Prolog - Lecture 1

(Using slides from Peter Flach's lectures for his book Simply Logical)

Free from Peter Flach: http://people.cs.bris.ac.uk/~flach/ SimplyLogical.html

Simply Logical

Intelligent Reasoning by Example
by Peter Flach, then at Tilburg University, the Netherlands John Wiley 1994, xvi + 240 pages, ISBN 0471941522
Reprinted: December 1994, July 1998.
This book is no longer available through John Wiley publishers. You can download a free PDF copy here. The PDF copy has a small number of discrepancies with the print version, including

- different page numbers from Part III (p.129)
- certain mathematical symbols are not displayed correctly, including
$\circ \vdash$ displayed as I
- \forall displayed as $\mathrm{I} ; /$
- \vDash displayed as $=$
- \neq displayed as $=; /$
- the index is currently missing

I am working on fixing these.

- Table of Contents
- Foreword by Bob Kowalski
- Author's Preface
- On-line Prolog programs from the book:
- compressed tar archive (Unix, 38K)

BinHex archive (Macintosh, 149K)

- plain text files
- Teaching materials:
- colour overhead transparencies (PowerPoint, HTML, PDF, PostScript)
- lab exercises

Propositional Programs

Terminology and Setting (1)

- A literal is an atom or its negation (e.g., $p, \neg q$ are literals).

Terminology and Setting (1)

- A literal is an atom or its negation (e.g., $p, \neg q$ are literals).
- A clause is a disjunction of literals (e.g., $p \vee r \vee \neg q$ is a clause).

Terminology and Setting (1)

- A literal is an atom or its negation (e.g., $p, \neg q$ are literals).
- A clause is a disjunction of literals (e.g., $p \vee r \vee \neg q$ is a clause).
- We will mostly restrict our attention to formulas which are conjunctions of clauses, which we will also represent as sets of clauses.

Terminology and Setting (1)

- A literal is an atom or its negation (e.g., $p, \neg q$ are literals).
- A clause is a disjunction of literals (e.g., $p \vee r \vee \neg q$ is a clause).
- We will mostly restrict our attention to formulas which are conjunctions of clauses, which we will also represent as sets of clauses.
- A Horn clause is a clause with at most one positive literal (e.g., $p \vee \neg q \vee \neg r, \neg p, \neg p \vee \neg r$ are Horn clauses).

Terminology and Setting (1)

- A literal is an atom or its negation (e.g., $p, \neg q$ are literals).
- A clause is a disjunction of literals (e.g., $p \vee r \vee \neg q$ is a clause).
- We will mostly restrict our attention to formulas which are conjunctions of clauses, which we will also represent as sets of clauses.
- A Horn clause is a clause with at most one positive literal (e.g., $p \vee \neg q \vee \neg r, \neg p, \neg p \vee \neg r$ are Horn clauses).
- A definite clause is a clause with exactly one positive literal (e.g., $p \vee \neg q \vee \neg r, p$ are definite clauses).

Terminology and Setting (2)

- A definite clause $h \vee \neg b_{1} \vee \neg b_{2} \vee \ldots \vee \neg b_{m}$ can be written also as $h \Leftarrow b_{1} \wedge b_{2} \wedge \ldots \wedge b_{m}$. Therefore we will also call definite clauses rules.
- A set of definite clauses will be called a definite program and we will also treat it, with a slight abuse of notation, as a conjunction of the clauses.

Terminology and Setting (3)

- An interpretation will be represented as a set of atoms which are true in it (e.g., $\{p, q\}$)
- ... since models are interpretations, likewise for models. That is, for instance, when $\varphi=(a \vee \neg b) \wedge b \wedge(c \vee \neg d)$, the models of φ would be represented as $\{a, b\},\{a, b, c\},\{a, b, c, d\}$.

What is true in all models...

Recall that $\varphi \vDash \alpha$ iff the formula α is true in all models of φ.

Example:

$\varphi=(a \Leftrightarrow(b \vee c)) \wedge(\neg b \vee \neg c) \wedge a$
The models of φ are $\{a, b\},\{a, c\}$.
Although a is true in all models of φ, the set $\{a\}$ is not a model of $\varphi \ldots$ not that we wanted or needed it to be, but stay with us!

Definite Programs Are Nice!

Example:

Consider the definite program
$\mathscr{P}=\{a \Leftarrow b, b \Leftarrow c, b\}$.
The models of this program are: $\{a, b\},\{a, b, c\}$.
Their intersection $\{a, b\}$ is a model of \mathscr{P} too (it is one of the models above after all) - This is not a coincidence. See next!

