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about this document

The aim of these exercises is to make you, the student of Computational Game
Theory, think actively about the concepts introduced in the lectures. You are
encouraged to work out your approach to the solution. Almost all exercises
can be solved using pen & paper – write your notes and calculations on
the wide margins of this document. Do not hesitate to consult the course
materials available online for the basic notions and results. Most of the
exercises are adapted from [2, 3, 4, 5]. Some questions are more difficult
or require more extended mathematical arguments. Such items are marked
with ⋆ .

In addition to the exercises covering the content of the lectures, the first
section presents selected mathematical prerequisities necessary for under-
standing game theory. This is mostly based on the main concepts discussed
in the undergraduate courses of linear algebra, optimization, linear program-
ming, discrete mathematics, and probability theory.
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1 mathematical prerequisities

Exercise 1.
Duality in linear programming. The concept of duality appears in many game-
theoretic problems. In this exercise we consider the linear program

Minimize − x1 + 2x2

subject to x1 + x2 ≤ 4

2x1 + x2 ≤ 5

− x1 + 4x2 ≥ 2

x1, x2 ≥ 0

Characterize the feasible set of the problem by its vertices (extreme points).
Further, find the optimal solution of this linear program and formulate the
dual program. What is the meaning of the dual program and its relation to
the original program? What will be the optimal value of the dual problem?

Exercise 2.
Minimax/maximin values. Let X and Y be nonempty sets and consider a real
function f : X × Y → R. Show that

max
x∈X

min
y∈Y

f (x, y) ≤ min
y∈Y

max
x∈X

f (x, y), (1)

where we assume that all maxima and minima above exist. Find an example
of function f taking at least two different values such that (a) the inequality
is strict and (b) the inequality becomes an equality. Hint: Such examples
exist already when both X and Y have 2 elements.

Exercise 3.
Saddle points. Let f : X × Y → R be a function, where X and Y are arbitrary
nonempty set. We say that (x∗, y∗) ∈ X × Y is a saddle point of f if

f (x, y∗) ≤ f (x∗, y∗) ≤ f (x∗, y) for all x ∈ X, y ∈ Y. (2)

Show that a function f has a saddle point if, and only if,

max
x∈X

min
y∈Y

f (x, y) = min
y∈Y

max
x∈X

f (x, y), (3)

provided that all the maxima/minima above exist.

Exercise 4.
Joining a random coalition. Assume that N = {1, . . . , n} is a set of players.
A coalition is any subset of N. One of the players, say i ∈ N, would like
to join a coalition A of other players. What is the probability of selecting
A at random? What is the probability that a coalition A is chosen in the
following way. First, player i randomly picks the size of A, and then A is
selected among the coalitions of such size at random?
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solutions

Solution 1.
In any linear programming problem, the feasible set is a convex polyhe-
dron. In our case the polyhedron is bounded, so it is a convex polygon
characterized by its vertices. Every vertex corresponds to a unique solution
of some linear equality system associated with a subset of linear inequality
constraints of the problem. For example, a point (1, 3) is a vertex since it
is a unique solution to linear equations x1 + x2 = 4 and 2x1 + x2 = 5. The
remaining vertices are (0, 1

2 ), (0, 4), (2, 1). See Figure 1, which is an output
of the simple online solver https://online-optimizer.appspot.com.

Figure 1: The feasible set corresponding to constraints (5)–(7)

What is the optimal solution to the problem? The fundamental theorem
of linear programming says that, if a linear program has an optimal solution,
then it is attained at some vertex of the feasible set. Clearly, at least one opti-
mal solution exists in our case since the feasible set is bounded. Therefore, it
suffices to compute the values of the objective function f (x1, x2) = −x1 + 2x2

for all the vertices and select the one with the minimal value. This yields the
optimal solution (2, 1) with the optimal value is f (2, 1) = 0.

To formulate the dual problem, it is convenient to formulate the original
problem so that all inequalities are of the form ≥:

Minimize − x1 + 2x2 (4)

subject to − x1 − x2 ≥ −4 (5)

− 2x1 − x2 ≥ −5 (6)

− x1 + 4x2 ≥ 2 (7)

x1, x2 ≥ 0 (8)

By design, the dual program has 3 variables y1, y2, y3 corresponding to the
3 primal linear constraints (5)–(7), and 2 linear constraints associated with

https://online-optimizer.appspot.com
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2 primal variables x1, x2. The exact form of the dual program can be found
in any textbook on linear programming. Specifically the dual is

Maximize − 4y1 − 5y2 + 2y3

subject to − y1 − 2y2 − y3 ≤ −1

− y1 − y2 + 4y3 ≤ 2

y1, y2, y3 ≥ 0

The duality theorem immediately implies that the primal and dual problems
have the same optimal value 0.

What is the interpretation of duality? The optimal value of dual problem
provides the tighest lower bound on the solution of the primal problem. In
fact, the dual problem controls the optimal value of the primal problem from
below, and does so in the best possible way — the optimal values of both
programs coincide!

We will elaborate on the idea sketched above. How to obtain a lower
bound for the primal problem? Note that one possible lower bound on the
values of the objective f follows from the nonnegativity constraints (8) and
the constraint (5) since

−4 ≤ −x1 − x2 ≤ −x1 + 2x2.

Can we do better? That is, can we obtain a higher value than −4 for the
lower bound? It is easy to see that by multiplying the inequalities (5) and (7)
by 1

2 and adding them we obtain the bound

−1 ≤ −x1 +
3
2 x2 ≤ −x1 + 2x2,

which is tighter. Can we still improve on this lower bound? Let us try to gen-
eralize the idea of combining the linear inequalities of the primal problem
for estimating the optimal value from below. The goal is to find nonnegative
real numbers y1, y2, y3 such that

−4y1 − 5y2 + 2y3 ≤ y1(−x1 − x2) + y2(−2x1 − x2) + y3(−x1 + 4x2)︸ ︷︷ ︸
(−y1−2y2−y3)x1+(−y1−y2+4y3)x2

≤ −x1 + 2x2

and the second inequality should be as tight as possible. One way to guar-
antee this is to maximize the most left-hand side −4y1 − 5y2 + 2y3 while
preserving the constraints −y1 − 2y2 − y3 ≤ −1 and −y1 − y2 + 4y3 ≤ 2
expressed by the second inequality above. In other words, we have derived
precisely the dual problem.

Solution 2.
To prove the inequality (1), define

F(x) = min
y∈Y

f (x, y), x ∈ X,

and let x∗ ∈ X be the maximizer of F over X. Then

max
x∈X

min
y∈Y

f (x, y) = max
x∈X

F(x) = F(x∗) = min
y∈Y

f (x∗, y).
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For every y ∈ Y, we have

f (x∗, y) ≤ max
x∈X

f (x, y)

by the definition of maximum, which implies

min
y∈Y

f (x∗, y) ≤ min
y∈Y

max
x∈X

f (x, y).

Hence, (1) is proved.
We will construct two examples (a)-(b) under the assumption that X =

Y = {1, 2}. First, consider a function f given by the matrix

X

Y
1 2

1 0 1
2 1 0

Then
max
x∈X

min
y∈Y

f (x, y) = 0 < 1 = min
y∈Y

max
x∈X

f (x, y).

For the second example (b), take a matrix

X

Y
1 2

1 3 0
2 2 2

Then
max
x∈X

min
y∈Y

f (x, y) = 2 = min
y∈Y

max
x∈X

f (x, y).

Solution 3.
We define two functions: F(x) = miny∈Y f (x, y), for all x ∈ X, and G(y) =
maxx∈X f (x, y), for every y ∈ Y. Assume that f has a saddle point (x∗, y∗).
Then the saddle point definition (2) and the definition of maxima/minima
imply

min
y∈Y

G(y) ≤ G(y∗) = max
x∈X

f (x, y∗) = f (x∗, y∗) = min
y∈Y

f (x∗, y) = F(x∗) ≤ max
x∈X

F(x).

We obtained the inequality

min
y∈Y

max
x∈X

f (x, y) ≤ max
x∈X

min
y∈Y

f (x, y),

and since the converse inequality always holds (Exercise 2), we proved the
minimax equality (3).

To prove the converse implication, assume that (3) holds. Let x∗ and y∗

be such that F(x∗) = maxx∈X F(x) and G(y∗) = miny∈Y G(y), respectively.
Then the assumption (3) gives

F(x∗) = max
x∈X

F(x) = max
x∈X

min
y∈Y

f (x, y) = min
y∈Y

max
x∈X

f (x, y) = min
y∈Y

G(y) = G(y∗).

(9)
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Further, from the definition of F, G and x∗, y∗ we get

F(x∗) ≤ f (x∗, y∗) ≤ G(y∗)

and (9) implies that even F(x∗) = f (x∗, y∗) = G(y∗). Let x ∈ X and y ∈ Y.
Then

f (x, y∗) ≤ G(y∗) = f (x∗, y∗) = F(x∗) ≤ f (x∗, y).

Solution 4.
There are 2n−1 coalitions A to which player i doesn’t belong, i /∈ A. There-
fore p(A) = 21−n is the probability of picking such a coalition randomly.
Consider now the second variant of random choice of the coalition. Let A
be a random coalition selected in this way. We can compute the probability
q(A) using the definition of conditional probability,

q(A) = q(A | the size is |A|) · q(the size is |A|) = 1
(n−1
|A| )

· 1
n

,

where we used the fact that q(A) = q(A ∧ the size is |A|). We can easily
verify that q is a probability distribution:

∑
A⊆N\{i}

q(A) =
1
n ∑

A⊆N\{i}

1
(n−1
|A| )

=
1
n

n−1

∑
a=0

(
n − 1

a

)
1

(n−1
a )

= 1.

Note that both p and q depend only on the size of each coalition. Specifi-
cally, if A and B are coalitions such that |A| = |B|, then p(A) = p(B) = 21−n

and q(A) = q(B). Probability distributions p and q appear in the Banzhaf
and Shapley values in coalitional game theory. We can see that there is a
several order magnitude difference between their values (Figure 2). For ex-
ample, in case that there are n = 60 players, the probabilities of coalition A
with |A| = 10 are p(A) ≈ 1.7 × 10−18 and q(A) ≈ 2.6 × 10−13, respectively.

Figure 2: Values of p and q.
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Part I.
Game Theory
2 normal-form games

Exercise 5.
Single attacker is about to attack one of the 4 military bases (denoted T1, T2,
T3, T4). However, due to pay cuts, the military can only spend resources to
defend one of these bases. If the attacker attacks the defended bases, it gets
a utility of −1, while the military gets 2. On the other hand, when the attack
is succesful, the military does not receive anything, but the attacker gets the
following rewards based on the base it attacked T1 → 3, T2 → 7, T3 → 1 and
T4 → 5. (a) Formalize this as a Normal-Form Game. (b) Let us assume that
when the attacker attacks base, the alarm is triggered. If attacked base is
near the protected one, the military may dispatch striking team, which has
50% chance to interrupt the attack. For base Ti, the nearby bases are Ti−1

and Ti+1. Bases T1 and T4 are also close to each other. (c) Find all pure Nash
Equilibria in those games.

Exercise 6.
The two-player normal-form game with the payoff matrix

Player 1

Player 2

V S R
U 1, 3 4, 2 −1, 2
C 1, 0 2,−2 0,−1
D 1, 2 −1, 1 3, 3

(a) Find all Pareto optimal outcomes. (b) Find all pure Nash equilibria.
(c) Find all dominated pure strategies and apply iterative removal of these
strategies.

Exercise 7.
Is there a game, that has at least one pure Nash Equilibrium, but during
the proces of iterative removal, it is removed? Either show that there cannot
exist such a game, or find an example

Exercise 8.
Alice and Bob play one round of a zero-sum game captured by the payoff
matrix of Alice:

Alice

Bob
e f g

a 6 0 −1
b 5 4 9
c 9 −3 −1
d −1 1 −1

Alice reveals publicly that she will be using strategy b. After making her
choice public she must stick to it. Can Bob take advantage of knowing the



normal-form games 9

strategic choice of Alice compared to the standard situation when Alice’s
strategic choice wouldn’t be known a priori?

Exercise 9.
Show that the following two-player zero-sum game doesn’t have an equi-
librium in pure strategies. The strategy space of each player is the set
X = {0, 1

10 , . . . , 9
10 , 1} and the payoff function of Player 1 is

u(s1, s2) =
1

1 + (s1 − s2)2 , s1, s2 ∈ X.
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solutions

Solution 5.
(a) We use the military as a row player and the attacker as a column player.
The first value corresponds to the utility of the defender, while the second
corresponds to the attacker’s utility. The utility matrix in the Normal-Form
Game is then

Military

Attacker
T1 T2 T3 T4

T1 2,−1 0, 7 0, 1 0, 5
T2 0, 3 2,−1 0, 1 0, 5
T3 0, 3 0, 7 2,−1 0, 5
T4 0, 3 0, 7 0, 1 2,−1

(b) In the changed game, when the attacker attacks defended base, the result
is still the same. But when the base is nearby the protected base, the utility
changes in the following way.

u1(Ti, Ti+1) =
1
2

u1(Ti+1, Ti+1) +
1
2
· 2

u2(Ti, Ti+1) =
1
2

u2(Ti+1, Ti+1) +
1
2
· (−1)

The utility matrix in changed game is

Military

Attacker
T1 T2 T3 T4

T1 2,−1 1, 3 0, 1 1, 2
T2 1, 1 2,−1 1, 0 0, 5
T3 0, 3 1, 3 2,−1 1, 2
T4 1, 1 0, 7 1, 0 2,−1

(c) Neither game has any pure Nash Equilibrium.

