation is a subset of . A Herbrand model of is a
Hebrand interpretation which is also a model of .

• Definition (Least Herbrand Model): Given a definite program , its least Herbrand model (LHM)
is the intersection of all of its models.

• Example:  
 
If  
then the least Herbrand model of is .

• If then the Herbrand base is the infinite set
, which turns out to be

the same as the Herbrand base in this case.

𝒫 ℬ
ℬ 𝒫

𝒫

𝒫

𝒫 = {𝗍𝖾𝖺𝖼𝗁𝖾𝗋𝖮𝖿(𝗉𝖾𝗍𝖾𝗋, 𝗆𝖺𝗋𝗂𝖺) . 𝗂𝗌𝖲𝗍𝗎𝖽𝖾𝗇𝗍𝖮𝖿(X, T) :- 𝗍𝖾𝖺𝖼𝗁𝖾𝗋𝖮𝖿(T, X) . }
𝒫 {𝗍𝖾𝖺𝖼𝗁𝖾𝗋𝖮𝖿(𝗉𝖾𝗍𝖾𝗋, 𝗆𝖺𝗋𝗂𝖺), 𝗌𝗍𝗎𝖽𝖾𝗇𝗍𝖮𝖿(𝗆𝖺𝗋𝗂𝖺, 𝗉𝖾𝗍𝖾𝗋)}

𝒫 = {𝗇𝗎𝗆(0), 𝗇𝗎𝗆(𝗌𝗎𝖼(X) :- 𝗇𝗎𝗆(X) . }
{𝗇𝗎𝗆(0), 𝗇𝗎𝗆(𝗌𝗎𝖼(0)), 𝗇𝗎𝗆(𝗌𝗎𝖼(𝗌𝗎𝖼(0))), 𝗇𝗎𝗆(𝗌𝗎𝖼(𝗌𝗎𝖼(𝗌𝗎𝖼(0)))), …}

Constructing the LHM
• Definition (-operator, aka immediate consequence operator for LHB): Let

 be a definite program and be an interpretation. Then the -operator is
defined as

TP
𝒫 ω TP

TP(ω) = {hϑ |h ⇐ b1 ∧ … ∧ bm ∈ 𝒫, ϑ is a grounding substitution and (b1, …, bm)ϑ ∈ ω} .

Constructing the LHM
• Definition (-operator, aka immediate consequence operator for LHB): Let

 be a definite program and be an interpretation. Then the -operator is
defined as

• Example:

TP
𝒫 ω TP

TP(ω) = {hϑ |h ⇐ b1 ∧ … ∧ bm ∈ 𝒫, ϑ is a grounding substitution and (b1, …, bm)ϑ ∈ ω} .

𝒫 = {𝗍𝖾𝖺𝖼𝗁𝖾𝗋𝖮𝖿(𝗉𝖾𝗍𝖾𝗋, 𝗆𝖺𝗋𝗂𝖺) . 𝗂𝗌𝖲𝗍𝗎𝖽𝖾𝗇𝗍𝖮𝖿(X, T) :- 𝗍𝖾𝖺𝖼𝗁𝖾𝗋𝖮𝖿(T, X) . }

Constructing the LHM
• Definition (-operator, aka immediate consequence operator for LHB): Let

 be a definite program and be an interpretation. Then the -operator is
defined as

• Example:

1.

TP
𝒫 ω TP

TP(ω) = {hϑ |h ⇐ b1 ∧ … ∧ bm ∈ 𝒫, ϑ is a grounding substitution and (b1, …, bm)ϑ ∈ ω} .

𝒫 = {𝗍𝖾𝖺𝖼𝗁𝖾𝗋𝖮𝖿(𝗉𝖾𝗍𝖾𝗋, 𝗆𝖺𝗋𝗂𝖺) . 𝗂𝗌𝖲𝗍𝗎𝖽𝖾𝗇𝗍𝖮𝖿(X, T) :- 𝗍𝖾𝖺𝖼𝗁𝖾𝗋𝖮𝖿(T, X) . }
ω0 = ∅

Constructing the LHM
• Definition (-operator, aka immediate consequence operator for LHB): Let

 be a definite program and be an interpretation. Then the -operator is
defined as

• Example:

1.