Least Model

- Proposition: Let \mathscr{M} be the set of all models of a given definite program \mathscr{P}. Let us define $\omega_{\text {least }}=\bigcap \omega$. Then $\omega_{\text {least }}$ is a model of \mathscr{P} (and hence $\omega \in \mathscr{M}$
$\left.\omega_{\text {least }} \in \mathscr{M}\right)$. We call $\omega_{\text {least }}$ the least model of ω.

Constructing the Least Model

- Definition (T_{P}-operator, aka immediate consequence operator): Let \mathscr{P} be a definite program and ω be an interpretation. Then the T_{P}-operator is defined as $T_{P}(\omega)=\left\{h \mid h \Leftarrow b_{1} \wedge \ldots \wedge b_{m} \in \mathscr{P}\right.$ and $\left.b_{1}, \ldots, b_{m} \in \omega\right\}$.

Constructing the Least Model

- Definition (T_{P}-operator, aka immediate consequence operator): Let \mathscr{P} be a definite program and ω be an interpretation. Then the T_{P}-operator is defined as $T_{P}(\omega)=\left\{h \mid h \Leftarrow b_{1} \wedge \ldots \wedge b_{m} \in \mathscr{P}\right.$ and $\left.b_{1}, \ldots, b_{m} \in \omega\right\}$.
- Proposition: The least model of \mathscr{P} is the least fix-point of the sequence $T_{P}\left(T_{P}\left(\ldots T_{P}(\varnothing)\right)\right)$.

Constructing the Least Model

- Definition (T_{P}-operator, aka immediate consequence operator): Let \mathscr{P} be a definite program and ω be an interpretation. Then the T_{P}-operator is defined as

$$
T_{P}(\omega)=\left\{h \mid h \Leftarrow b_{1} \wedge \ldots \wedge b_{m} \in \mathscr{P} \text { and } b_{1}, \ldots, b_{m} \in \omega\right\}
$$

- Proposition: The least model of \mathscr{P} is the least fix-point of the sequence $T_{P}\left(T_{P}\left(\ldots T_{P}(\varnothing)\right)\right)$.
- Example: Let $\mathscr{P}=\{a, b \Leftarrow a, c \Leftarrow a \wedge b\}$. We have

1. $\omega_{0}=\varnothing$

Constructing the Least Model

- Definition (T_{P}-operator, aka immediate consequence operator): Let \mathscr{P} be a definite program and ω be an interpretation. Then the T_{P}-operator is defined as

$$
T_{P}(\omega)=\left\{h \mid h \Leftarrow b_{1} \wedge \ldots \wedge b_{m} \in \mathscr{P} \text { and } b_{1}, \ldots, b_{m} \in \omega\right\}
$$

- Proposition: The least model of \mathscr{P} is the least fix-point of the sequence $T_{P}\left(T_{P}\left(\ldots T_{P}(\varnothing)\right)\right)$.
- Example: Let $\mathscr{P}=\{a, b \Leftarrow a, c \Leftarrow a \wedge b\}$. We have

1. $\omega_{0}=\varnothing$
2. $\omega_{1}=T_{P}\left(\omega_{0}\right)=\{a\}$.

Constructing the Least Model

- Definition (T_{P}-operator, aka immediate consequence operator): Let \mathscr{P} be a definite program and ω be an interpretation. Then the T_{P}-operator is defined as

$$
T_{P}(\omega)=\left\{h \mid h \Leftarrow b_{1} \wedge \ldots \wedge b_{m} \in \mathscr{P} \text { and } b_{1}, \ldots, b_{m} \in \omega\right\}
$$

- Proposition: The least model of \mathscr{P} is the least fix-point of the sequence $T_{P}\left(T_{P}\left(\ldots T_{P}(\varnothing)\right)\right)$.
- Example: Let $\mathscr{P}=\{a, b \Leftarrow a, c \Leftarrow a \wedge b\}$. We have

1. $\omega_{0}=\varnothing$
2. $\omega_{1}=T_{P}\left(\omega_{0}\right)=\{a\}$.
3. $\omega_{2}=T_{P}\left(\omega_{1}\right)=\{a, b\}$.

Constructing the Least Model

- Definition (T_{P}-operator, aka immediate consequence operator): Let \mathscr{P} be a definite program and ω be an interpretation. Then the T_{P}-operator is defined as

$$
T_{P}(\omega)=\left\{h \mid h \Leftarrow b_{1} \wedge \ldots \wedge b_{m} \in \mathscr{P} \text { and } b_{1}, \ldots, b_{m} \in \omega\right\} .
$$

- Proposition: The least model of \mathscr{P} is the least fix-point of the sequence $T_{P}\left(T_{P}\left(\ldots T_{P}(\varnothing)\right)\right)$.
- Example: Let $\mathscr{P}=\{a, b \Leftarrow a, c \Leftarrow a \wedge b\}$. We have

1. $\omega_{0}=\varnothing$
2. $\omega_{1}=T_{P}\left(\omega_{0}\right)=\{a\}$.
3. $\omega_{2}=T_{P}\left(\omega_{1}\right)=\{a, b\}$.
4. $\omega_{3}=T_{P}\left(\omega_{2}\right)=\{a, b, c\}$.