Solution 6.
(a) Pareto optimal strategy is such a strategy profile in which neither player
can improve its utility without decreasing the utility of any other player.
Strategy. For example (U, V) is not Pareto optimal strategy, because when
choosing strategy (D, R), the row player improves its utility from 1 to 3,
while columns player utility remains unchanged. The only Pareto optimal
strategies are (D, R) and (U, S) with utilities

u1(D, R) = 3 u2(D, R) = 3

u1(U, S) = 4 u2(U, S) = 2

(b) Nash Equilibrium is a strategy profile where neither player can improve
its utility by changing its strategy. For example (U, S) is not a Nash Equi-
librium, because column player may choose action V and its utility would
improve from 2 to 3. Nash equilibria are (D, R), (U, V), (C, V).
(c) Strategy si of a player dominates different strategy if, regardless of the
opponent’s strategy, the utility of si is always greater than that of sj. Simi-
larly, for weak domination, the utility of si is always greater or equal than
the utility of sj, and it is strictly greater for at least one opponent’s strategy.
Pure strategy V strictly dominates S (also R weakly dominates S).
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Player 1

Player 2

V R
U 1, 3 −1, 2
C 1, 0 0,−1
D 1, 2 3, 3

After removing S, both U and C are weakly dominated by D.

Player 1

Player 2

V R
D 1, 2 3, 3

Finally now R strictly dominates V. This leaves only strategy profile (D, R),
which is also a Nash equilibrium.

Solution 7.
In order to remove a strategy in iterative removal, it has to be dominated.
Let us start by checking if it may happen that the Nash Equilibrium can be
strongly dominated.
Let us start by reiterating the definition of strong dominance.
Strategy s′i is strictly dominated by si if following condition holds

ui(si, s−i) > ui(s′i, s−i) ∀s−i ∈ S−i

Now let us reiterate the definition of Nash Equilibrium.
Strategy profile s∗ is a Nash Equilibrium if following condition holds

ui(s∗i , s∗−i) ≥ ui(si, s∗−i) ∀i ∈ N ∀si ∈ Si

Now let us suppose that there exist Nash Equilibrium s∗ in which player i
plays strategy s∗i that is strongly dominated by si. This means that for other
players strategy s∗−i following holds

ui(si, s∗−i) > ui(s∗i , s∗−i)

This is in direct contradiction with the definition of a Nash Equilibrium,
therefore if the iterative removal removes only strongly dominated strategies,
it cannot remove Nash Equilibrium.
Now let us focus on weak domination.
Strategy s′i is is weakly dominated by strategy si if following condition holds

ui(si, s−i) ≥ ui(s′i, s−i) ∀s−i ∈ S−i

and for at least a single strategy s−i following holds

ui(si, s−i) > ui(s′i, s−i)

Now let us suppose that there exist Nash Equilibrium s∗ in which player i
plays strategy s∗i that is weakly dominated by si and for single opponents
strategy s′−i following hold

ui(si, s′−i) > ui(s∗i , s′−i)

However, since it does not have to hold that s′−i = s∗−i, then it does not
immidiately violate the Nash Equilibrium condition. But it may help us
with finding the counterexample, because now we know that it can only
hold in a case where s′−i ̸= s∗−i
One such a game is
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Player 1

Player 2

d e
a 0, 1 1, 0
b −1, 0 1, 2
c 1, 0 0, 1

Solution 8.
First, note that the analyzed game has a unique pure strategy equilibrium
(b, f ) and the value of game is equal to 4:

Alice

Bob
e f g

a 6 0 −1
b 5 4 9
c 9 −3 −1
d −1 1 −1

Knowing that the choice of Alice is b, her equilibrium strategy, Bob plays
strategy f since this is his best response strategy. However, note that reveal-
ing publicly the equilibrium strategy doesn’t help the opposite player in any
zero-sum game. Indeed, if Bob doesn’t know the strategy of Alice, he would
play the strategy that guarantees him the minimal loss for every possible
strategic choice of Alice, which is precisely the minmax strategy f .

Solution 9.
It suffices to show that the function u has no saddle point. This is equivalent
to the fact that the minmax value v of Player 2 is strictly greater than maxmin
value v of Player 1. Specifically, these values are

v = max
s1∈X

f (s1),

v = min
s2∈X

f (s2),

where f and f are the functions defined by

f (s1) = min
s2∈X

u(s1, s2),

f (s2) = max
s1∈X

u(s1, s2),

for all s1, s2 ∈ X. It is easy to check that

f (s1) =


1

1+(s1−1)2 0 ≤ s1 ≤ 1
2 ,

1
1+s2

1

1
2 < s1 ≤ 1,

for all s1 ∈ X,

and
f (s2) = 1, s2 ∈ X.

Hence v1 = f ( 1
2 ) = 4

5 < v1 = 1, so u has no saddle point. Thus, the game
has no equilibrium in pure strategies. However, note that it must have at
least one equilibrium in mixed strategies by von Neumann’s theorem.
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3 solving normal-form games

Exercise 10.
Alice and Bob play Rock–Paper–Scissors, but Bob’s fingers hurt preventing
him from signalling “Scissors”. Model this scenario as a zero-sum game and
find its equilibrium.

Exercise 11.
We present the game called Battle of the Sexes. Its name is derived from the
situation where a couple (Alice and Bob) is trying to plan what to do on
Saturday. The alternatives are going to a concert (C) or watching a foot-
ball match (F). Bob prefers football and Alice prefers the concert, but both
prefer being together to being alone, even if that means agreeing to the less-
preferred recreational activity.

Alice

Bob
C F

C 2, 1 0, 0
F 0, 0 1, 2

Find equilibrium strategies of this game.

Exercise 12.
The two-player zero-sum game with the payoff matrix for the first player

Player 1

Player 2

0 1
0 1 −1
1 −1 1

is called Matching Pennies. In this game, each player chooses one bit (or a
side of the coin), 0 or 1, in the following way: each player inserts into an
envelope a slip of paper on which his choice is written. The envelopes are
sealed and submitted to a referee. If both players have selected the same
bit, Player 2 pays one dollar to Player 1. If they have selected opposite bits,
Player 1 pays one euro to Player 2. Find an equilibrium of this game.

Exercise 13.
Consider a two-person zero-sum game with the payoff matrix

A =

[
a b
c d

]
, a, b, c, d ∈ R .

Find equilibrium strategies of the row and column player.
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solutions

Solution 10.
This is a matrix game which can be described by the payoff matrix for Alice:

A =

 0 −1
1 0
−1 1

 .

Since this is a two-person zero-sum game, its solution can be recovered by
two dual linear programming problems. For Alice we solve the problem
with variables x0 and x = (x1, x2, x3)⊺:

Maximize x0

subject to A⊺x − 1x0 ≥ 0,
3

∑
i=1

xi = 1,

x ≥ 0.

The problem for Bob has variables y0 and y = (y1, y2)⊺:

Minimize y0

subject to Ay − 1y0 ≤ 0,
2

∑
i=1

yi = 1,

y ≥ 0.

Equivalently, we can write:

Maximize x0

subject to x2 − x3 − x0 ≥ 0,

− x1 + x3 − x0 ≥ 0,

x1 + x2 + x3 = 1,

x1, x2, x3 ≥ 0,

and
Minimize y0

subject to − y2 − y0 ≤ 0,

y1 − y0 ≤ 0,

− y1 + y2 − y0 ≤ 0,

y1 + y2 = 1,

y1, y2 ≥ 0.

The solutions of those two problems are

x∗ = (0, 1
3 , 2

3 )
⊺ and y∗ = ( 1

3 , 2
3 )

⊺.

The value of game is equal to the common value in the optima, x∗0 = y∗0 = 1
3 .
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Solution 11.
It is easy to verify that both strategy profiles (C, C) and (F, F) are equilib-
ria in pure strategies. We will show that the game has a mixed strategy
equilibrium, too.

Let x ∈ [0, 1] and y ∈ [0, 1] be the probabilities of playing C for Alice and
Bob, respectively. Since each player has only two pure strategies, the set
of all mixed strategies can be viewed as the unit interval [0, 1]. Thus, the
expected utility of Alice is UA(x, y) = 2xy + (1 − x)(1 − y) and the expected
utility of Bob is UB(x, y) = xy + 2(1 − x)(1 − y), for all x, y ∈ [0, 1].

Now, we compute the best responses of both players. For Alice this is the
mapping defined by

βA(y) = arg max
x∈[0,1]

UA(x, y), y ∈ [0, 1],

and analogously for Bob. We get

βA(y) =


0 0 ≤ y < 1

3 ,

[0, 1] y = 1
3 ,

1 1
3 < y ≤ 1,

βB(x) =


0 0 ≤ x < 2

3 ,

[0, 1] x = 2
3 ,

1 2
3 < x ≤ 1.

0 1

1

y

βA

0 1

1

x

βB

We know that (x∗, y∗) ∈ [0, 1]2 would correspond to an equilibrium in mixed
strategies if, and only if,

x∗ ∈ βA(y∗) and y∗ ∈ βB(x∗). (10)

0 1

1

y

x

β1 a β2

The geometric interpretation of the condition (10) is that (x∗, y∗) ∈ [0, 1]2 is
the point of the common intersection of the graphs of βA a βB. Therefore we
obtain a mixed strategy equilibrium in which Alice plays the mixed strategy
( 2

3 , 1
3 ) and Bob uses the mixed strategy ( 1

3 , 2
3 ).
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Solution 12.
Matching Pennies is a two-player zero-sum game, so we can formulate the
equilibrium problem as a linear programming problem, analogously to Ex-
ercise 10. However, we will take a different approach and find the solution
in a more elementary way.

First, it can be easily checked that the game has no solution in pure strate-
gies. Let x ∈ [0, 1] and y ∈ [0, 1] denote the probabilities of selecting zero bit
for Player 1 and 2, respectively. The expected utility of Player 1 is then the
function given by U(x, y) = 4xy − 2x − 2y + 1, for every x, y ∈ [0, 1]. For any
choice x ∈ [0, 1] of Player 1, Player 2 will select the most harmful strategy
for Player 1. This implies that Player 1 gets in this worst case scenario

ℓ(x) := min
y∈[0,1]

U(x, y) =


2x − 1 0 ≤ x < 1

2 ,

0 x = 1
2 ,

1 − 2x 1
2 < x ≤ 1,

x ∈ [0, 1].

Player 1 can secure the maxmin value

max
x∈[0,1]

ℓ(x) (11)

which is equal to the minmax value of Player 2 by von Neumann’s theorem.
The equilibrium strategy of Player 1 is then any solution to the optimization
problem (11). The only such solution is x∗ = 1

2 . Repeating this analysis for
Player 2 and the minmax value, we arrive at the same solution y∗ = 1

2 for
Player 2. In conclusion, the only equilibrium strategy for each player is to
randomize uniformly between the two choices.

Solution 13.
Let x = (x, 1 − x)⊺ a y = (x, 1 − y)⊺ be the vectors of mixed strategies for
the row and column player, respectively, where x, y ∈ [0, 1]. Note that each
such vector is fully determined by its first coordinate since every player has
only two strategies. The expected payoff of the row player is then given by
the function U : [0, 1]2 → R such that

U(x, y) = x⊺Ay = (a + d − b − c)xy + (b − d)x + (c − d)y + d.

By von Neumann’s minimax theorem, an equilibrium mixed strategy profile
exists, and it necessarily corresponds to the saddle point (x∗, y∗) of U. By
elementary analysis, we know that (x∗, y∗) must satisfy the condition

∂U
∂x

(x∗, y∗) =
∂U
∂y

(x∗, y∗) = 0,

which reads as

(a + d − b − c)y + b − d = (a + d − b − c)x + c − d = 0.

Assume that a + d − b − c ̸= 0. Then the only solution is

x∗ = (x∗, 1 − x∗)⊺ = 1
a+d−b−c (d − c, a − b)⊺,

y∗ = (y∗, 1 − y∗)⊺ = 1
a+d−b−c (d − b, a − c)⊺.
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Since the Hessian of U [
0 a + d − b − c

a + d − b − c 0

]
is indefinite, (x∗, y∗) is indeed the saddle point.

Now, let a + d − b − c = 0. The function U becomes

U(x, y) = (b − d)x + (c − d)y + d.

First, suppose b ≥ d and c ≥ d. Since a = b + c − d we obtain a ≥ c and
a ≥ b. For example, the matrix A can be

A =

[
10 4
5 1

]
.

This matrix has a saddle point in the first row and the second column. Thus,
the game will have an equilibrium in pure strategies. We can proceed analo-
gously in the three remaining cases: b ≥ d and c < d, b < d and c ≥ d, b < d
and c < d.
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4 tractable classes of games

Exercise 14.
Three inmates, Aaron, Bob, and Carl, are trying to escape prison. They
know there are 5 possible ways to escape. Either they may escape through
the infirmary or from the prison courtyard. In the infirmary, the prisoners
may escape by sneaking into the van that is bringing the resources (V) or
climbing down from the windows (W). Out of the courtyard, the inmates
can either escape through the old warehouse (O), climb over the fence (F),
or risk their luck and run through the main gate (G). Denise is guarding
the infirmary. However, Denise can only guard the van or the windows, not
both. Similarly, Elijah is guarding the courtyard and can only guard a single
escape option simultaneously. On the other hand, each inmate can risk any
route out. All of them may use the same route but do not have to. Formulate
this as a constant-sum polymatrix game.
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solutions

Solution 14.
The underlying graph of this game is a complete bipartite graph, where one
set is made out of inmates and the second out of the guards. This means that
each inmate and each guard play a two-player normal-form game against
each other. This means there are a total of 6 games being played.