2.

TP
𝒫 ω TP

TP(ω) = {hϑ |h ⇐ b1 ∧ … ∧ bm ∈ 𝒫, ϑ is a grounding substitution and (b1, …, bm)ϑ ∈ ω} .

𝒫 = {𝗍𝖾𝖺𝖼𝗁𝖾𝗋𝖮𝖿(𝗉𝖾𝗍𝖾𝗋, 𝗆𝖺𝗋𝗂𝖺) . 𝗂𝗌𝖲𝗍𝗎𝖽𝖾𝗇𝗍𝖮𝖿(X, T) :- 𝗍𝖾𝖺𝖼𝗁𝖾𝗋𝖮𝖿(T, X) . }
ω0 = ∅
ω1 = TP(ω0) = {𝗍𝖾𝖺𝖼𝗁𝖾𝗋𝖮𝖿(𝗉𝖾𝗍𝖾𝗋, 𝗆𝖺𝗋𝗂𝖺)}

Constructing the LHM
• Definition (-operator, aka immediate consequence operator for LHB): Let

 be a definite program and be an interpretation. Then the -operator is
defined as

• Example:

1.

2.

3.

TP
𝒫 ω TP

TP(ω) = {hϑ |h ⇐ b1 ∧ … ∧ bm ∈ 𝒫, ϑ is a grounding substitution and (b1, …, bm)ϑ ∈ ω} .

𝒫 = {𝗍𝖾𝖺𝖼𝗁𝖾𝗋𝖮𝖿(𝗉𝖾𝗍𝖾𝗋, 𝗆𝖺𝗋𝗂𝖺) . 𝗂𝗌𝖲𝗍𝗎𝖽𝖾𝗇𝗍𝖮𝖿(X, T) :- 𝗍𝖾𝖺𝖼𝗁𝖾𝗋𝖮𝖿(T, X) . }
ω0 = ∅
ω1 = TP(ω0) = {𝗍𝖾𝖺𝖼𝗁𝖾𝗋𝖮𝖿(𝗉𝖾𝗍𝖾𝗋, 𝗆𝖺𝗋𝗂𝖺)}
ω2 = TP(ω1) = {𝗍𝖾𝖺𝖼𝗁𝖾𝗋𝖮𝖿(𝗉𝖾𝗍𝖾𝗋, 𝗆𝖺𝗋𝗂𝖺), 𝗌𝗍𝗎𝖽𝖾𝗇𝗍𝖮𝖿(𝗆𝖺𝗋𝗂𝖺, 𝗉𝖾𝗍𝖾𝗋)}

Constructing the LHM
• Definition (-operator, aka immediate consequence operator for LHB): Let

 be a definite program and be an interpretation. Then the -operator is
defined as

• Example:

1.

2.

3.

4. (fixpoint -> we have the LHM).

TP
𝒫 ω TP

TP(ω) = {hϑ |h ⇐ b1 ∧ … ∧ bm ∈ 𝒫, ϑ is a grounding substitution and (b1, …, bm)ϑ ∈ ω} .