Constructing the Least Model

- Definition (T_{P}-operator, aka immediate consequence operator): Let \mathscr{P} be a definite program and ω be an interpretation. Then the T_{P}-operator is defined as

$$
T_{P}(\omega)=\left\{h \mid h \Leftarrow b_{1} \wedge \ldots \wedge b_{m} \in \mathscr{P} \text { and } b_{1}, \ldots, b_{m} \in \omega\right\} .
$$

- Proposition: The least model of \mathscr{P} is the least fix-point of the sequence $T_{P}\left(T_{P}\left(\ldots T_{P}(\varnothing)\right)\right)$.
- Example: Let $\mathscr{P}=\{a, b \Leftarrow a, c \Leftarrow a \wedge b\}$. We have

1. $\omega_{0}=\varnothing$
2. $\omega_{1}=T_{P}\left(\omega_{0}\right)=\{a\}$.
3. $\omega_{2}=T_{P}\left(\omega_{1}\right)=\{a, b\}$.
4. $\omega_{3}=T_{P}\left(\omega_{2}\right)=\{a, b, c\}$.
5. $\omega_{4}=T_{P}\left(\omega_{3}\right)=\{a, b, c\}=\omega_{3}$. We have reached fix-point, ω_{3} is the least model of \mathscr{P}.

Constructing the Least Model

- Definition (T_{P}-operator, aka immediate consequence operator): Let \mathscr{P} be a definite program and ω be an interpretation. Then the T_{P}-operator is defined as

$$
T_{P}(\omega)=\left\{h \mid h \Leftarrow b_{1} \wedge \ldots \wedge b_{m} \in \mathscr{P} \text { and } b_{1}, \ldots, b_{m} \in \omega\right\} .
$$

- Proposition: The least model of \mathscr{P} is the least fix-point of the sequence $T_{P}\left(T_{P}\left(\ldots T_{P}(\varnothing)\right)\right)$.
- Example: Let $\mathscr{P}=\{a, b \Leftarrow a, c \Leftarrow a \wedge b\}$. We have

1. $\omega_{0}=\varnothing$
2. $\omega_{1}=T_{P}\left(\omega_{0}\right)=\{a\}$.
3. $\omega_{2}=T_{P}\left(\omega_{1}\right)=\{a, b\}$.
4. $\omega_{3}=T_{P}\left(\omega_{2}\right)=\{a, b, c\}$.
5. $\omega_{4}=T_{P}\left(\omega_{3}\right)=\{a, b, c\}=\omega_{3}$. We have reached fix-point, ω_{3} is the least model of \mathscr{P}.

Least Model (Recap)

- A definite program \mathscr{P} always has a least model.
- The least model can be found using the immediate consequence operator. This is also sometimes called forward-chaining.
- Definite programs cannot entail negative literals-therefore the least model tells us everything we need to know about the program and what follows from it (do you see why?)

First-Order Programs

Setting, Notation and Terminology (1)

- Now we will upgrade definite programs from propositional to first-order. You have already seen first-order logic in the first part of the course.

Setting, Notation and Terminology (1)

- Now we will upgrade definite programs from propositional to first-order. You have already seen first-order logic in the first part of the course.
- Convention: Variables in Prolog start with a capital letter (e.g.V), constants with a lower-case letter (e.g. carrot).

Setting, Notation and Terminology (1)

- Now we will upgrade definite programs from propositional to first-order. You have already seen first-order logic in the first part of the course.
- Convention: Variables in Prolog start with a capital letter (e.g.V), constants with a lower-case letter (e.g. carrot).
- Convention: A definite clause $h \Leftarrow b_{1} \wedge \ldots \wedge b_{m}$ will be written in Prolog notation as $h:-b_{1}, \ldots, b_{m}$. All variables that appear in a definite clause are automatically assumed to be universally quantified (recall the definition of clause).

Setting, Notation and Terminology (2)

- Definition (Term): A term is a constant (e.g. carrot), a variable (e.g. V) or a function applied to a tuple of terms (e.g. $g($ carrot, V)).

Setting, Notation and Terminology (2)

- Definition (Term): A term is a constant (e.g. carrot), a variable (e.g. V) or a function applied to a tuple of terms (e.g. g (carrot, V)).
- Definition (Ground Term): A term is ground if it does not contain variables-e.g. carrot is a ground term, but V and $g($ carrot, $V)$ are not ground.