1. Aaron against Denise GAD

2. Bob against Denise GBD

3. Carl against Denise GCD

4. Aaron against Elijah GAE

5. Bob against Elijah GBE

6. Carl against Elijah GCE

A

B

C

D

E

GAD

GAE

GBD

GBE

GCD GCE

Now let us focus on some single game between prisoner p and guard g. If
the guard guards the escape route that p chose, then p receives reward 0,
and the guard receives reward 1. If p chooses an escape route that is not
guarded by g, but the guard can guard it, then the inmate receives reward 1,
and the guard receives 0. If the guard cannot guard the escape route of the
prisoner, then neither player receives any reward.

These games are all similar, so let us show only a single one for GAD.

Aaron

Denise
V W

V 0, 1 1, 0
W 1, 0 0, 1
O 0, 0 0, 0
F 0, 0 0, 0
G 0, 0 0, 0

Now, let us check that this is a constant-sum game. Guard receives reward
1 for each caught inmate, and prisoner receives reward 1 if it manages to
escape. This means that the sum of rewards is the number of caught and
escaped prisoners. This is always the same as the number of prisoners in the
game, in our case 3.
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5 extensive form games

Exercise 15.
Consider following Extensive Form Game

X1

y1 y2 y3

Y1 Y2 Y3 Y4 Y5 Y6

I1

i1 i2

I2 I3 I4

4 3 −1 1 5 −5 0 2 3 4 −5 2

A
B

C

a b a b c d

D E D E F G F G H I H I

Transform this game into a normal-form

Exercise 16.
Formulate the following game of a small poker as an EFG

• There is an ante of $1

• Deck is composed of these card J, J, Q, Q all with same color

• Each player receives a card at the beginning

• Player 1 either folds or bets $2

• Player 2 either calls or folds

• Player with the higher card wins

Exercise 17.
Consider the following two-player zero-sum game. Player 1 has the oppen-
ing move, in which he chooses action in the set A, B. A lottery is then
conducted with either α or β selected, where α occurs with probability 25%.
Finally, Player 2 chooses either a or b. If the outcome of the lottery was α,
Player 1 receives reward 1 if both players selected the same action (either
A, a or B, b). Otherwise Player 2 receives reward 1. If the outcome of the
lottery was β, Player 2 receives reward 3 if both players selected the same
action, otherwise Player 1 receives reward 3. Draw a game tree for a perfect
information version of this game. Then visualize infosets for each of the
following situations
(a) Player 2 knows the action taken by Player 1, but does not know the out-
come of the lottery.
(b) Player 2 knows the outcome of the lottery, but does not know the action
taken by Player 1.
(c) Player 2 knows the outome of the lottery only if Player 1 has selected A.
(d) Player 2 knows the action taken by Player 1 only if the outcome of the
lottery is α.
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(e) Player 2 does not know both the outcome of the lottery and action chosen
by the Player 1.

⋆ Exercise 18.
Consider following map of Counter-Strike map Dust 2. There are 2 players,
Terrorist (T) and Counter Terrorist (CT). The goal of the T is either to kill the
CT or plant a bomb, which explodes after some time. Goal of the CT is to
either kill the T and if the bomb was planted, the other goal is to defuse the
bomb.

Figure 3: Counter-Strike map Dust 2

This map has 2 bomb sites A and B. Site B has two camping sites U and D,
while A has camping sites L and R. The game then have following rules

• CT picks which site to defend at the beginning.

• T observes with probability psee the CT, if the CT goes to the site B. If
the CT is observed, then the T has psn probability that it will kill the
CT.

• If T observed that CT goes to B, then it goes to the site A, otherwise it
makes choice between A and B.

• When CT arrives at a site it camps at locations L or R on A or U or D
on B

• If both CT and T picks the same site they engage in combat, in which
one of them dies. If T knows which location CT picked it always wins
the combat otherwise the CT is killed with probability pc

• If T picked undefended site it freely plants a bomb, which informs CT
that the bomb has been planted

• When CT is informed that bomb has been planted it runs to the other
site and kills T with probability pst and then he tries to defuse a bomb,
otherwise he is killed.

• If CT ran from R to the B or from U to the A, he cannot defuse a bomb
in time even when he kills the T. If CT ran from L to the B or from D
to the A and kills the T, it defuses the bomb in time.
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• T always gets reward 1 if it kills the CT. If CT kills T before he plants
the bomb, then he gets reward of 1. If the bomb has been planted and
CT kills T and is able to defuse the bomb it again gets reward of 1, but
when the bomb explodes he gets reward of − 1

2
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solutions

Solution 15.
When transforming a game from extensive-form into the normal-form, each
pure action for player must take into account what the player would play in
each infoset. Therefore the pure actions in normal-form game are a Cartesian
product across infoset actions.

ANFG
j =×

Ii∈I
Aj(Ii)

We will name the pure actions in NFG by concatenating the names of all
actions, which create this action. For example first player actions, which is
composed out of actions A, D, F, H will be called ADFH.
Pure actions of the player 1 are ADFH, ADFI, ADGH, ADGI, AEFH, AEFI,
AEGH, AEGI, BDFH, BDFI, BDGH, BDGI, BEFH, BEFI, BEGH, BEGI, CDFH,
CDFI, CDGH, CDGI, CEFH, CEFI, CEGH, CEGI.
Pure action of the player 2 are ac, ad, bc, bd. The utility matrix is then

P1

P2

ac ad bc bd
ADFH 4 4 −1 −1
ADFI 4 4 −1 −1

ADGH 4 4 −1 −1
ADGI 4 4 −1 −1
AEFH 3 3 1 1
AEFI 3 3 1 1

AEGH 3 3 1 1
AEGI 3 3 1 1

BDFH 5 5 0 0
BDFI 5 5 0 0

BDGH −5 −5 2 2
BDGI −5 −5 2 2
BEFH 5 5 0 0
BEFI 5 5 0 0

BEGH −5 −5 2 2
BEGI −5 −5 2 2

CDFH 3 −5 3 −5
CDFI 4 2 4 2

CDGH 3 −5 3 −5
CDGI 4 2 4 2
CEFH 3 −5 3 −5
CEFI 4 2 4 2

CEGH 3 −5 3 −5
CEGI 4 2 4 2

Solution 16.
The game starts with dealing a card. We can either create 2 chance nodes
(one for each card), or just a single one, with 4 possible outcomes. We will
show the second variant.
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IJ IQ

iJ

iQ

−1 1 0 −1 1 −3 −1 1 3 −1 1 0

J J
JQ QJ

QQ

B1

B1

B2

B2

F1

f1 b1

F1

f2 b2

F2

f1 b1

F1

f2 b2

Solution 17.
The game tree consists of three levels. On first the Player 1 chooses it’s
action, on second, the chance node representing lottery occurs and on the
last level the Player 2 chooses it’s action. Note that each chance node and
each decision node of Player 2 have different actions.

X1

y1 y2 y3 y4

1 −1 −3 3 −1 1 3 −3

A B

α1 β1 α2 β2

a1 b1 a2 b2 a3 b3 a4 b4

(a) Player 2 knows the action played by Player 1. Therefore, neither y1 or y2

cannot be in the same infoset as any of y3 and y4. But since it does not know
outcome of the lottery, then y1, y2 has to be in the same infoset. Similarly
y3, y4 has to be in the same infoset. Notice the action names of Player 2. In
the same infoset all the actions have to be the same for a player.

X1

y1 y2 y3 y4

I1

i1 i2

1 −1 −3 3 −1 1 3 −3

A B

α1 β1 α2 β2

a1 b1 a1 b1 a2 b2 a2 b2
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(b) By applying similair approach as in (a) we see that y1 and y3 are in the
same infoset and y2, y4 are in the same infoset.

X1

y1

y2

y3

y4

I1

i1

i2

1 −1 −3 3 −1 1 3 −3

A B

α1

β1

α2

β2

a1 b1

a2 b2

a1 b1

a2 b2

(c) Player 2 knows the outcome of the lottery if Player 1 has selected A.
Therefore it always knows the action of Player 1, meaning that neither y1 or
y2 cannot be in the same infoset as both y3 and y4. Furthermore y1 and y2

cannot be in the infoset, since Player 1 played A, so the outcome of lottery is
known.

X1

y1 y2 y3 y4

I1

i1 i2 i3

1 −1 −3 3 −1 1 3 −3

A B

α1 β1 α2 β2

a1 b1 a2 b2 a3 b3 a3 b3

(d) By applying the same reasoning as in (c) we know that y1 and y3 are in
separate infosets, while y2 and y4 are in the same infoset.

X1

y1

y2

y3

y4

I1

i1 i3

i2

1 −1 −3 3 −1 1 3 −3

A B

α1

β1

α2

β2

a1 b1

a2 b2

a3 b3

a2 b2
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(e) Since Player 2 does not know anything about actions taken by Player 1 or
outcome of the lottery, then all of his decision nodes are in the same infoset.

X1

y1 y2 y3 y4

I1

i1

1 −1 −3 3 −1 1 3 −3

A B

α1 β1 α2 β2

a1 b1 a1 b1 a1 b1 a1 b1

⋆ Solution 18.
This game may be modelled in a multiple ways and we will use just one of
them. In this representation we consider the game as a zero-sum and we
show only the reward to the T. Left subtree under chance node p is taken
with probability 1 − p and the right with p.

psee

pc pc pst pst

psn

pst pst pc pc

I1

i1

I2 I3

−1 1 −1 1 1 −1 1 1
2 1 1

2 1 −1−1 1 −1 1

1 1

1

A

B

a b

L R L R U D

a b

U D U D
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6 solving imperfect information extensive-form
games

Exercise 19.
Consider the following game. Write down a sequence-form linear program
for both players

X1

y1 y2 y3

Y1 Y2 Y3

I1

i1 i2

I2 I3

4 3 −1 1 0 2

−5 3 4

A
B

C

a b a b c d

D E D E F G

Exercise 20.
Consider the following game. Write down a sequence-form linear program
for both players

X1 X2

y1 y2

Y1

I1 I2

I3

i11

3 −2 2

5 0

2

1
3

2
3

A B C D

a b a b

E F

Exercise 21.
Consider the small poker from Exercise 16. Wirte down a sequence-form
linear program for both players in this game.
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solutions

Solution 19.
First let us remind the Sequence Form LP for the maximizing player

max
r1,v

v(root)

s.t. r1(∅) = 1

r1(σ1) ≥ 0 ∀σ1 ∈ Σ1

∑
a∈A(I1)

r1(σ1a) = r1(σ1) ∀I1 ∈ I1, σ1 = seq1(I1)

∑
I′∈I2 :σ2a=seq2(I′)

v(I′) + ∑
σ1∈Σ1

u(σ1, σ2a)r1(σ1) ≥ v(I) ∀I ∈ I2, σ2 = seq2(I)∀a ∈ A(I)

where Σ1 contains all posible sequences, which player 1 can take, r1 variables
are called reach and it is probability of playing given sequence σ1 ∈ Σ1. v
variable represents expected value for given information set I2 ∈ I2. seqi(I)
gives sequence of actions, which player i has to take to reach infoset I ∈ Ii,
because of perfect recall, then only single sequence leads into any infoset.
σia represents sequence σi prolonged by single action a.
Let us first find all possible sequences and info sets for both player

Σ1 Σ2

∅ ∅
A a
B b
C c

AD d
AE
BF
BG

I1 I2

I1 i1
I2 i2
I3

Now we are ready to state the linear programs for both players

max
r1,v

v(i1) + v(i2)

s.t. r1(∅) = 1

r1(A) + r1(B) + r1(C) = r1(∅)

r1(AD) + r1(AE) = r1(A)

r1(BF) + r1(BG) = r1(B)

r1(AD)u(AD, a) + r1(AE)u(AE, a) + r1(BF)u(BF, a) + r1(BG)u(BG, a) ≥ v(i1)

r1(AD)u(AD, b) + r1(AE)u(AE, b) + r1(B)u(B, b) ≥ v(i1)

r1(C)u(C, c) ≥ v(i2)

r1(C)u(C, d) ≥ v(i2)

r1(A) ≥ 0 r1(B) ≥ 0 r1(C) ≥ 0

r1(AD) ≥ 0 r1(AE) ≥ 0

r1(BF) ≥ 0 r1(BG) ≥ 0
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Note that the objective function is not v(root), but rather sum of 2 infosets.
The variable v symbolizes expected value for given infoset, therefore the
expectation in root is sum across all infosets directly under root node.

min
r2,v

v(I1)

s.t. r2(∅) = 1

r2(a) + r2(b) = r2(∅)

r2(c) + r2(d) = r2(∅)

v(I2) ≤ v(I1)

v(I3) + r2(b)u(B, b) ≤ v(I1)

r2(c)u(C, c) + r2(d)u(C, d) ≤ v(I1)

r2(a)u(AD, a) + r2(b)u(AD, a) ≤ v(I2)

r2(a)u(AE, a) + r2(b)u(AE, a) ≤ v(I2)

r2(a)u(BF, a) ≤ v(I3)

r2(a)u(BG, a) ≤ v(I3)

r2(a) ≥ 0 r2(b) ≥ 0 r2(c) ≥ 0 r2(d) ≥ 0

Linear program for second player uses minimization instead of maximizia-
tion and also it uses opposite inequality for expected value conditions. This
is due to zero-sum property, where we used negative of each reward, dif-
ferent approach would be to use negative values explicitly and then the
objective and conditions be the same.
The result of this LP is that r1(C) = 1, r2(b) = 1, r2(c) = 1, the other
reach probabilities are 0. Expected values are v(I1) = 3, v(I2) = 3, v(I3) =

2, v(i1) = 0, v(i2) = 3. Therefore the value of the game is 3.