𝒫 = {𝗍𝖾𝖺𝖼𝗁𝖾𝗋𝖮𝖿(𝗉𝖾𝗍𝖾𝗋, 𝗆𝖺𝗋𝗂𝖺) . 𝗂𝗌𝖲𝗍𝗎𝖽𝖾𝗇𝗍𝖮𝖿(X, T) :- 𝗍𝖾𝖺𝖼𝗁𝖾𝗋𝖮𝖿(T, X) . }
ω0 = ∅
ω1 = TP(ω0) = {𝗍𝖾𝖺𝖼𝗁𝖾𝗋𝖮𝖿(𝗉𝖾𝗍𝖾𝗋, 𝗆𝖺𝗋𝗂𝖺)}
ω2 = TP(ω1) = {𝗍𝖾𝖺𝖼𝗁𝖾𝗋𝖮𝖿(𝗉𝖾𝗍𝖾𝗋, 𝗆𝖺𝗋𝗂𝖺), 𝗌𝗍𝗎𝖽𝖾𝗇𝗍𝖮𝖿(𝗆𝖺𝗋𝗂𝖺, 𝗉𝖾𝗍𝖾𝗋)}
ω3 = TP(ω2) = ω2

Resolution

Resolution
• Computing the complete least model using the -operator is often

impractical (as we will see, in the first-order case sometimes even impossible).
TP

Resolution
• Computing the complete least model using the -operator is often

impractical (as we will see, in the first-order case sometimes even impossible).

• When we know what we want to “ask about”, we can use resolution

TP

Resolution
• Computing the complete least model using the -operator is often

impractical (as we will see, in the first-order case sometimes even impossible).

• When we know what we want to “ask about”, we can use resolution.

• Example: We want to know
whether . For that we negate (with resolution, we use proof by
contradiction) and add it to and convert the implications to clauses:

 and perform resolution.

TP

𝒫 = {a ⇐ b ∧ c, d ⇐ e ∧ f, b, c ⇐ b} .
𝒫 ⊧ a a

𝒫
𝒫 = {¬a, a ∨ ¬b ∨ ¬c, d ∨ ¬e ∨ ¬f, b, c ∨ ¬b}

Resolution
• Computing the complete least model using the -operator is often

impractical (as we will see, in the first-order case sometimes even impossible).

• When we know what we want to “ask about”, we can use resolution.

• Example: We want to know
whether . For that we negate (with resolution, we use proof by
contradiction) and add it to and convert the implications to clauses:

 and perform resolution.

TP

𝒫 = {a ⇐ b ∧ c, d ⇐ e ∧ f, b, c ⇐ b} .
𝒫 ⊧ a a

𝒫
𝒫 = {¬a, a ∨ ¬b ∨ ¬c, d ∨ ¬e ∨ ¬f, b, c ∨ ¬b}

b c ∨ ¬ba ∨ ¬b ∨ ¬c

Resolution
• Computing the complete least model using the -operator is often

impractical (as we will see, in the first-order case sometimes even impossible).

• When we know what we want to “ask about”, we can use resolution.

• Example: We want to know
whether . For that we negate (with resolution, we use proof by
contradiction) and add it to and convert the implications to clauses:

 and perform resolution.

TP

𝒫 = {a ⇐ b ∧ c, d ⇐ e ∧ f, b, c ⇐ b} .
𝒫 ⊧ a a

𝒫
𝒫 = {¬a, a ∨ ¬b ∨ ¬c, d ∨ ¬e ∨ ¬f, b, c ∨ ¬b}

b c ∨ ¬b

c

a ∨ ¬b ∨ ¬c

a ∨ ¬c

Resolution
• Computing the complete least model using the -operator is often

impractical (as we will see, in the first-order case sometimes even impossible).

• When we know what we want to “ask about”, we can use resolution.

• Example: We want to know
whether . For that we negate (with resolution, we use proof by
contradiction) and add it to and convert the implications to clauses:

 and perform resolution.

TP

𝒫 = {a ⇐ b ∧ c, d ⇐ e ∧ f, b, c ⇐ b} .
𝒫 ⊧ a a

𝒫
𝒫 = {¬a, a ∨ ¬b ∨ ¬c, d ∨ ¬e ∨ ¬f, b, c ∨ ¬b}

b c ∨ ¬b

c

a ∨ ¬b ∨ ¬c

a ∨ ¬c
a

Resolution
• Computing the complete least model using the -operator is often

impractical (as we will see, in the first-order case sometimes even impossible).