Setting, Notation and Terminology (3)

- Definition (Substitution): A substitution is a mapping that maps variables to terms. For instance, $\vartheta=\{X \mapsto$ maria $\}$ is a substitution.

Setting, Notation and Terminology (3)

- Definition (Substitution): A substitution is a mapping that maps variables to terms. For instance, $\vartheta=\{X \mapsto$ maria $\}$ is a substitution.
- A substitution can be applied to a clause. For a clause C and a substitution ϑ, this is denoted as $C \vartheta$.

Setting, Notation and Terminology (3)

- Definition (Substitution): A substitution is a mapping that maps variables to terms. For instance, $\vartheta=\{X \mapsto$ maria $\}$ is a substitution.
- A substitution can be applied to a clause. For a clause C and a substitution ϑ, this is denoted as $C \vartheta$.
- For instance, let us have the definite clause isStudentOf (X, T) :- teaches (T, X). If we apply the substitution $\{X \mapsto$ maria $\}$ to it, we get isStudentOf(maria, T) :- teaches(T, maria) .

Setting, Notation and Terminology (3)

- Definition (Substitution): A substitution is a mapping that maps variables to terms. For instance, $\vartheta=\{X \mapsto$ maria $\}$ is a substitution.
- A substitution can be applied to a clause. For a clause C and a substitution ϑ, this is denoted as $C \vartheta$.
- For instance, let us have the definite clause isStudentOf (X, T) :- teaches (T, X). If we apply the substitution $\{X \mapsto$ maria $\}$ to it, we get isStudentOf(maria, T) :- teaches(T, maria) .
- The resulting clause is said to be an instance of the original clause, and a ground instance if it does not contain variables.

Setting, Notation and Terminology (3)

- Definition (Substitution): A substitution is a mapping that maps variables to terms. For instance, $\vartheta=\{X \mapsto$ maria $\}$ is a substitution.
- A substitution can be applied to a clause. For a clause C and a substitution ϑ, this is denoted as $C \vartheta$.
- For instance, let us have the definite clause is $\operatorname{StudentOf}(X, T)$:- teaches (T, X). If we apply the substitution $\{X \mapsto$ maria $\}$ to it, we get isStudentOf(maria, T) :- teaches(T, maria).
- The resulting clause is said to be an instance of the original clause, and a ground instance if it does not contain variables.
- Each instance of a clause is among its logical consequences.

Setting, Notation and Terminology (4)

- Definition (Herbrand Universe): Given a definite program \mathscr{P}, its Herbrand universe is the set of all ground terms that are either constants appearing in \mathscr{P} or can be constructed from the constants and function symbols appearing in \mathscr{P}.
- Example:

If $\mathscr{P}=\{$ teacherOf(peter, maria) . isStudentOf $(X, T):$ - teacherOf (T, X). then the Herbrand universe of \mathscr{P} is $\{$ peter, maria $\}$.

- If $\mathscr{P}=\{\operatorname{num}(0), \operatorname{num}(\operatorname{suc}(X)):-\operatorname{num}(X)$.$\} then the Herbrand universe is the$ infinite set $\{0, \operatorname{suc}(0), \operatorname{suc}(\operatorname{suc}(0)), \operatorname{suc}(\operatorname{suc}(\operatorname{suc}(0))), \ldots\}$

Setting, Notation and Terminology (5)

- Definition (Herbrand Base): Given a definite program \mathscr{P}, its Herbrand base is the set of all ground atoms that can be constructed using the terms from the Herbrand universe of \mathscr{P}.

- Example:

If $\mathscr{P}=\{$ teacherOf(peter, maria) . isStudentOf (X, T) :- teacherOf (T, X). then the Herbrand base of \mathscr{P} is \{teacherOf(maria, maria), teacherOf(peter, peter), teacherOf(peter, maria), teacherOf(maria, peter), studentOf(peter, peter), studentOf(maria, maria), teacherOf(peter, maria), teacherOf(maria, peter) \}.

- If $\mathscr{P}=\{\operatorname{num}(0)$, num $(\operatorname{suc}(X)):$ - num (X).$\} then the Herbrand base is the infinite set$ $\{\operatorname{num}(0), \operatorname{num}(\operatorname{suc}(0)), \operatorname{num}(\operatorname{suc}(\operatorname{suc}(0))), \operatorname{num}(\operatorname{suc}(\operatorname{suc}(\operatorname{suc}(0)))), \ldots\}$

Remember:

Herbrand universe ~ ground terms
Herbrand base ~ ground atoms

Setting, Notation and Terminology (6)

- Definition (Herbrand Interpretation and Herbrand Model): Given a definite program \mathscr{P}, let \mathscr{B} be its Herbrand base. A Herbrand interpretation is a subset of \mathscr{B}. A Herbrand model of \mathscr{P} is a Hebrand interpretation which is also a model of \mathscr{P}.
- Definition (Least Herbrand Model): Given a definite program \mathscr{P}, its least Herbrand model (LHM) is the intersection of all of its models.