Solution 20.
We will first find all possible sequences and info sets for both players

Σ1 Σ2

∅ ∅
A a
B b
C
D

CE
CF

I1 I2

I1 i1
I2

I3
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Sequence-form linear programs for both players are

max
r1,v

v(i1) + 1
3 r(A)u(A, ∅) + 2

3 r(D)u(D, ∅)

s.t. r1(∅) = 1

r1(A) + r1(B) = r1(∅)

r1(C) + r1(D) = r1(∅)

r1(CE) + r1(CF) = r1(C)
1
3 r1(B)u(B, a) + 2

3 r1(C)u(C, a) ≥ v(i1)
1
3 r1(B)u(B, b) + 2

3 r1(CE)u(CE, b) + 2
3 r1(CF)u(CF, b) ≥ v(i1)

r1(A) ≥ 0 r1(B) ≥ 0 r1(C) ≥ 0 r1(D) ≥ 0

r1(CE) ≥ 0 r1(CF) ≥ 0

min
r2,v

v(I1) + v(I2)

s.t. r2(∅) = 1

r2(a) + r2(b) = r2(∅)
1
3 u(A) ≤ v(I1)
1
3 r2(a)u(B, a) + 1

3 r2(b)u(B, b) ≤ v(I1)
2
3 r2(a)u(C, a) + v(I3) ≤ v(I2)
2
3 u(D) ≤ v(I2)
2
3 r2(b)u(BE, b) ≤ v(I3)
2
3 r2(b)u(BF, b) ≤ v(I3)

r1(a) ≥ 0 r1(b) ≥ 0

Note that in both Linear Programs we propagate the chance node as close
to the values as possible. The resulting reaches from these LPs are r1(B) =
1, R1(C) = 1, r1(CE) = 1, r2(b) = 1, other reaches are 0. Expected values are
v(i1) = 7

3 , v(I1) = 1, v(I2) =
4
3 , v(I3) = 0. Value of the game is therefore 7

3

Solution 21.
We will first find all possible sequences and info sets for both players

Σ1 Σ2

∅ ∅
F1 f1

B1 b1

F2 f2

B2 b2

I1 I2

IJ iJ

IQ iQ
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max
r1,v

v(i1) + v(i2) + 1
6 r(F1)u(F1, J J) + 2

6 r(F1)u(F1, JQ) + 2
6 r(F2)u(F2, QJ) + 1

6 r(F2)u(F2, QQ)

s.t. r1(∅) = 1

r1(F1) + r1(B1) = r1(∅)

r1(F2) + r1(B2) = r1(∅)
1
6 r1(B1)u(B1, f1, J J)) + 2

6 r1(B2)u(B2, f1, QJ) ≥ v(i1)
1
6 r1(B1)u(B1, b1, J J)) + 2

6 r1(B2)u(B2, b1, QJ) ≥ v(i1)
2
6 r1(B1)u(B1, f2, JQ)) + 1

6 r1(B2)u(B2, f2, QQ) ≥ v(i2)
2
6 r1(B1)u(B1, b2, JQ)) + 1

6 r1(B2)u(B2, b2, QQ) ≥ v(i2)

r1(F1) ≥ 0 r1(B1) ≥ 0 r1(F2) ≥ 0 r1(B2) ≥ 0

min
r2,v

v(I1) + v(I2)

s.t. r2(∅) = 1

r2( f1) + r2(b1) = r2(∅)

r2( f2) + r2(b2) = r2(∅)
1
6 u(F1, J J) + 2

6 u(F1, JQ) ≤ v(I1)
1
6 r( f1)u(B1, f1, J J) + 1

6 r(b1)u(B1, b1, J J) + 2
6 r( f2)u(B1, f2, JQ)

+ 2
6 r(b2)u(B1, b2, JQ) ≤ v(I1)

2
6 u(F2, QJ) + 1

6 u(F2, QQ) ≤ v(I2)
2
6 r( f1)u(B2, f1, QJ) + 2

6 r(b1)u(B2, b1, QJ) + 1
6 r( f2)u(B2, f2, QQ)

+ 1
6 r(b2)u(B2, b2, QQ) ≤ v(I2)

r2( f1) ≥ 0 r2(b1) ≥ 0 r2( f2) ≥ 0 r2(b2) ≥ 0

The resulting reaches from these LPs are r1(F1) = 1, r1(B2) = 1, r2( f1) =

1, r2(b2) = 1, other reaches are 0. This means that player should always
bet if he gets Queen and always folds if he gets Jack. Expected values are
v(I1) = − 1

2 , v(I2) =
1
3 , v(i1) = 1

3 , v(i2) = 0. The value of the game is − 1
6 .
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7 alternatives to nash equilibrium

Exercise 22.
The concept of correlated equilibrium is a generalization of Nash equilib-
rium in the following sense. Let G = (N, (Si)i∈N , (ui)i∈N) be an n-player
strategic game, (p1, . . . , pn) be its Nash equilibrium in mixed strategies, and
define

p(s1, . . . , sn) := ∏
i∈N

pi(si), (s1, . . . , sn) ∈ S = S1 × · · · × Sn.

Then p is a correlated equilibrium of G. Prove this claim.

Exercise 23.
Imagine a situation, where 2 drivers are driving the same road in the oppo-
site direction. First driver is in the correct lane, while the second one is in
the opposite. If they both continue in the same lane, they will crash into each
other, which results in the reward 0, similarly if they both change the lane.
However, if only one of them switches lane they will miss each other, which
is beneficial for both of them and they will receive reward 3. Moreover, if the
driver is in the wrong lane, it will be penalized with reward -1, regardless of
the outcome of the game. Model this as a normal-form game and find all of
it’s correlated equilibria.

Exercise 24.
Show that there exists a unique correlated equilibrium in the following game

Player 1

Player 2

L R
T 1, 0 c, 1 + d
B 0, 1 1 + a, b

, in which a, b, c, d ∈ (− 1
4 , 1

4 ). Find this correlated equilibrium. What is the
limit of the correlated equilibrium payoff as a, b, c, d approach 0?

Exercise 25.
Consider following utility matrix two-person normal-form game, where row
player is a leader, which publicly announces its strategy

L

F
a b c d e

T 2, 4 6, 4 9, 0 1, 2 7, 4
B 8, 4 0, 4 3, 6 1, 5 0, 0

Find Strong and Weak Stackelberg Equilibrium
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solutions

Solution 22.
Clearly, p is a probability distribution on the joint strategy space S by the
definition. We know that p is a correlated equilibrium if the inequality

∑
s−i∈S−i

p(si, s−i) · ui(si, s−i) ≥ ∑
s−i∈S−i

p(si, s−i) · ui(s′i, s−i). (12)

holds for each player i and all strategies si, s′i ∈ Si. Since (p1, . . . , pn) is a
Nash equilibrium, it follows that for each player i ∈ N and all strategies
si, s′i ∈ Si such that pi(si) > 0,

Ui(si, p−i) ≥ Ui(s′i, p−i), (13)

where Ui denotes the expected utility (payoff) of player i. Since

pi(si) ·Ui(si, p−i) = ∑
s−i∈S−i

pi(si) ·∏
j ̸=i

pj(sj) ·ui(si, s−i) = ∑
s−i∈S−i

p(si, s−i) ·ui(si, s−i)

and

pi(si) ·Ui(s′i, p−i) = ∑
s−i∈S−i

pi(si) ·∏
j ̸=i

pj(sj) ·ui(s′i, s−i) = ∑
s−i∈S−i

p(si, s−i) ·ui(s′i, s−i),

from (13) we get (12). In case that pi(si) = 0, necessarily p(si, s−i) = 0 for
every s−i ∈ S−i, so that boths sides of (12) are zero.

Solution 23.
The normal-form representation of this game is

Driver 1

Driver 2

Stay Change
Stay 0,−1 3, 3

Change 2, 2 −1, 0

Now let us denote all of the 4 possible joint strategies followingly

α = p(Stay, Stay) (14)

β = p(Stay, Change) (15)

γ = p(Change, Stay) (16)

δ = p(Change, Change) (17)

The inequalities for the Correlated equilibrium are then

0α + 3β ≥ 2α − 1β (18)

2γ − 1δ ≥ 0γ + 3δ (19)

−1α + 2γ ≥ 3α + 0γ (20)

3β + 0δ ≥ −1β + 2δ (21)

This may be simplified to

2β ≥ α (22)

γ ≥ 2δ (23)

γ ≥ 2α (24)

2β ≥ δ (25)
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Some interesting correlated equilibria are that if α = δ = 0, then any mixed
strategy with support β, γ is a Correlated equilibrium. If δ = 0, then α ∈
[0, 2

7 ], similarly if α = 0, then δ ∈ [0, 2
7 ]

Solution 24.
Let us start by writing all the correlated equilibrium conditions

p(T, L) + (c − 1 − a)p(T, R) ≥ 0

−p(B, L) + (1 + a − c)p(B, R) ≥ 0

(−1 − d)p(T, L) + (1 − b)p(B, L) ≥ 0

(1 + d)p(T, R) + (b − 1)p(B, R) ≥ 0

Now let us introduce following substitions

X = 1 + a − c

Y = 1 − b

Z = 1 + d

If we rewrite the conditions with following substitions we will end up with

p(T, L) ≥ Xp(T, R)

Xp(B, R) ≥ p(B, L)

Yp(B, L) ≥ Zp(T, L)

Zp(T, R) ≥ Yp(B, R)

Since we know that each of a, b, c, d ∈ (− 1
4 , 1

4 ), we can find the domain for
our substitions

X ∈ (
1
2

,
3
2
)

Y ∈ (
3
4

,
5
4
)

Z ∈ (
3
4

,
5
4
)

This means that we can multiply or divide with them without changing the
inequality. Now let us use this to get following inequalities. First we use the
first inequality, than the fourth, then second and lastly the third

p(T, L) ≥ Xp(T, R) ≥ XY
Z

p(B, R) ≥ XY
XZ

p(B, L) ≥ XYZ
XYZ

p(T, L) = p(T, L)

We see that in order for this to hold, all of the inequalities have to be equali-
ties. This means that we can express each probability by p(T, L)

p(T, R) =
p(T, L)

X

p(B, R) =
Zp(T, L)

XY

p(B, L) =
Zp(T, L)

Y
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Now we can find the actual prbabilities from the condition that all of these
has to sum up to 1

p(T, L) +
p(T, L)

X
+

Zp(T, L)
XY

+
Zp(T, L)

Y
= 1

(XY + Y + Z + ZX)p(T, L) = XY

p(T, L) =
XY

(XY + Y + Z + ZX)

Out of this we can get all other probabilities

p(T, R) =
Y

XY + Y + Z + ZX

p(B, R) =
Z

XY + Y + Z + ZX

p(B, L) =
ZX

XY + Y + Z + ZX

The value of this equilibrium is than

u1 = p(T, L) + cp(T, R) + (1 + a)p(B, R) =
XY + cY + (1 + a)Z
XY + Y + Z + ZX

u2 = p(B, L) + (1 + d)p(T, R) + bp(B, R) =
ZX + (1 + d)Y + bZ
XY + Y + Z + ZX

The only thing that remains is expressing X, Y, Z with the original variables.
In order to compute what happens when all of the original variables a, b, c, d
goes to 0, we will keep the substitions. In such a case

X = 1

Y = 1

Z = 1

In this case the resulting values are

u1 = 0.5

u2 = 0.5

, which is the same as Nash equilibrium. If looking closely, one would notice
that this game is symmetrical and is similair to the Matching Pennies from
exercise 12.

Solution 25.
Since the leader has only two actions, we may visualize the expected utility
based on the policy announced by the leader.
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When computing the Stackelberg equilibrium, the follower always takes a
best response to the leader’s policy. Best responses are as follows

BR(sL) =


a, b, e sL(B) = 0,

a, b 0 < sL(B) < 2
3 ,

a, b, c, d sL(b) = 2
3 ,

c 2
3 < sL(b) ≤ 1,

0 0.67 1

1

2

3

4

5

6

a, b

e

d
c

sL(B)

u F

Now we know, based on the policy of the leader, what are the follower best
responses. Now we have to figure out which best response the follower
would take.
Let us define functions β(sL) and β(sL), which, based on the leader’s pol-
icy, give pure action that the follower should play to maximize or minimize
the leader’s utility. Similarly we define function β(sL) and β(sL) that corre-
sponds to the expected utility for leader when it fixes its policy.