• When we know what we want to “ask about”, we can use resolution.

• Example: We want to know
whether . For that we negate (with resolution, we use proof by
contradiction) and add it to and convert the implications to clauses:

 and perform resolution.

TP

𝒫 = {a ⇐ b ∧ c, d ⇐ e ∧ f, b, c ⇐ b} .
𝒫 ⊧ a a

𝒫
𝒫 = {¬a, a ∨ ¬b ∨ ¬c, d ∨ ¬e ∨ ¬f, b, c ∨ ¬b}

¬a

b c ∨ ¬b

c

a ∨ ¬b ∨ ¬c

a ∨ ¬c
a

□

Propositional Resolution
Propositional resolution is

✓sound: it derives only logical consequences.

✓ incomplete: it cannot derive arbitrary tautologies like .

✓…but refutation-complete: it derives the empty clause from any
inconsistent set of clauses.

a ⇒ a

An Example (1): Full Program

likes(peter,S):-student_of(S,peter)

student_of(S,T):-follows(S,C),teaches(T,C)

follows(maria,ai_techniques)

teaches(peter,ai_techniques)

An Example (3)

• Herbrand universe:

• Herbrand base:
,

 

{𝗉𝖾𝗍𝖾𝗋, 𝗆𝖺𝗋𝗂𝖺, 𝖺𝗂_𝗍𝖾𝖼𝗁𝗇𝗂𝗊𝗎𝖾𝗌}

{𝗅𝗂𝗄𝖾𝗌(𝗉𝖾𝗍𝖾𝗋, 𝗉𝖾𝗍𝖾𝗋), 𝗅𝗂𝗄𝖾𝗌(𝗆𝖺𝗋𝗂𝖺, 𝗆𝖺𝗋𝗂𝖺), 𝗅𝗂𝗄𝖾𝗌(𝗉𝖾𝗍𝖾𝗋, 𝗆𝖺𝗋𝗂𝖺)
𝗅𝗂𝗄𝖾𝗌(𝗆𝖺𝗋𝗂𝖺, 𝗉𝖾𝗍𝖾𝗋), 𝗅𝗂𝗄𝖾𝗌(𝖺𝗂_𝗍𝖾𝖼𝗁𝗇𝗂𝗊𝗎𝖾𝗌, 𝗉𝖾𝗍𝖾𝗋), . . . , 𝗌𝗍𝗎𝖽𝖾𝗇𝗍_𝗈𝖿(𝗉𝖾𝗍𝖾𝗋, 𝗉𝖾𝗍𝖾𝗋), 𝗌𝗍𝗎𝖽𝖾𝗇𝗍_𝗈𝖿(𝗆𝖺𝗋𝗂𝖺, 𝗆𝖺𝗋𝗂𝖺),
𝗌𝗍𝗎𝖽𝖾𝗇𝗍_𝗈𝖿(𝗉𝖾𝗍𝖾𝗋, 𝗆𝖺𝗋𝗂𝖺), 𝗌𝗍𝗎𝖽𝖾𝗇𝗍_𝗈𝖿(𝗆𝖺𝗋𝗂𝖺, 𝗉𝖾𝗍𝖾𝗋), 𝗌𝗍𝗎𝖽𝖾𝗇𝗍_𝗈𝖿(𝖺𝗂_𝗍𝖾𝖼𝗁𝗇𝗂𝗊𝗎𝖾𝗌, 𝗉𝖾𝗍𝖾𝗋), …
𝗍𝖾𝖺𝖼𝗁𝖾𝗌(. . . , . . .), . . . ,

An Example (4)
:-likes(peter,N)

We want to query whether someone likes Peter (as a bonus we will also learn who that is!)