- Example:

If $\mathscr{P}=\{$ teacherOf(peter, maria) . isStudentOf (X, T) :- teacherOf (T, X). then the least Herbrand model of \mathscr{P} is $\{$ teacherOf(peter, maria), studentOf(maria, peter) .

- If $\mathscr{P}=\{\operatorname{num}(0)$, num $(\operatorname{suc}(X):-\operatorname{num}(X)$.$\} then the Herbrand base is the infinite set$ $\{$ num(0), num $(\operatorname{suc}(0))$, num(suc(suc(0))), num(suc(suc(suc(0)))), $\ldots\}$, which turns out to be the same as the Herbrand base in this case.

Constructing the LHM

- Definition (T_{P}-operator, aka immediate consequence operator for LHB): Let \mathscr{P} be a definite program and ω be an interpretation. Then the T_{P}-operator is defined as $T_{P}(\omega)=\left\{h \vartheta \mid h \Leftarrow b_{1} \wedge \ldots \wedge b_{m} \in \mathscr{P}, \vartheta\right.$ is a grounding substitution and $\left.\left(b_{1}, \ldots, b_{m}\right) \vartheta \in \omega\right\}$.

Constructing the LHM

- Definition (T_{P}-operator, aka immediate consequence operator for LHB): Let \mathscr{P} be a definite program and ω be an interpretation. Then the T_{P}-operator is defined as $T_{P}(\omega)=\left\{h \vartheta \mid h \Leftarrow b_{1} \wedge \ldots \wedge b_{m} \in \mathscr{P}, \vartheta\right.$ is a grounding substitution and $\left.\left(b_{1}, \ldots, b_{m}\right) \vartheta \in \omega\right\}$.
- Example:
$\mathscr{P}=\{$ teacherOf(peter, maria). isStudentOf (X, T) :- teacherOf (T, X).

Constructing the LHM

- Definition (T_{P}-operator, aka immediate consequence operator for LHB): Let \mathscr{P} be a definite program and ω be an interpretation. Then the T_{P}-operator is defined as $T_{P}(\omega)=\left\{h \vartheta \mid h \Leftarrow b_{1} \wedge \ldots \wedge b_{m} \in \mathscr{P}, \vartheta\right.$ is a grounding substitution and $\left.\left(b_{1}, \ldots, b_{m}\right) \vartheta \in \omega\right\}$.
- Example:
$\mathscr{P}=\{$ teacherOf(peter, maria). isStudentOf (X, T) :- teacherOf (T, X).

1. $\omega_{0}=\varnothing$

Constructing the LHM

- Definition (T_{P}-operator, aka immediate consequence operator for LHB): Let \mathscr{P} be a definite program and ω be an interpretation. Then the T_{P}-operator is defined as $T_{P}(\omega)=\left\{h \vartheta \mid h \Leftarrow b_{1} \wedge \ldots \wedge b_{m} \in \mathscr{P}, \vartheta\right.$ is a grounding substitution and $\left.\left(b_{1}, \ldots, b_{m}\right) \vartheta \in \omega\right\}$.
- Example:
$\mathscr{P}=\{$ teacherOf(peter, maria). isStudentOf (X, T) :- teacherOf (T, X).

1. $\omega_{0}=\varnothing$
2. $\omega_{1}=T_{P}\left(\omega_{0}\right)=\{$ teacherOf(peter, maria $\left.)\right\}$

Constructing the LHM

- Definition (T_{P}-operator, aka immediate consequence operator for LHB): Let \mathscr{P} be a definite program and ω be an interpretation. Then the T_{P}-operator is defined as $T_{P}(\omega)=\left\{h \vartheta \mid h \Leftarrow b_{1} \wedge \ldots \wedge b_{m} \in \mathscr{P}, \vartheta\right.$ is a grounding substitution and $\left.\left(b_{1}, \ldots, b_{m}\right) \vartheta \in \omega\right\}$.
- Example:
$\mathscr{P}=\{$ teacherOf(peter, maria). isStudentOf (X, T) :- teacherOf (T, X).