β(sL) = arg max
aF∈BR(sL)

uL(sL, aF) β(sL) = arg min
aF∈BR(sL)

uL(sL, aF)

The policies are then

β(sL) =


e sL(B) = 0,

b 0 < sL(B) ≤ 1
3 ,

a 1
3 < sL(B) ≤ 2

3 ,

c 2
3 < sL(B) ≤ 1,

β(sL) =


a 0 ≤ sL(B) < 1

3 ,

b 1
3 ≤ sL(B) < 2

3 ,

d sL(B) = 2
3 ,

c 2
3 < sL(B) ≤ 1,
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Strong Stackelberg equilibrium from the left plot is strategy sL(B) = 0 be-
cause this maximizes the leader’s utility. Weak Stackelberg equilibrium does
not exist, because if we take ε > 0 and policy sL(B) = 2

3 + ε. When lowering
the value of ε, we always get better utility, and when ε = 0, the value of
action c is 5, which is the best we can get. But when ε = 0, the utility drops
to 1, because optimal action changes to d. Therefore we cannot set such ε,
which would maximize the value, so the Weak Stackelberg equilibrium does
not exist.
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Part II.
Incomplete-Information Games
8 bayesian games

Exercise 26.
In the following game, player 1 has types 1t and 1b, and player 2 has types 2l
and 2r. Players decide on the following behavior strategies: 1t plays the mix
(1/3, 2/3), 1b plays (1/2, 1/2), 2l plays (1/4, 3/4) and 2r plays (1/2, 1/2).
Nature chooses the types 1t and 2r for the players. The payoff matrices and
their joint probabilities are given below.

1/3

L R
T 1, 3 0, 3

B 3, 0 1, 2

1/4

L R
T 2, 3 1, 1

B 0, 2 2, 0

1/4

L R
T 0, 3 3, 2

B 3, 2 1, 0

1/6

L R
T 2, 3 1, 0

B 1, 3 2, 2

Find the interim expected utility of player 1.

Exercise 27.
In the following game of rock-paper-scissors you might be playing a simple
opponent who is unaware that he can play strategies other than paper.

a1

2/3

R P S
R 0 −1 1

P 1 0 −1

S −1 1 0

a1

1/3

P
R −1

P 0

S 1

(26)

Which of the following strategy profiles are Bayesian equilibria?

1. Player 1: R; Player 2 normal: P, simple: P

2. Player 1: P; Player 2 normal: S, simple: P

3. Player 1: S; Player 2 normal: R, simple: P

4. None of the above
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Exercise 28.
Consider a the following Bayesian simultaneous-move game involving two
armies fighting for an island. Army 1 can be of type weak, or strong, both
with equal probability. Army 2 is always weak. Both players can chose to
attack or not to attack. Neither army can observe the other’s action. Army 2

does not know which type of army it is fighting against.
The following matrices capture the payoffs. Army 1 is the row player.

aw
1

50%

A N
A −3,−3 5, 2

N 0, 5 0, 0

as
1

50%

A N
A 3,−3 5, 0

N 0, 5 0, 0

Which of the following strategy profiles are Bayesian equilibria?

1. Army 1: (Weak: Not attack, Strong: Attack);
Army 2: Attack

2. Army 1: (Weak: Not attack, Strong: Attack);
Army 2: Not attack

3. Army 1: (Weak: Attack, Strong: Attack);
Army 2: Attack

4. There is no Bayesian equilibrium.

Exercise 29.
Consider a car trade between a single seller and a single buyer. The car in
question is in good condition with probability 70%; however only the seller
knows its condition. The market price is P and is non-negotiable. Both
players can either accept or decline the trade.

A car in good condition is worth 12 to the buyer, and 11 to the seller; a
poor condition car is worth 6 to the buyer, but is worthless to the seller.
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sellergood

70%

T N
T P, 12 − P 11, 0

N 11, 0 11, 0

sellerpoor

30%

T N
T P, 6 − P 0, 0

N 0, 0 0, 0

1. Convert the game to strategic form and find the pure bayesian equilib-
ria.

2. Compute the interim expected utility for both players in case of a good-
quality car with a market price P = 10 and the strategies (TT, T).

Exercise 30.
Player 2 has two types: left with probability 2/3 and right with probability
1/3. Find the Bayesian Nash equilibrium of the game.

a1

2/3

L R
U 1, 0 0, 2

D 0, 3 3, 0
a1

1/3

L M R
U 0, 2 2, 1 0, 3

D 2, 0 1, 3 0, 2

(27)

Exercise 31.
Consider the following Bayesian simultaneous-move game with players a1

and a2. Player a2 has two types al
2 with probability 1/3 and ar

2 with prob.
2/3.

a1

1/3

L R
U 1, 2 1, 3

D 2, 2 0, 1
a1

2/3

L R
U 3, 2 1, 1

D 2, 1 1, 0

(28)

1. Convert the game to strategic form.

2. Find a pure Bayesian equilibrium of the game.
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Exercise 32.
Consider the following Bayesian simultaneous-move game with players a1

and a2. Player a1 has two types at
1 and ab

1, and two actions U and D. Player
a2 has only one type and actions L and R. Both types of player a1 are equally
likely.

al
1

50%

L R
U 1, 0 0, 2

D 0, 3 1, 0

ar
1

50%

L R
U 0, 2 1, 1

D 1, 0 0, 2

1. Draw Game 32 in extensive form.

2. Calculate Bayesian equilibria of the game.
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solutions

Solution 26.
First, we compute the ex-post utilities in the top two games. We get 1/12+ 0+
2/4 + 2/4 = 13/12 and 1/3 + 1/6 + 0 + 1/3 = 5/6. Since player 1 only knows his
type, we need to weigh these values by his belief of actually ending up in one
of these state games. The probability of the top left game is 1/3 × 12/7 = 12/21

and the top right is 1/4 × 12/7 = 12/28. The interim utility is then 41/42.

Solution 27.
None of the profiles are equilibria. Actual equilibria are mixed e.g. player
1 uniformly mixes between R, P and S, while player 2 mixes uniformly be-
tween RP and SP.

Solution 28.
Army 1 knows the payoff matrix; thus, it suffices to compare the payoff to
the other strategy. Army 2 has to compare the expected payoff, instead.

The first strategy is a Bayesian equilibrium. Other answers are not correct.

Solution 29.
1. While we do not know the exact value of P, strategies where seller

does not sell the bad leave 0.3P on the table. Comparing the remaining
strategies, we find that always trading is worth it if P is at least 11 – in
which case the buyer declines everything above 10.2. If P is below 11,
trading only the bad car is the weakly dominant strategy; furthermore,
if P is below 6, the buyer will accept.

buyer

T N
TT P, 0.7(12 − P) + 0.3(6 − P) 7.7, 0
TN 0.7P, 0.7(12 − P) 7.7, 0
NT 0.7 ∗ 11 + 0.3P, 0.3(6 − P) 7.7, 0
NN 0.7 ∗ 11, 0 7.7, 0

2. The seller knows the situation exactly and his utility is simply the mar-
ket price. The buyer only has the prior probabilities to rely on and
his expected utility is 0.7(12 − 10) + 0.3(6 − 10) or 0.2. If we compare
the interim utilities of the cases when both players would unilaterally
deviate, we would find that the seller would wish to switch, while the
buyer would not.

Solution 30.
There is a interim-dominated strategy for the right type of player 2. Trying
pure strategies for player 1 yields nothing, which means that player 2 plays
a strategy such that player 1 is indifferent between up and down. Equating
the utilities gets us the following picture where x is between 5/8 and 6/8.
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As x must be mixed, the utilities from both actions for the left type of
player 2 must be equal just like in the case of player 1, which happens when
the action up is played with probability 3/5. If we check the best response
of the right type, we notice he always plays right. Therefore the only equi-
librium is for player 1 to play up with prob 3/5, for the left type of player 2

to play left with prob 6/8, and the right type always plays the right action.

Solution 31.

a1

a2

LL LR RL RR
U 7, 6 3, 4 7, 7 3, 5

D 6, 4 4, 2 4, 3 2, 1

(29)

Equilibrium is (U, RL). You can find it by looking for best responses, or
eliminating dominated strategies.

Solution 32.

Figure 4: Game 32 in extensive form.

equilibria : Start by checking pure strategies for player a2. Guessing R
does not work; Player ar

1’s best response would be T, while al
1’s would be

B. Thus, R is not a best response as it has a lower expected payoff than L.
Playing L does not work for the same reason.
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Player a2 must, therefore, play a mixed strategy, and hence his expected
payoff for both actions must be equal. Let x be the probability that al

1 plays
T, and y that ar

1 plays T.

3(1 − x)
2

+
2y
2

=
3x
2

+
1y
2

+
2(1 − y)

2

which simplifies to

x =
1 + 3y

5
.

Notice, that valid x’s that satisfy the equation lie within 1
5 ≤ x ≤ 4

5 .

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

x

y

Now we can find the fully mixed strategy for player a2. Let q be the
probability that a2 plays L. Given that player al

1 plays a mixed strategy, we
equate the payoffs for T and B, as we did before. We find that q = 1

2 .
All strategies satisfying x = 1+3y

5 and q = 1
2 are Bayesian equilibria.
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9 simple auctions

Exercise 33.
basic definitions and terminology Suppose there are two bidders a1

and a2 with private values drawn i.i.d. from a uniform distribution on [0, 1].
For each of the examples, find the equilibrium, then answer the following:

• bi: What are the bids of each player i ∈ {a1, a2}.

• xi(b), pi(b): What is the allocation to each bidder and what do they
pay for it?

• ui(b): What is the utility of each player.

• R: What revenue does the auction generate.

1. The private values of the bidders are v1 = 0.3 and v2 = 0.9. Suppose
the auction is run as a second-price sealed-bid auction.

2. The private values remain v1 = 0.3 and v2 = 0.9, but the auction is
now run as a first-price auction.

3. The private values are v1 = 0.6 and v2 = 0.9, and the auction is run as
a second-price auction.

4. As before, the private values are v1 = 0.6 and v2 = 0.9, but the auction
is now run as a first-price auction.

Exercise 34.
Suppose there are two bidders a1 and a2, whose independent private values
are either 1 or 3 with equal probability. Assume ties are broken randomly.

1. Find the expected revenue using second-price auction rules.

2. ⋆ What would be the revenue of a first-price auction?

3. Now suppose there were three bidders instead of two. How does the
revenue change?

Exercise 35.
Suppose there are two bidders in a first price auction, whose IPVs are drawn
from an exponential distribution F(x) = xa. Find the optimal bidding strat-
egy.

hint: Assume that bidder i wins with a private value of v, let Y be the
random variable denoting the highest value among the other players with
a distribution function FY. For a symmetric IPV (drawn from a continuous
distribution) auction, the optimal bidding strategy βi of a player i is

βi(v) = E[Y|Y < v] = v −
∫ v

0

FY(x)
FY(v)

dx
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Exercise 36.
sanity check for hw3: Suppose there are two bidders in a first price
auction, whose IPVs are drawn from an normal distribution with a mean of
10 and a standard deviation of 1. ⋆ Find the optimal bid of a player with a
private value of 11.

Exercise 37.
Consider a second-price auction involving two bidders a1 and a2 whose pri-
vate values are either 0 or 1 with equal probability. Bidder a1 sometimes
makes a mistake about his value for the object: when his value is 1, he
knows it is 1; however, when his value is 0, half of the time, he believes it is
actually 1 by mistake. Assume that ties are broken randomly and that bids
must be integers. Draw the full game tree of this situation.

Exercise 38.
Using the tree from the last exercise, calculate a1’s expected utility from
bidding 0 compared to bidding 1, when a1 thinks his value is 1. What is a1’s
optimal strategy?
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solutions

Solution 33.
• Second price auctions are DSIC — bidding your private value is a

(weakly) dominant strategy. In a first-price auction, bidders have to
take into account their beliefs of other players values: for our setting
of two bidders with private values drawn i.i.d. from a uniform distri-
bution on [0, 1] the Bayesian Nash equilibrium strategy is to bid a half
of your value (we will see why later).

• Allocations denote which bidder wins which items, or even how much
of each. In single item auctions, allocations are just 0-1 vectors with
at most one 1. In both the first-price and the second-price auctions,
the highest bidder wins the item. In a first-price auction, the highest
bidder pays his own bid, in a second-price auction the highest bidder
pays the second highest bid.

• While more complex models exist, we will consider only the quasilin-
ear utility ui(b) = vixi(b)− pi(b). Your utility is "what you get minus
what you pay for it."

• The reveune is the sum of the payments.

1. b = (0.3, 0.9); x = (0, 1); p = (0, 0.3); u1(b) = 0, u2(b) = 0.6; and
R = 0.3.

2. b = (0.15, 0.45); x = (0, 1); p = (0, 0.45); u1(b) = 0, u2(b) = 0.45; and
R = 0.45.

3. b = (0.6, 0.9); x = (0, 1); p = (0, 0.6); u1(b) = 0, u2(b) = 0.3; and
R = 0.6.

4. b = (0.3, 0.45); x = (0, 1); p = (0, 0.45); u1(b) = 0, u2(b) = 0.45; and
R = 0.45.

Solution 34.
The simplest thing to do here is to enumerate all of the realizations:

v1 v2 R
25 % 1 1 1

25 % 1 3 1

25 % 3 1 1

25 % 3 3 3

which add up to an expected revenue of 1.5. The same method can be used
to show that the three-player auction yields a revenue of 2.

In the case of the first-price auction, the task is not so simple. There
is no formula to calculate the equilibrium strategies like there was for the
continuous distribution. In fact, due to the discreteness, equilibria will be in
mixed strategies – add asymmetry and there may be no equilibrium at all!
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Figure 5: Mixed strategy equilibrium of the first price auction.

Solution 35.
Due to the revenue equivalence theorem, we know that the optimal strategy
in a first-price auction is to bid the same amount as you would expect to
pay as a winner in a second-price auction. Thus, we need to compute the
distribution function the highest IPV below v as that is what the winner
would pay.