An Example (4)
:-likes(peter,N) likes(peter,S):-student_of(S,peter)

An Example (4)
:-likes(peter,N) likes(peter,S):-student_of(S,peter)

:-student_of(N,peter)

{S->N}

An Example (4)
:-likes(peter,N) likes(peter,S):-student_of(S,peter)

student_of(S,T):-follows(S,C),teaches(T,C):-student_of(N,peter)

{S->N}

An Example (4)
:-likes(peter,N) likes(peter,S):-student_of(S,peter)

student_of(S,T):-follows(S,C),teaches(T,C):-student_of(N,peter)

:-follows(N,C),teaches(peter,C)

{S->N}

{S->N,T->peter}

An Example (4)
:-likes(peter,N) likes(peter,S):-student_of(S,peter)

student_of(S,T):-follows(S,C),teaches(T,C)

follows(maria,ai_techniques)

:-student_of(N,peter)

:-follows(N,C),teaches(peter,C)

{S->N}

{S->N,T->peter}

An Example (4)
:-likes(peter,N) likes(peter,S):-student_of(S,peter)

student_of(S,T):-follows(S,C),teaches(T,C)

follows(maria,ai_techniques)

:-student_of(N,peter)

:-follows(N,C),teaches(peter,C)

:-teaches(peter,ai_techniques)

{S->N}

{S->N,T->peter}

{N->maria,C->ai_techniques}

An Example (4)
:-likes(peter,N) likes(peter,S):-student_of(S,peter)

student_of(S,T):-follows(S,C),teaches(T,C)

follows(maria,ai_techniques)

teaches(peter,ai_techniques)

:-student_of(N,peter)

:-follows(N,C),teaches(peter,C)

:-teaches(peter,ai_techniques)

{S->N}

{S->N,T->peter}

{N->maria,C->ai_techniques}

An Example (4)
:-likes(peter,N) likes(peter,S):-student_of(S,peter)

student_of(S,T):-follows(S,C),teaches(T,C)

follows(maria,ai_techniques)

teaches(peter,ai_techniques)

:-student_of(N,peter)

:-follows(N,C),teaches(peter,C)

:-teaches(peter,ai_techniques)

[]

{S->N}

{S->N,T->peter}

{N->maria,C->ai_techniques}

N->maria is the answer substitution.

You can try to solve the previous example
using the -operator (it is still possible here).TP

Some Programs Have Infinite LHMs
• …for such programs we cannot construct the LHM using the -operator in

practice (it still works well as a theoretical construct, though) and backward
chaining (using resolution) is our only hope.

• Example:
plus(0,X,X).

plus(s(X),Y,s(Z)):-plus(X,Y,Z).

• Herbrand universe: set of ground terms

• Herbrand base:

• LHM: … try yourself.

TP

{0, 𝗌(0), 𝗌(𝗌(0)), 𝗌(𝗌(𝗌(0))), …}

{𝗉𝗅𝗎𝗌(0,0,0), 𝗉𝗅𝗎𝗌(s(0),0,0), …, …}

minus(X,Y,Z):-plus(Y,Z,X).

Now we can also get subtraction from addition  
(using X-Y=Z iff X=Y+Z):

Another Example

A Prolog DB (1)
connected(nemocnice_motol,petriny,green).
connected(petriny,nadrazi_veleslavin,green).
connected(nadrazi_veleslavin,borislavka,green).
connected(borislavka,dejvicka,green).
connected(dejvicka,hradcanska,green).
connected(hradcanska,malostranska,green).
connected(malostranska,staromestska,green).
connected(staromestska,mustek,green).
connected(mustek,muzeum,green).
connected(muzeum,namesti_miru,green).
connected(namesti_miru,jiriho_z_podebrad,green).
connected(jiriho_z_podebrad,flora,green).
connected(flora,zelivskeho,green).
connected(zelivskeho,strasnicka,green).
connected(strasnicka,skalka,green).
connected(skalka,depo_hostivar,green).