1. $\omega_{0}=\varnothing$
2. $\omega_{1}=T_{P}\left(\omega_{0}\right)=\{$ teacherOf(peter, maria) $\}$
3. $\omega_{2}=T_{P}\left(\omega_{1}\right)=\{$ teacherOf(peter, maria), studentOf(maria, peter) $\}$

Constructing the LHM

- Definition (T_{P}-operator, aka immediate consequence operator for LHB): Let \mathscr{P} be a definite program and ω be an interpretation. Then the T_{P}-operator is defined as
$T_{P}(\omega)=\left\{h \vartheta \mid h \Leftarrow b_{1} \wedge \ldots \wedge b_{m} \in \mathscr{P}, \vartheta\right.$ is a grounding substitution and $\left.\left(b_{1}, \ldots, b_{m}\right) \vartheta \in \omega\right\}$.
- Example:
$\mathscr{P}=\{$ teacherOf(peter, maria). isStudentOf $(X, T):-$ teacherOf (T, X).

1. $\omega_{0}=\varnothing$
2. $\omega_{1}=T_{P}\left(\omega_{0}\right)=\{$ teacherOf(peter, maria) $\}$
3. $\omega_{2}=T_{P}\left(\omega_{1}\right)=\{$ teacherOf(peter, maria), studentOf(maria, peter) $\}$
4. $\omega_{3}=T_{P}\left(\omega_{2}\right)=\omega_{2}$ (fixpoint -> we have the LHM).

Resolution

Resolution

- Computing the complete least model using the T_{P}-operator is often impractical (as we will see, in the first-order case sometimes even impossible).

Resolution

- Computing the complete least model using the T_{P}-operator is often impractical (as we will see, in the first-order case sometimes even impossible).
- When we know what we want to "ask about", we can use resolution

Resolution

- Computing the complete least model using the T_{P}-operator is often impractical (as we will see, in the first-order case sometimes even impossible).
- When we know what we want to "ask about", we can use resolution.
- Example: $\mathscr{P}=\{a \Leftarrow b \wedge c, d \Leftarrow e \wedge f, b, c \Leftarrow b\}$. We want to know whether $\mathscr{P} \vDash a$. For that we negate a (with resolution, we use proof by contradiction) and add it to \mathscr{P} and convert the implications to clauses:

$$
\mathscr{P}=\{\neg a, a \vee \neg b \vee \neg c, d \vee \neg e \vee \neg f, b, c \vee \neg b\} \text { and perform resolution. }
$$

Resolution

- Computing the complete least model using the T_{P}-operator is often impractical (as we will see, in the first-order case sometimes even impossible).
- When we know what we want to "ask about", we can use resolution.
- Example: $\mathscr{P}=\{a \Leftarrow b \wedge c, d \Leftarrow e \wedge f, b, c \Leftarrow b\}$. We want to know whether $\mathscr{P} \vDash a$. For that we negate a (with resolution, we use proof by contradiction) and add it to \mathscr{P} and convert the implications to clauses:

$$
\begin{gathered}
\mathscr{P}=\{\neg a, a \vee \neg b \vee \neg c, d \vee \neg e \vee \neg f, b, c \vee \neg b\} \text { and perform resolution. } \\
a \vee \neg b \vee \neg c \quad b \quad c \vee \neg b
\end{gathered}
$$

Resolution

- Computing the complete least model using the T_{P}-operator is often impractical (as we will see, in the first-order case sometimes even impossible).
- When we know what we want to "ask about", we can use resolution.
- Example: $\mathscr{P}=\{a \Leftarrow b \wedge c, d \Leftarrow e \wedge f, b, c \Leftarrow b\}$. We want to know whether $\mathscr{P} \vDash a$. For that we negate a (with resolution, we use proof by contradiction) and add it to \mathscr{P} and convert the implications to clauses:

$$
\mathscr{P}=\{\neg a, a \vee \neg b \vee \neg c, d \vee \neg e \vee \neg f, b, c \vee \neg b\} \text { and perform resolution. }
$$

Resolution

- Computing the complete least model using the T_{P}-operator is often impractical (as we will see, in the first-order case sometimes even impossible).
- When we know what we want to "ask about", we can use resolution.
- Example: $\mathscr{P}=\{a \Leftarrow b \wedge c, d \Leftarrow e \wedge f, b, c \Leftarrow b\}$. We want to know whether $\mathscr{P} \vDash a$. For that we negate a (with resolution, we use proof by contradiction) and add it to \mathscr{P} and convert the implications to clauses:

$$
\mathscr{P}=\{\neg a, a \vee \neg b \vee \neg c, d \vee \neg e \vee \neg f, b, c \vee \neg b\} \text { and perform resolution. }
$$

Resolution

- Computing the complete least model using the T_{P}-operator is often impractical (as we will see, in the first-order case sometimes even impossible).
- When we know what we want to "ask about", we can use resolution.
- Example: $\mathscr{P}=\{a \Leftarrow b \wedge c, d \Leftarrow e \wedge f, b, c \Leftarrow b\}$. We want to know whether $\mathscr{P} \vDash a$. For that we negate a (with resolution, we use proof by contradiction) and add it to \mathscr{P} and convert the implications to clauses: $\mathscr{P}=\{\neg a, a \vee \neg b \vee \neg c, d \vee \neg e \vee \neg f, b, c \vee \neg b\}$ and perform resolution.