In general, the CDF of the k’th order statistic of a continuous distribution
is

Fk(x) =
n

∑
j=k

(
n
j

)
(F(x))j (1 − F(x))n−j

We can equivalently say that all other bids must be smaller than the bid v,
the probability of which is just F(v)n−1. In our case FY(v) = F(v)(2− 1) = xa.
The optimal strategy is then

β(v) = v − 1
va

∫ v

0
xadx = v − 1

va

[
xa+1

a + 1

]v

0
= v − va+1

(a + 1)va = v − v
a + 1

Solution 36.
We can use the same approach as in the last exercise; although, due to the
complexity of the normal distribution, it will be easier to use a computer.
The optimal bid is approximately 9.7124.

Solution 37.
One possible solution is drawn in Figure 6.

Solution 38.
Start by assuming that a2 plays rationally and bids truthfully (if you drew
branches for other possibilities at all), then for each of a1’s bidding strategies,
find the possible outcomes and what their probabilities are.

The expected payoff of bidding 0 is 0.125, compared to a payoff of 0.1875
for bidding 1, when a1 thinks his value is 1. Bidding truthfully (with respect
to observed values) is still the optimal strategy.
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Figure 6: The game tree with expected payoffs instead of an explicit tie-breaking
round. There are multiple correct solutions.
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10 optimal auctions and vcg

Exercise 39.
Suppose you had a single good to sell to a single agent with a private valua-
tion which is drawn from an exponential distribution.

F(x) = 1 − e−x

f (x) = e−x

The agent knows her value and you must post a price that she can either
take or leave. This is a monopoly question that is equivalent to an optimal
auction design (setting a reserve price) with a single bidder. What price
should you set to maximize your profit?

Hint: calculate the agent’s virtual valuation.

Exercise 40.
Consider an optimal auction with two bidders A and B who have indepen-
dent private values, but where A’s valuation is drawn from uniform [0, 1]
while B’s valuation is drawn from uniform [0, 3]. If A’s valuation realized
valuation is 0.8 and B’s realized valuation is 1.6, who wins and what does
she pay?

Hint: Use Meyerson’s optimal auction and virtual valuations.

Exercise 41.
Suppose there are two items A and B to be sold in simultaneous English
auction in which you wish to participate. You have no use for the items
separately, but value winning both at $10. Describe the possible issues with
such an auction format.

Exercise 42.
Group of homeowners are deciding whether to rebuild their access road.
To make it fair, they will use VGC. According to the collected utilities, two
homeowners agree with the project and one does not.

Figure out the outcome and the payments under VCG rules.

build do not p
a1 20 0

a2 10 0

a3 0 25

Exercise 43.
What happens if two of the homeowners cooperate and try to cheat the
system by increasing their bids?

build do not p
a1 25 0

a2 15 0

a3 0 25
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Exercise 44.
What happens if an agent manages to submit multiple bids?

build do not p
a1 2 0

a1 2 0

a2 0 1

Exercise 45.
There are two items A and B to be sold using a VCG auction. The private
values of the participants a1 and a2 are listed in the table below. What should
be the allocation of items and the payments of the bidders?

vi
A B AB p

a1 10 5 15

a2 1 6 12

Exercise 46.
What should the bidders pay in the following VCG auction?

vi
A B AB p

a1 10 5 15

a2 1 10 12
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solutions

Solution 39.
We will solve this using virtual valuations and then derive the same answer
using calculus.

virtual valuations: The formula for virtual valuations is φ(v) = v −
1−F(V)

f (v) . For our exponential distribution we get

φ(v) = v − 1 − (1 − e−v)

e−v = v − 1.

Revenue is maximized at φ(R) = 0.

φ(R) = 0

R − 1 = 0

R = 1

calculus: start by writing the formula for the expected revenue of the
seller using a reserve price of R.

Ev[uR(v)] =
∫ ∞

0
uR(v) f (v)dv

As there is only a single bidder the utility only depends on whether he wins
or not.

uR(v) =

{
R v ≥ R

0 v < R

Adjust the interval of integration, and solve by substitution.

Ev[uR(v)] =
∫ ∞

R
R f (v)dv

= R
∫ ∞

R
e−vdv

= −R [eu]−∞
−R

= Re−R

Maximal expected revenue is located at an inflection point.

(Re−R)′ = 0

e−R − Re−R = 0

e−R(1 − R) = 0

R = 1

Using both methods, we found that the reserve price of one maximizes
the seller’s revenue.
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Solution 40.
The winner is the agent that with the highest virtual valuation, as long as his
value is above his reserve price. The winner’s payment is the lowest amount
he could have declared and still won.

Using the distributions of private values

fA(x) = 1 fB(x) = 1/3

FA(X) = x FB(x) = x/3

we can compute the virtual valuations

φA(v) = v − (1 − v) = 2v − 1

φB(v) = v − 1 − v/3

1/3
= 2v − 3

Plugging in the actual private values we get φA(0.8) = 0.6 and φB(1.6) = 0.2.
Agent A’s payment is the lowest value y that is both higher than A’s

reserve price
φA(y) ≥ 0

2y − 1 ≥ 0

y ≥ 1/2

and is still higher than the virtual valuations of other players φA(y) ≥
φB(1.6).

φA(y) ≥ φB(1.6)

2y − 1 ≥ 1/5

y ≥ 6/10

Agent A’s bid is higher than his reserve price, so he wins the auction and
pays 0.6 for the item.

Solution 41.
Participating in such auctions may result in negative values for the bidders.
Outcomes of such auctions may be sub-optimal from the point of both effi-
ciency and revenue at the same time.

Solution 42.
build do not p

a1 20 0 15

a2 10 0 5

a3 0 25 0

Solution 43.
build do not p

a1 25 0 10

a2 15 0 0

a3 0 25 0
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Solution 44.
build do not p

a1 2 0 0

a2 2 0 0

a3 0 1 0

Solution 45.
vi

A B AB p
a1 10 5 15 6

a2 1 6 12 5

Solution 46.
vi

A B AB p
a1 10 5 15 6

a2 1 10 12 5
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Part III.
Coalitional Games
11 the core

Notation. We will often adopt the standard practice of omitting curly brack-
ets and commas in applications of coalitional function if the clarity is not
impaired. For example, we may write v(237) in place of v({2, 3, 7}), when
this improves readability. We also use the following notation for the sum of
coordinates of vector x = (x1, . . . , xn):

x(A) := ∑
i∈A

xi, A ⊆ {1, . . . , n}. (30)

Exercise 47.
Let v be a superadditive game: v(A ∪ B) ≥ v(A) + v(B) for every disjoint
pair of coalitions A and B. Show that this implies the following condition:

v(N) ≥ v(A1) + · · ·+ v(Ak),

for every coalitional structure {A1, . . . , Ak}.

Exercise 48.
Five friends want to sell gin & tonic cocktails at a party. Three of them have
a bottle of gin apiece and each of the other two friends has five bottles of
tonic. A price of cocktails made from one gin bottle and five tonic bottles is
2000 CZK. Model this situation as a coalitional game, decide if it is superad-
ditive, and compute its core.

Exercise 49.
A coalitional game v : P(N) → R over the player set N = {1, 2, 3} is

v(A) =



0 A = ∅,

1 A = {1}, {2},

2 A = {3},

4 |A| = 2,

5 A = N.

Is v superadditive? What is the core of v?

Exercise 50.
Let N = {1, 2, 3}. Describe the core of the game

v(A) =


3 if A = N, 13

1 if A = 12, 23

0 if A = 1, 2, 3, ∅

and decide if v is superadditive.
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Exercise 51.
Describe the core of a game v over the player set N = {1, 2, 3}, where

v(A) =

{
0 A = ∅,

|A| − 1 A ̸= ∅.

Exercise 52.
Alice has a left glove. Bob and Cyril have one right glove each. The number
of pairs of gloves collected by a coalition is its worth. Define the resulting
coalitional game, decide if it is superadditive or supermodular, and describe
its core.

Exercise 53.
A simple game is a coalitional game v : P(N) → {0, 1} that is monotone and
v(N) = 1. We call a player i ∈ N in a simple game v a veto player, if
v(A \ i) = 0 holds for each coalition A ⊆ N. Show that the following is true
for any simple game v:

(a) Player i is veto in game v if, and only if, v(N \ i) = 0.

(b) There is a veto player in game v if, and only if, C(v) ̸= ∅.

(c) Let W ̸= ∅ be the set of veto players. Then the core of v is

C(v) = {x ∈ Rn
+ | x(W) = 1 and xi = 0 for all i /∈ W}.

Exercise 54.
Argue that the following game v is superadditive and its core is empty:

v(A) =

{
0 |A| ≤ 1

1 |A| ≥ 2
A ⊆ {1, 2, 3}.

Exercise 55.
Minimum spanning tree game. The costs of connecting the cities denoted as
1, 2, and 3 to the supplier of energy 0 are depicted in Figure 7. The minimum
cost spanning tree game is defined as a coalitional game c over player set
N = {1, 2, 3}, in which the worth of each coalition A ⊆ N is the cost c(A)

associated with the minimum spanning tree over vertices A ∪ {0}. Describe
the cost game c and show that the core of c is nonempty.

⋆ Exercise 56.
Coalitional game v is supermodular if, for all A, B ⊆ N the inequality

v(A) + v(B) ≤ v(A ∪ B) + v(A ∩ B)

holds. Prove that the following assertions are equivalent.

(a) v is supermodular.

(b) For all A, B ⊆ N with A ⊆ B and every C ⊆ N \ B,

v(A ∪ C)− v(A) ≤ v(B ∪ C)− v(B).
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Figure 7: Graph from Exercise 55

(c) For all A, B ⊆ N with A ⊆ B and every i ∈ N \ B,

v(A ∪ i)− v(A) ≤ v(B ∪ i)− v(B).

(d) xπ ∈ C(v), for every π ∈ Π, where xπ
i := v(Aπ

i ∪ i) − v(Aπ
i ) and

Aπ
i := {j ∈ N | π(j) < π(i)}.

(e) The core of v is the convex hull of the marginal vectors in v, that is,

C(v) = conv{xπ | π ∈ Π}.

(f) Vertices of C(v) are precisely marginal vectors xπ.

Exercise 57.
One might think that non-superadditive games have empty cores. This is
not true, in general. For example, take the game v on the n-player set N =

{1, . . . , n}, where n > 2:

v(A) =

{
1 |A| < n,

n |A| = n.

Show that v is not superadditive and C(v) ̸= ∅.
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solutions

Solution 47.
Since coalitions A1, . . . , Ak are pairwise disjoint, we can apply superadditiv-
ity to A1 and A2 to obtain

v(A1) + v(A2) + v(A3) + · · ·+ v(Ak) ≤ v(A1 ∪ A2) + v(A3) + . . . v(Ak).

Proceeding analogously in the next k − 2 steps, we get

v(A1) + · · ·+ v(Ak) ≤ v(A1 ∪ · · · ∪ Ak) = v(N),

where the last equality follows from N = A1 ∪ · · · ∪ Ak.

Solution 48.
G = {1, 2, 3}, T = {4, 5}, N = G ∪ T

v(A) = 2000 · min {|A ∩ G|, |A ∩ T|}, A ⊆ N

It is easy to prove that v is superadditive. Let A ∩ B = ∅. We can neglect the
multiplicative constant 2000. Then we want to show that

v(A ∪ B) ≥ v(A) + v(B).

Using the definition of v, we get

min{|(A∪B)∩G|, |(A∪B)∩T|} ≥ min {|A∩G|, |A∩T|}+min {|B∩G|, |B∩T|},

which is the same as

min{|A ∩ G|+ |B ∩ G|︸ ︷︷ ︸
a1+b1

, |A ∩ T|+ |B ∩ T|︸ ︷︷ ︸
a2+b2

} ≥

min{|A ∩ G|︸ ︷︷ ︸
a1

, |A ∩ T|︸ ︷︷ ︸
a2

}+ min{|B ∩ G|︸ ︷︷ ︸
b1

, |B ∩ T|︸ ︷︷ ︸
b2

}.

This can be written as ai + bi ≥ aj + bk, where i, j, k are the indices of the
corresponding minimizers. The definition of minimum yields ai ≥ aj and
bi ≥ bk, from which the superadditive inequality follows.

The core contains a unique allocation,

C(v) = {(0, 0, 0, 2 000, 2 000)}.

We can again neglect the multiplicative constant 2000. From

x1 + x2 + x3 + x4 + x5 = 2

x1 + x2 + x4 + x5 ≥ 2

x1 + x3 + x4 + x5 ≥ 2

x2 + x3 + x4 + x5 ≥ 2

derive x4 + x5 = 2− x1 − x2 − x3, which implies together with nonnegativity
constraints that x1 = x2 = x3 = 0, and also that x4 ≥ 1 and x5 ≥ 1. Hence,
necessarily x4 = x5 = 1.
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Solution 49.
Game v is superadditive, if the inequality v(A ∪ B) ≥ v(A) + v(B) holds
for all A, B ⊆ N, A ∩ B = ∅. Since v(N) < v(12) + v(3), game v is not
superadditive. It is easy to see that C(v) is empty. Indeed, every allocation
x ∈ C(v) must satisfy the conditions x1 + x2 + x3 = 5, x1 + x2 ≥ 4, and x3 ≥ 2.
But adding the last two inequalities together yields 5 = x1 + x2 + x3 ≥ 6,
a contradiction.