A Prolog DB (2)
connected(letnany,prosek,red).
connected(prosek,strizkov,red).
connected(strizkov,ladvi,red).
connected(ladvi,kobylisy,red).
connected(kobylisy,nadrazi_holesovice,red).
connected(nadrazi_holesovice,vltavska,red).
connected(vltavska,florenc,red).
connected(florenc,hlavni_nadrazi,red).
connected(hlavni_nadrazi,muzeum,red).
connected(muzeum,i_p_pavlova,red).
connected(i_p_pavlova,vysehrad,red).
connected(vysehrad,prazskeho_povstani,red).
connected(prazskeho_povstani,pankrac,red).
connected(pankrac,budejovicka,red).
connected(budejovicka,kacerov,red).
connected(kacerov,roztyly,red).
connected(roztyly,chodov,red).
connected(chodov,opatov,red).
connected(opatov,haje,red).

A Prolog DB (3)
connected(zlicin,stodulky,yellow).
connected(stodulky,luka,yellow).
connected(luka,luziny,yellow).
connected(luziny,hurka,yellow).
connected(hurka,nove_butovice,yellow).
connected(nove_butovice,jinonice,yellow).
connected(jinonice,radlicka,yellow).
connected(radlicka,smichov,yellow).
connected(smichov,andel,yellow).
connected(andel,karlovo_namesti,yellow).
connected(karlovo_namesti,narodni_trida,yellow).
connected(narodni_trida,mustek,yellow).
connected(mustek,namesti_republiky,yellow).
connected(namesti_republiky,florenc,yellow).
connected(florenc,krizikova,yellow).
connected(krizikova,invalidovna,yellow).
connected(invalidovna,palmovka,yellow).
connected(palmovka,ceskomoravska,yellow).
connected(ceskomoravska,vysocanska,yellow).
connected(vysocanska,kolbenova,yellow).
connected(kolbenova,hloubetin,yellow).
connected(hloubetin,rajska_zahrada,yellow).
connected(rajska_zahrada,cerny_most,yellow).

“Nearby”
Two stations are nearby if they are on the same line with at most one other station in
between:

nearby(zlicin,luka).
nearby(luka,zlicin).
nearby(zlicin,stodulky).
nearby(stodulky,zlicin).
nearby(luka,luziny).
nearby(luziny,luka).
nearby(luka,hurka).  
…

or better

nearby(X,Y):-connected(X,Y,L).
nearby(X,Y):-connected(X,Z,L),connected(Z,Y,L).

“Nearby”
Two stations are nearby if they are on the same line with at most one other station in
between:

nearby(zlicin,luka).
nearby(luka,zlicin).
nearby(zlicin,stodulky).
nearby(stodulky,zlicin).
nearby(luka,luziny).
nearby(luziny,luka).
nearby(luka,hurka).  
…

or better

nearby(X,Y):-connected(X,Y,L).
nearby(X,Y):-connected(X,Z,L),connected(Z,Y,L).

“Nearby”
Two stations are nearby if they are on the same line with at most one other station in
between:

nearby(zlicin,luka).
nearby(luka,zlicin).
nearby(zlicin,stodulky).
nearby(stodulky,zlicin).
nearby(luka,luziny).
nearby(luziny,luka).
nearby(luka,hurka).  
…

or better

nearby(X,Y):-connectedS(X,Y,L).
nearby(X,Y):-connectedS(X,Z,L),connectedS(Z,Y,L).
connectedS(X,Y,W) :- connected(X,Y,W).
connectedS(X,Y,W) :- connected(Y,X,W).

“Not too far”
Compare
nearby(X,Y):-connectedS(X,Y,L).

nearby(X,Y):-connectedS(X,Z,L),connectedS(Z,Y,L).

with
not_too_far(X,Y):-connectedS(X,Y,L).

not_too_far(X,Y):-connectedS(X,Z,L1),connectedS(Z,Y,L2).