Propositional Resolution

Propositional resolution is
\checkmark sound: it derives only logical consequences.
\checkmark incomplete: it cannot derive arbitrary tautologies like $a \Rightarrow a$.
\checkmark...but refutation-complete: it derives the empty clause from any inconsistent set of clauses.

An Example (1): Full Program

```
likes(peter,S) :-student_of(S,peter)
student_of(S,T):-follows(S,C),teaches(T,C)
follows(maria,ai_techniques)
teaches(peter,ai_techniques)
```


An Example (3)

- Herbrand universe: $\{$ peter, maria, ai_techniques $\}$
- Herbrand base:
\{likes(peter, peter), likes(maria, maria), likes(peter, maria),
likes(maria, peter), likes(ai_techniques, peter), . . , student_of(peter, peter), student_of(maria, maria), student_of(peter, maria), student_of(maria, peter), student_of(ai_techniques, peter), ... teaches(...,...),...,

An Example (4)

:-likes (peter, N)

We want to query whether someone likes Peter (as a bonus we will also learn who that is!)

An Example (4)

An Example (4)

An Example (4)

An Example (4)

An Example (4)

An Example (4)

An Example (4)

An Example (4)

N ->maria is the answer substitution.

You can try to solve the previous example using the T_{P}-operator (it is still possible here).

Some Programs Have Infinite LHMs

- ...for such programs we cannot construct the LHM using the T_{P}-operator in practice (it still works well as a theoretical construct, though) and backward chaining (using resolution) is our only hope.
- Example:

```
plus(0,x,x).
plus(s(X),Y,s(Z)):-plus(X,Y,Z).
```

- Herbrand universe: set of ground terms $\{0, s(0), s(s(0)), s(s(s(0))), \ldots\}$
- Herbrand base: $\{$ plus $(0,0,0)$, plus $(s(0), 0,0), \ldots, \ldots\}$
- LHM: ... try yourself.

Now we can also get subtraction from addition (using $X-Y=Z$ iff $X=Y+Z$):

```
minus(X,Y,Z):-plus(Y,Z,X).
```


SWISH

```
(0) 人⿱人⿻丷木)}\mathrm{ Program x+
plus(0, X,X).
plus(s(X),Y,s(Z)) :- plus(X,Y,Z).
minus(X,Y,Z) :- plus(Y,Z,X).
6
```


Another Example

A Prolog DB (1)

```
connected(nemocnice_motol,petriny,green).
connected(petriny,nadrazi_veleslavin,green).
connected(nadrazi_veleslavin,borislavka,green).
connected(borislavka,dejvicka,green).
connected(dejvicka,hradcanska,green).
connected(hradcanska,malostranska,green).
connected(malostranska,staromestska,green).
connected(staromestska,mustek,green).
connected (mustek,muzeum,green).
connected(muzeum, namesti miru,green).
connected(namesti_miru,jíriho_z_podebrad,green).
connected(jiriho_z_podebrad,flora,green).
connected(flora,zelivskeho,green).
connected(zelivskeho,strasnicka,green).
connected(strasnicka,skalka,green).
connected(skalka,depo_hostivar,green).
```


A Prolog DB (2)

```
connected(letnany,prosek,red).
connected(prosek,strizkov,red).
connected(strizkov,ladvi,red).
connected(ladvi,kobylisy,red).
connected(kobylisy,nadrazi_holesovice,red).
connected(nadrazi_holesovice,vltavska,red).
connected(vltavska,florenc,red).
connected(florenc,hlavni_nadrazi,red).
connected(hlavni_nadrazi,muzeum,red).
connected(muzeum,i_p_pavlova,red).
connected(i_p_pavlova,vysehrad,red).
connected(vyse\overline{ehrad,prazskeho povstani,red).}
connected(prazskeho_povstani,pankrac,red).
connected(pankrac,budejovicka,red).
connected(budejovicka,kacerov,red).
connected(kacerov,roztyly,red).
connected(roztyly,chodov,red).
connected(chodov,opatov,red).
connected(opatov,haje,red).
```