Solution 50.
By the definition,

C(v) = {x ∈ R3
+ | x1 + x2 + x3 = 3, x1 + x2 ≥ 1, x1 + x3 ≥ 3, x2 + x3 ≥ 1}.

We will show that C(v) = conv {(1, 0, 2), (2, 0, 1)}. Since the coalition {1, 3}
accepts only total payoffs ≥ 3 and since x1 + x2 + x3 = 3, it is reasonable to
think that player 2’s payoff should be 0. Indeed, from x1 + x3 ≥ 3 and from
x1 + x3 = 3 − x2, we get 3 − x2 ≥ 3, which gives 0 ≥ x2, hence x2 = 0. Then

C(v) = {x ∈ R3 | x1 ≥ 1, x2 = 0, x3 ≥ 1, x1 + x3 = 3},

which is the line segment with vertices (1, 0, 2), (2, 0, 1). It can be checked
that this is a superadditive game. Observe that Player 2 cannot block the
formation of grand coalition, since he accepts payoff 0. However, if Player
2’s worth is changed to v({2}) = 1, then C(v) = ∅.

Solution 51.
Using the identity |A ∪ B| = |A|+ |B| − |A ∩ B| we can easily verify that v is
supermodular, that is, v(A ∪ B) + v(A ∩ B) ≥ v(A) + v(B). This implies that
its core C(v) coincides with the convex hull of its marginal vectors xπ, where
π is a permutation of N. For example, permutation π(1) = 3, π(2) = 1,
π(3) = 2 determine the order of players

2 3 1

together with the marginal vector xπ whose coordinates are

xπ
2 = v(2)− v(∅) = 0,

xπ
3 = v(23)− v(2) = 1,

xπ
1 = v(123)− v(23) = 1.

The remaining marginal vectors are computed analogously. This shows that
the core is a triangle with vertices (0, 1, 1), (1, 0, 1), and (1, 1, 0), which is
located in the plane given by the equation x1 + x2 + x3 = 2.

Solution 52.
The glove game over the player set N = {1, 2, 3} is

v(A) =

{
1 A = {1, 2}, {1, 3}, N,

0 otherwise.

The glove game v is monotone and superadditive, but not supermodular.
The core of v is

C(v) = {(1, 0, 0)}.



the core 60

Indeed, we can argue as follows. The inequalities x1 + x2 ≥ 1 and x1 + x3 ≥ 1
combined together give 2x1 + x2 + x3 ≥ 2. Since x2 + x3 = 1 − x1, the last
inequality says that x1 ≥ 1. Since x2 and x3 must be nonnegative, we get
x1 = 1. Thus, the only core allocation is (1, 0, 0).

Solution 53.
(a) The first implication is trivial. Assume that v(N \ i) = 0. Then mono-
tonicity gives v(A \ i) = 0 for every A ⊆ N.

(b) Let k ∈ N be a veto player in game v. We define an allocation vector
x ∈ Rn as follows:

xi =

{
1 i = k,

0 i ̸= k.

Since v is non-constant, v(N) = 1 = ∑i∈N xi = x(N). Choose A ⊆ N. If
k ∈ A, then x(A) = 1 ≥ v(A). If k /∈ A, then x(A) = 0 = v(A), since k is
veto. We have shown that x ∈ C(v).

Conversely, assume that v has no veto players. We want to conclude that
v has empty core. By way of contradiction, let x ∈ C(v). Then the condition
x(N) = 1 implies that there exists i ∈ N such that xi > 0, hence x(N \ i) =
1 − xi < 1. Since i is not veto, v(N \ i) = 1 > x(N \ i), which contradicts our
assumption x ∈ C(v).

(c) Let x ∈ Rn
+ be such that x(W) = 1 and xi = 0 for all i /∈ W. We want

to show that x ∈ C(v). Clearly, x(N) = x(W) = 1. If A ⊆ N is loosing, that
is, v(A) = 0, then x(A) ≥ 0. Let v(A) = 1. This implies that A ⊇ W, which
gives

x(A) ≥ x(W) = 1 = v(A).

Therefore, x ∈ C(v).
Conversely, let x ∈ C(v). Then xi ≥ 0 for all i ∈ N and x(N) = 1. We need

to show that xi = 0 for all i ∈ N \ W. Pick i ∈ N \ W. Player i is not veto
and, hence,

1 = x(N) ≥ x(N \ i) ≥ v(N \ i) = 1,

which implies x(N) = x(N \ i), so that xi = 0.

Solution 54.
The game v is in fact a simple majority game. It is easy to see that v is
superadditive. We show that C(v) = ∅. By contradiction, assume that
x ∈ C(v). Then x1 + x2 + x3 = 1 and x1 + x2 ≥ 1, x1 + x3 ≥ 1, x2 + x3 ≥ 1.
Combining the last three inequalities together gives

2 · (x1 + x2 + x3︸ ︷︷ ︸
1

) ≥ 3,

a contradiction. Hence, C(v) = ∅. The same conclusion follows immediately
from Exercise 53, since there are no veto players in the game.
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Solution 55.
We can easily compute

c(A) =



0 A = ∅,

20 A = 1,

30 A = 3,

50 A = 123,

40 otherwise.

The core of c is the set of allocations x ∈ R3
+ such that x1 + x2 + x3 = 50,

x1 ≤ 20, x2 ≤ 40, x3 ≤ 30, and

x1 + x2 ≤ 40, x1 + x3 ≤ 40, x2 + x3 ≤ 40.

We can easily see that the cost allocation vector x = (20, 20, 10) is in the core
of c, since it measures the costs of individual players with respect to the
minimum spanning tree over the full player set N.

⋆ Solution 56.
First, we prove (a) ⇒ (b). Let (a) be true. Choose A, B ⊆ N, where A ⊆ B
and C ⊆ N \ B. Then

v(A ∪ C) + v(B) ≤ v((A ∪ C) ∪ B︸ ︷︷ ︸
B∪C

) + v((A ∪ C) ∩ B︸ ︷︷ ︸
A

).

Implication (b) ⇒ (c) is trivial. We show that (c) ⇒ (a). Select A, B ⊆ N.
If A ⊆ B, then (a) is true. Therefore, assume that A ̸⊆ B and let P :=
A ∩ B, R := A \ B. The assumption implies R ̸= ∅ and we may write
R = {i1, . . . , ik}, where k = |R|. Since B ⊇ P and for any ℓ = 1, . . . , k − 1,

B ∪ {i1 . . . , iℓ} ⊇ P ∪ {i1 . . . , iℓ},

item (c) gives the following inequalities:

v(B ∪ i1)− v(B) ≥ v(P ∪ i1)− v(P)

v(B ∪ i1 . . . iℓ+1)− v(B ∪ i1 . . . iℓ) ≥ v(P ∪ i1 . . . iℓ+1)− v(P ∪ i1 . . . iℓ)

Summing all the inequalities, we get

v(B ∪ R︸ ︷︷ ︸
A∪B

)− v(B) ≥ v(P ∪ R︸ ︷︷ ︸
A

)− v(P),

which proves (a).
Further, we need to prove (a) ⇔ (d). We can use already proved equiva-

lences (a) ⇔ (b) ⇔ (c). We will show implication (c) ⇒ (d). Let (c) holds.
We want to show that xπ ∈ C(v) for any permutation π ∈ Π. We obtain

xπ(N) = ∑
i∈N

xπ
i = ∑

i∈N
(v(Aπ

i ∪ i)− v(Aπ
i )) = v(N)− v(∅) = v(N).

We show that xπ is coalitionally rational, that is, xπ(A) ≥ v(A), for every
nonempty coalition A ⊆ N. Let a := |A|. The players in A can be enu-
merated as follows: A = {i1, . . . , ia}, where π(i1) < · · · < π(ia). Write
Bk := {i1, . . . , ik} for each k = 1, . . . , a. Then

Bk = A ∩
(

Aπ
ik
∪ ik

)
.
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Define B0 := ∅. By assumption (c), this inequality is satisfied for all k =

1, . . . , a:
v(Bk)− v(Bk−1) ≤ v

(
Aπ

ik
∪ ik

)
− v

(
Aπ

ik

)
= xπ

ik
.

This implies

v(A) = v(Ba) =
a

∑
k=1

(v(Bk)− v(Bk−1)) ≤
a

∑
k=1

xπ
ik
= xπ(A),

which finishes the proof of (d).
In the next step we check that implication (d) ⇒ (a) is true. Let v be a

coalitional game fulfilling xπ ∈ C(v) for all π ∈ Π. Supermodular inequality
(a) holds trivially, when at least one of the sets A, B ⊆ N is empty. Therefore,
assume that A, B ̸= ∅. Put r := |A ∩ B|, q := |A ∪ B|, t := |B|, and write

A ∩ B = {i1, . . . , ir},

B \ A = {ir+1, . . . , it},

A \ B = {it+1, . . . , iq},

N \ (A ∪ B) = {iq+1, . . . , in}.

Define permutation π by π(ij) := j, for all j ∈ N. It follows from (d) that

v(A) ≤ xπ(A) = ∑
j∈N
ij∈A

xπ
ij
= ∑

j∈N
ij∈A

(
v(Aπ

ij
∪ ij)− v(Aπ

ij
)
)

.

The last sum can be split into two sums,
r

∑
j=1

(
v(i1 . . . ij)− v(i1 . . . ij−1)

)
+

q

∑
j=t+1

(
v(B ∪ it+1 . . . ij)− v(B ∪ it+1 . . . ij−1)

)
=

v(A ∩ B)− v(∅) + v(A ∪ B)− v(B),

which shows (a).
Clearly, item (e) implies (d) immediately. We show that implication (d) ⇒

(e) holds. From (d) we obtain the inclusion C(v) ⊇ conv{xπ | π ∈ Π}, by
convexity of the core. The converse inclusion C(v) ⊆ conv{xπ | π ∈ Π}
requires an involved proof, for which we refer the reader to [2, Theorem
5.18].

The proof is finished after we show the equivalence (e) ⇔ (f). The im-
plication (f) ⇒ (e) is a direct consequence of the characterization of convex
polytope C(v) as the convex hull of its vertices. Suppose that (e) holds. Then
every vertex of C(v) is necessarily a marginal vector xπ, for some π ∈ Π. It
remains to prove that every marginal vector is a vertex of C(v). Let π ∈ Π.
It follows from the definition of marginal vectors that

xπ(Aπ
i ) = v(Aπ

i ), i = 1, . . . , n.

This is a linear system whose matrix is triangular with nonzero elements on
the diagonal. Therefore, the matrix is nonsingular and xπ is a vertex of C(v).
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Solution 57.
The game v is not superadditive as v(12) < v(1) + v(2). It is easy to see that
(1, . . . , 1) is the only allocation in the core C(v).
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12 the shapley value

Exercise 58.
Prove that the Shapley value φS(v) of any supermodular game v is the center
of gravity of the core of v.

Exercise 59.
Let Γ be the set of all coalitional games over the player set N = {1, . . . , n}.
Consider a solution mapping ψ : Γ → Rn defined by

ψi(v) := v(1 . . . i)− v(1 . . . i − 1), i ∈ N.

Show that ψ is efficient, additive, and it has the null player property, but
fails symmetry.

⋆ Exercise 60.
Prove that the Shapley value φS is efficient, additive, it has the null player
property, and it is symmetric.

Exercise 61.
Consider the coalitional game v on the player set N = {1, 2, 3}, where

v(A) =


0 A = ∅, 1, 2, 3,

8 A = 12,

5 A = 13, 23,

10 A = N.

Show that the game is superadditive and not supermodular. Further, prove
that its core is nonempty and the Shapley value is not a core allocation.

Exercise 62.
Let G = (N, E) be an undirected weighted graph without self-loops, where
the vertex set N = {1, . . . , n} is identified with the set of players, elements of
E are {i, j} with i, j ∈ N and i ̸= j, and the weights are wi,j ∈ R for {i, j} ∈ E.
The induced subgraph game is the coalitional game

v(A) = ∑
i,j∈A
{i,j}∈E

wi,j.

Show that the Shapley value of a player is the half of total weight of the
edges to adjacent players.

Exercise 63.
Decide if the assertions below are true or false.

1. If the core is nonempty, it contains the Shapley value.

2. If marginal contributions of players i and j to every coalition are equal,
then their Shapley values coincide.

3. The core of every monotone coalitional game is nonempty.
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4. The Shapley value φS(v) = (φS
1(v), . . . , φS

n(v)) of every n-player coali-
tional game v is uniquely determined by the Shapley values of the first
n − 1 players (φS

1(v), . . . , φS
n−1(v)).

5. The Shapley value is individually rational, that is, φS
i (v) ≥ v(i) for every

game v and each player i.
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solutions

Solution 58.
Let N = {1, . . . , n} and v be a supermodular game over N. By supermodu-
larity and Exercise 56, the core of v is the convex hull of its marginal vectors,

C(v) = conv {xπ | π ∈ Π},

where Π is the set of all permutations of the player set N. Therefore, it
suffices to show that φS(v) can be written as φS(v) = ∑π∈Π aπ · xπ, where
aπ = 1

n! . But this is immediate, since an equivalent formula for the Shapley
value is

φS(v) = ∑
π∈Π

1
n!

· xπ.

Solution 59.
First, we check efficiency:

∑
i∈N

ψi(v) = ∑
i∈N

(v(1 . . . i)− v(1 . . . i − 1)) = v(N)− v(∅) = v(N).