This can be rewritten with don’t cares:
not_too_far(X,Y):-connected(X,Y,_).

not_too_far(X,Y):-connected(X,Z,_),connected(Z,Y,_).

“Not too far”
Compare
nearby(X,Y):-connectedS(X,Y,L).

nearby(X,Y):-connectedS(X,Z,L),connectedS(Z,Y,L).

with
not_too_far(X,Y):-connectedS(X,Y,L).

not_too_far(X,Y):-connectedS(X,Z,L1),connectedS(Z,Y,L2).

This can be rewritten with don’t cares:
not_too_far(X,Y):-connectedS(X,Y,_).

not_too_far(X,Y):-connectedS(X,Z,_),connectedS(Z,Y,_).

?-nearby(mustek,W)

?-nearby(mustek,W)

nearby(X1,Y1):-connected(X1,Y1,L1)

?-nearby(mustek,W)

nearby(X1,Y1):-connected(X1,Y1,L1)

?-connected(mustek,W,L1)

{X1->mustek, Y1->W}

?-nearby(mustek,W)

nearby(X1,Y1):-connected(X1,Y1,L1)

connected(mustek,muzeum,green)
?-connected(mustek,W,L1)

{X1->mustek, Y1->W}

?-nearby(mustek,W)

nearby(X1,Y1):-connected(X1,Y1,L1)

connected(mustek,muzeum,green)

[]

{W->muzeum, L1->green}

?-connected(mustek,W,L1)

{X1->mustek, Y1->W}

A station is reachable from another if they are on the same line, or with one,
two, … changes:

reachable(X,Y):-connectedS(X,Y,L).
reachable(X,Y):-connectedS(X,Z,L1),connectedS(Z,Y,L2).
reachable(X,Y):-connectedS(X,Z1,L1),connectedS(Z1,Z2,L2),
 connectedS(Z2,Y,L3).  
…

or better

reachable(X,Y):-connectedS(X,Y,L).
reachable(X,Y):-connectedS(X,Z,L),reachable(Z,Y).

“Reachable”

:-reachable(mustek,W) reachable(X1,Y1):-connectedS(X1,Z1,L1),
 reachable(Z1,Y1)

connectedS(mustek,muzeum,green)

{X1->mustek, Y1->W}

:-connectedS(mustek,Z1,L1),
 reachable(Z1,W)

{Z1->muzeum, L1->green}

:-reachable(muzeum,W) reachable(X2,Y2):-connectedS(X2,Z2,L2),
 reachable(Z2,Y2)

connectedS(muzeum,
hlavni_nadrazi,

red)

{X2->muzeum, Y2->W}

:-connectedS(muzeum,Z2,L2),
 reachable(Z2,W)

{Z2->hlavni_nadrazi, L2->red}

:-reachable(hlavni_nadrazi,W) reachable(X3,Y3):-connectedS(X3,Y3,L3)

connectedS(hlavni_nadrazi,
florenc,

red)

{X3->hlavni_nadrazi, Y3->W}

:-connectedS(hlavni_nadrazi,W,L3)

{W->florenc, L3->red}

[]

There is a catch!
• The answers that we get depend on the exact way Prolog works inside.

We will talk about that next time.

“Recording the Path”

route

muzeum

namest_miru

route

noroute

reachable(X,Y,noroute):-connected(X,Y,L).
reachable(X,Y,route(Z,R)):-connected(X,Z,L),  
 reachable(Z,Y,R).

?-reachable(mustek,jiriho_z_podebrad,R).  
R = route(muzeum,route(namesti_miru,noroute));  
…

functor

A Digression: Skolemization
“Everybody knows somebody.”

A Digression: Skolemization

knows(X,person_known_by(X)).

“Everybody knows somebody.”

Skolemization to avoid an existential quantifier

termfunctor

complex term

knows(peter,person_known_by(peter)).
knows(anna,person_known_by(anna)).
knows(paul,person_known_by(paul)).
…

To be continued…