A Prolog DB (3)

```
connected(zlicin,stodulky,yellow).
connected(stodulky,luka,yellow).
connected(luka,luziny,yellow).
connected(luziny,hurka,yellow).
connected(hurka,nove_butovice,yellow).
connected(nove_butovice,jinonice,yellow).
connected(jinonice,radlicka,yellow).
connected(radlicka,smichov,yellow).
connected(smichov, andel,yellow).
connected(andel,karlovo_namesti,yellow).
connected(karlovo_namesti,narodni_trida,yellow).
connected(narodni_trida,mustek,ye\overline{low).}
connected(mustek,\overline{namesti republiky,yellow).}
connected(namesti_republiky,florenc,yellow).
connected(florenc,krizikova,yellow).
connected(krizikova,invalidovna,yellow).
connected(invalidovna,palmovka,yellow).
connected(palmovka,ceskomoravska, yellow).
connected(ceskomoravska,vysocanska,yellow).
connected(vysocanska,kolbenova,yellow).
connected(kolbenova,hloubetin,yellow).
connected(hloubetin,rajska_zahrada, yellow).
connected(rajska_zahrada,cerny_most,yellow).
```


"Nearby"

Two stations are nearby if they are on the same line with at most one other station in between:

"Nearby"

Two stations are nearby if they are on the same line with at most one other station in between:

```
nearby(zlicin,luka).
nearby(luka,zlicin).
nearby(zlicin,stodulky).
nearby(stodulky,zlicin).
nearby(luka,luziny).
nearby(luziny,luka).
nearby(luka,hurka).
```


"Nearby"

Two stations are nearby if they are on the same line with at most one other station in between:

```
nearby(zlicin,luka).
nearby(luka,zlicin).
nearby(zlicin,stodulky).
nearby(stodulky,zlicin).
nearby(luka,luziny).
nearby(luziny,luka).
nearby(luka,hurka).
```

or better

```
nearby(X,Y) :-connectedS (X,Y,L).
nearby(X,Y) :-connectedS (X,Z,L) , connectedS (Z,Y,L).
connectedS (X,Y,W) :- connected(X,Y,W).
connectedS (X,Y,W) :- connected(Y,X,W).
```


Compare

nearby (X,Y) :-connectedS (X,Y,L) .
nearby (X, Y) : - connectedS ($\mathrm{X}, \mathrm{Z}, \mathrm{L}$) , connectedS ($\mathrm{Z}, \mathrm{Y}, \mathrm{L}$) .
with

```
not_too_far(X,Y):-connectedS(X,Y,L).
not_too_far(X,Y):-connectedS(X,Z,L1),connectedS (Z,Y,L2).
```


"Not too far"

Compare

nearby $(X, Y):-\operatorname{connectedS}(X, Y, L)$.
nearby $(X, Y):-\operatorname{connectedS}(X, Z, L), \operatorname{connectedS}(Z, Y, L)$.
with

```
not_too_far(X,Y):-connectedS (X,Y,L).
not_too_far(X,Y):-connectedS (X,Z,L1), connectedS (Z,Y,L2).
```

This can be rewritten with don't cares:

```
not_too_far(X,Y):-connectedS (X,Y,_).
not_too_far(X,Y):-connectedS (X,Z,_), connectedS (Z,Y,_).
```

?-nearby (mustek, W)
?-nearby (mustek,W)
nearby (X1, Y1) :-connected (X1,Y1,L1)
?-nearby (mustek,W)

?-connected (mustek,W,L1)
?-nearby (mustek,W)

? -nearby (mustek, W)

"Reachable"

A station is reachable from another if they are on the same line, or with one, two, ... changes:

```
reachable(X,Y) :-connectedS (X,Y,L) .
reachable(X,Y) :-connectedS (X,Z,L1) , connectedS (Z,Y,L2) .
reachable(X,Y):-connectedS (X,Z1,L1) , connectedS (Z1,Z2,L2),
    connectedS (Z2,Y,L3).
```

or better

```
reachable(X,Y) :-connectedS (X,Y,L) .
reachable(X,Y) :-connectedS(X,Z,L),reachable(Z,Y).
```


There is a catch!

- The answers that we get depend on the exact way Prolog works inside. We will talk about that next time.

"Recording the Path"

```
reachable(X,Y,noroute) :-connected(X,Y,L).
reachable(X,Y,route(Z,R)):-connected(X,Z,L),
                                    reachable(Z,Y,R).
?-reachable(mustek,jiriho_z_podebrad,R).
R = route(muzeum,route(namesti_miru,noroute));
```

...

A Digression: Skolemization

"Everybody knows somebody."

A Digression: Skolemization

"Everybody knows somebody."
Skolemization to avoid an existential quantifier


```
knows(peter,person_known_by(peter)).
knows (anna,person_known_by(anna)).
knows(paul,person_known_by(paul)).
```

To be continued...