Aditivity: For all v, w ∈ Γ we get

ψi(v + w) = (v + w)(1 . . . i)− (v + w)(1 . . . i − 1)

= v(1 . . . i)− v(1 . . . i − 1)

+ w(1 . . . i)− w(1 . . . i − 1)

= ψi(v) + ψi(w).

Null player property: Let i ∈ N be the null player. This means that

v(A ∪ i) = v(A)

for each coalition A ⊆ N. Then, putting A := {1, . . . , i − 1} yields ψi(v) = 0.
We show that ψ fails symmetry. Letting N = {1, 2, 3} we define a game

v(A) =

{
1 A = {2, 3}, N

0 otherwise,
A ⊆ N.

Then ψ(v) = (0, 0, 1). However, players 2 and 3 have the same contributions
to one-player coalition {1}, that is, v(12) = v(13). This implies that ψ fails
symmetry.

⋆ Solution 60.
The Shapley value of player i ∈ N is

φS
i (v) = ∑

π∈Π

1
n!

· xπ
i .

Efficiency:

∑
i∈N

φS
i (v) = ∑

i∈N
xπ

i = ∑
i∈N

(
v(Aπ

i ∪ i)− v(Aπ
i )

)
= v(N).
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Aditivity: Let u, v be coalitional games. By xu,π and xv,π we denote the cor-
responding marginal vectors in Rn. It can easily be checked that xu+v,π =

xu,π + xv,π. Then, for each player i ∈ N,

φS
i (u + v) = ∑

π∈Π

1
n!

· xu+v,π
i = ∑

π∈Π

1
n!

· (xu,π
i + xv,π

i ) =

∑
π∈Π

1
n!

· xu,π
i + ∑

π∈Π

1
n!

· xv,π
i = φS

i (u) + φS
i (v).

Null player property: If i is a null player, then necessarily xπ
i = 0 for any

π ∈ Π. Then φS
i (v) = 0.

Symmetry: Let i, j ∈ N be players such that

v(A ∪ i) = v(A ∪ j), for each coalition A ⊆ N \ ij. (31)

We want to show that φi(v) = φj(v). We will show that for symmetric
players i and j, we can transform the formula for φi(v) = 1

n! ∑π∈Π xπ
i to φj(v)

just by reordering the summation terms. Define a bijective (permutation)
function ξ, which swaps the order of elements i and j.

π = [

Aπ
i︷︸︸︷

. . . i . . . j . . . ] or π = [

Aπ
i︷ ︸︸ ︷

. . . j . . . i . . . ]

ξ(π) = [ . . . j . . . i . . . ] ξ(π) = [ . . . i . . . j . . . ]

Let π ∈ Π and τ = ξ(π), then:

1. If i precedes j in π, then xπ
i = xτ

j since Aπ
i = Aτ

j .

2. If j precedes i, then Aπ
i = Aτ

j \ i ∪ j. So we have

v(Aπ
i ∪ i) = v(Aτ

j \ i ∪ j ∪ i) = v(Aτ
j ∪ j).

If we replace i in Aπ
i by j we get Aτ

j . Thus, by the symmetry of i and j
we also have v(Aπ

i ) = v(Aτ
j ).

Putting it together, for every π we get

xπ
i = v(Aπ

i ∪ i)− v(Aπ
i ) = v(Aτ

j ∪ j)− v(Aτ
j ) = xτ

j .

Solution 61.
The game is obviously superadditive since v(ij) ≥ v(i) + v(j) for all i ̸= j
and v(123) ≥ v(ij) + v(k) for all pairwise different i, j, k. However, it is not
supermodular:

v(12) + v(23) > v(123) + v(2).

A core allocation is, for example, (4, 4, 2). The Shapley value is 1
6 (23, 23, 14),

but it doesn’t belong to the core:

v(12) = 8 > 1
6 (23 + 23) = 7 2

3 .
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Solution 62.
For each edge {i, j} ∈ E we define a coalitional game vi,j(A) = wi,j whenever
i, j ∈ A and vi,j(A) = 0 otherwise. Then

∑
{i,j}∈E

vi,j(A) = ∑
i,j∈A
{i,j}∈E

wi,j = v(A).

The Shapley value of player i ∈ N is

φS
i (v) = ∑

{i,j}∈E
φS

i (vi,j) =
1
2 ∑
{i,j}∈E

wi,j,

where the last equality follows from efficiency and symmetry of the Shapley
value in game vi,j.

Solution 63.
1. False. For example, the Shapley value of the glove game (Exercise 52)

is not an element of the core.

2. True. This is exactly the symmetry of Shapley value. Or, it follows
immediately from the formula for Shapley value.

3. False. For example, take a two-player game

v(1) = v(2) = v(12) = 1.

4. True. By efficiency of the Shapley value,

φS
n(v) = v(N)−

n−1

∑
i=1

φS
i (v).

5. False. Consider a 2-player game v that is not superadditive. Such
a game satisfies the inequality v(1, 2) < v(1) + v(2), which implies
φS

1(v) < v(1).
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13 weighted voting games

Exercise 64.
A company has 3 shareholders whose shares are distributed in the following
way. The first has 50 % shares and the remaining two have 25 % shares each.
The three shareholders vote by using a weighted majority of votes. Define
the resulting coalitional game. Compute the Shapley-Shubik index using the
random order approach and then calculate the normalized Banzhaf index.

Exercise 65.
Weighted majority game. Four members of a committee decide on a proposi-
tion by weighted majority. The voting weights are 2, 1, 1, 1, and the decision
is approved when the weighted sum of votes is ≥ 3. Describe this situation
as a coalitional game, calculate the Shapley-Shubik index, and discuss how
the Shapley-Shubik indices correspond to the individual weights. What is
the normalized Banzhaf index?

Exercise 66.
Let v be a weighted majority game with a weight vector w and quota q.
Show that if wi ≤ wj for players i, j ∈ N, then φS

i (v) ≤ φS
j (v). Is the same

conclusion true also for the Banzhaf index?

Exercise 67.
Find an example of a weighted voting game with 3 players in which players
1 and 2 have different weights, but their Shapley values are equal.

Exercise 68.
The paradox of new members. Find an example of a simple game with a null
player whose Shapley value becomes positive after the player set is enlarged.

Exercise 69.
The paradox of size I. Consider an n-player simple game v with weights (2, 1, . . . , 1)
and quota q = n + 1. What happens with the voting power of player 1 if this
player splits into two players with equal weights 1?

Exercise 70.
The paradox of size II. Consider an n-player simple game v with weights
(2, . . . , 2) and quota q = 2n − 1. Now, what happens with the voting power
of player 1 if this player splits into two players with equal weights 1?

Exercise 71.
Vector weighted voting games. A company has CEO, CFO, CTO, and the sepa-
rate Board containing director, the deputy of director, and 8 other members.
A decision is approved if

1. CEO+CFO or CEO+CTO agrees with it and

2. the director and deputy vote for it together with at least 4 other Board
members.

Model this situation as a vector weighted voting game. Which players are
vetoers?
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solutions

Solution 64.
The player set is N = {1, 2, 3}. The coalitional game is

v(A) =

{
1 A = N, {1, 2}, {1, 3},

0 otherwise,
A ⊆ N.

For the calculation of the Shapley-Shubik index of i we enumerate all the
permutations such that i makes the preceding coalition winning:

1 2 3 1 3 2 2 1 3 23 1 3 1 2 32 1

Then
φS

1(v) =
4
6 , φS

2(v) = φS
3(v) =

1
6 .

In order to compute the normalized Banzhaf index β(v), we enumerate the
number of swings for each player:

1 2 1 3 1 23

Hence, s1(v) = 3, s2(v) = s3(v) = 1. These numbers are divided by the total
number of swings:

β1(v) =
3
5

, β1(v) = β1(v) =
1
5

.

Solution 65.
This situation is captured by a weighted majority game v defined as follows.
Let w1 = 2, w2 = w3 = w4 = 1, and q = 3. Define

v(A) =

1 ∑
i∈A

wi ≥ q,

0 otherwise,
for all A ⊆ {1, 2, 3, 4}.

The Shapley-Shubik index of player i is

φS
i (v) = ∑

A⊆N\{i}
i pivotal to A

1
n(n−1

|A| )
.

To compute φS(v) =
(

φS
1(v), φS

2(v), φS
3(v), φS

4(v)
)
, realize that

φS
1(v) + φS

2(v) + φS
3(v) + φS

4(v) = 1

by efficiency. Moreover, players 2, 3, and 4 are symmetric in this game, since
their individual contribution to each coalition is equal. By symmetry of the
Shapley value, this means that

φS
2(v) = φS

3(v) = φS
4(v).

Hence, we need to compute only one Shapley-Shubik index, say φS
2(v). Clearly,

player 2 is pivotal to coalitions {1} and {3, 4}. Then

φS
2(v) =

1
12

+
1
12

=
1
6

,



weighted voting games 71

and
φS

1(v) = 1 − 3 · φS
2(v) =

1
2

.

We obtain the Shapley-Shubik index φS(v) = ( 1
2 , 1

6 , 1
6 , 1

6 ), which is different
from the vector of relative weights ( 2

5 , 1
5 , 1

5 , 1
5 ). In conclusion, the Shapley-

Shubik index of player 1 indicates that the voting power of player 1 is slightly
higher than the relative voting weight 2

5 . The normalized Banzhaf index is in
this case the same as the Shapley-Shubik index, since the swings for players
are s1(v) = 6 and s2(v) = s3(v) = s4(v) = 2.

Solution 66.
Let wi ≤ wj for some players i, j ∈ N. We want to show that

φS
i (v) =

|{π ∈ Π | i pivotal to Aπ
i }|

n!
≤

|{π ∈ Π | j pivotal to Aπ
j }|

n!
= φS

j (v).

To this end, it suffices to show that for each permutation π in which i is
pivotal there exists a permutation σ making j pivotal. Take such π and
define σ as the transposition:

σ(k) =


j k = i,

i k = j,

k otherwise,

k ∈ N.

This definition implies that Aπ
i = Aσ

j . By the hypothesis Aπ
i is loosing

and Aπ
i ∪ i is winning. This means that ∑k∈Aσ

j
wk = ∑k∈Aπ

i
wk < q and

∑k∈Aσ
j

wk + wj ≥ ∑k∈Aπ
i

wk + wi ≥ q. In other words, Aσ
j is loosing and

Aσ
j ∪ j is winning, which was to be proved.
The same inequality holds for the Banzhaf index. Indeed, it suffices to

prove that si(v) = |{A ⊆ N | A swing for i in v}| ≤ sj(v). Equivalently,
we want to show that for each swing A for i there exists a swing B for j.
Let A be a swing for i, that is, A is loosing (∑k∈A < q) and A ∪ i is winning
(∑k∈A∪i ≥ q). We will distinguish two cases. First, if j /∈ A, then we may take
B = A, since A is loosing and A ∪ j is winning by the assumption wj ≥ wi.
Second, let j ∈ A and consider now B = (A \ j) ∪ i. Then B is loosing,

∑
k∈A\j

wk + wi ≤ ∑
k∈A\j

wk + wj < q,

and B ∪ j = A ∪ i is winning.

Solution 67.
This is, for example, the simple game in which the winning coalitions are 12,
13, and 123. The weights are w1 = 5, w2 = 2, w3 = 3, and the quota is q = 6.

Solution 68.
Let v be a weighted voting game with n = 3, weights w = (2, 2, 1), and
quota q = 4. Clearly, player 3 is null in this game, so φS

3(v) = 0. Now, take
the game v′ with 4 players and weights (2, 2, 1, 1) and the same quota. In
this game player 3 is pivotal for coalition {1, 4}, for example, which means
that φS

3(v
′) > 0.
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Solution 69.
Since N is the only winning coalition in v, each player has the same Shapley
value 1

n by symmetry. If player 1 decides to split into two new players, the
resulting simple game v′ has n + 1 players, the weight vector (1, . . . , 1), and
the same quota. This means that the Shapley value of each player is 1

n+1 .
Therefore, the combined voting power of two new players is 2

n+1 , which is
almost two-times greater than the original voting power of player 1.

Solution 70.
Since N is the only winning coalition in game v, each player has the same
Shapley value 1

n by symmetry. After the split the game becomes the weighted
voting game v′ with the player set N = {1, . . . , n + 1}, weights (1, 1, 2, . . . , 2)
and the same quota q = 2n − 1. It is easy to see that player 1 is pivotal
only to coalition {3, . . . , n + 1} in game v′. Then φS

1(v
′) = (n−2)!

n! = 1
n(n+1)

and similarly for player 2. Consequently, the joint voting power of those two
players is 2

n(n+1) , which is lower than the Shapley value of player 1 in the
original game v.

Solution 71.
The original simple game v can be modelled as a vector weighted voting
game with two component games v1, v2 on 13 players as follows. We define
the player set N = {1, . . . , 13}, where {1, . . . , 10} is the Board with director 1
and deputy 2, and players 11, 12, 13 are the CEO, CFO, and CTO, respectively.
The weighted voting game v1 has weights w1 = (10, 10, 1, . . . , 1, 0, 0, 0) and
quota q1 = 24. The weighted voting game v2 has weights w2 = (0, . . . , 0, 2, 1, 1)
and quota q2 = 3. By the definition a coalition A ⊆ N is winning in v when-
ever it is winning in both v1 and v2.

Clearly, the only vetoers are 1, 2, 11 (director, deputy, and CEO).
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