

Bayesian Games

<u>Michal Jakob</u> <u>Artificial Intelligence Center</u>, Dept. of Computer Science and Engineering, FEE, Czech Technical University

CGT Autumn 2023 - Lecture 7

(based on Jackson, Leyton-Brown and Shoham)

Assumptions so far

All players know **what game is being played**, i.e., everyone knows *fully*:

- the number of players
- the actions available to each player
- the payoff associated with each action vector

In real-word strategic situations, this is often not the case

salary negotiation, law enforcement, dating, ...

Games with incomplete information

Various models of incomplete information games proposed in the literature.

We will focus on the following, practically highly useful case:

- All games have the same number of players and the same strategy space. The difference is only in payoffs (this is without the loss of generality).
- 2. Agents have **beliefs** about the values of the payoffs. These believes are obtained by conditioning a **common prior** on individual private signals.

This setting is called the **Bayesian game**.

Bayesian Games

OPEN INFORMATICS / COMPUTATIONAL GAME THEORY

Bayesian Game: Definition 1

Informally: Set of games that differ only in their payoffs, a common prior defined over them, and a partition structure over the games for each agent.

Bayesian Game: Definition 1

Definition: Bayesian Game (explicit partitions)

Bayesian game is a tuple (N, G, P, I) where

- *N* is a set of **players**
- *G* is a set of **games** with *N* players each such that: if $g, g' \in G$ then for each player $i \in N$ the strategy space in *g* is *identical* to the strategy space in *g'*
- $P \in \prod(G)$ is a **common prior** over games, where $\prod(G)$ is the set of all probability distributions over G
- $I = (I_1, ..., I_N)$ is a set of **partitions** of *G*, one for each agent.

Before deciding their strategies, each player i gets to know from which partition (from I_i) the game is.

Two players: Row player's actions = {**T**op, **B**ottom}; Column player's actions = {**L**eft, **R**ight}

 p_1 and p_2 ... Player 1's / 2's posterior beliefs (after the private signal has been received) about which game is being played.

The whole infinite hierarchy of **nested beliefs** is **common knowledge**.

Another definition

This was a definition based on an explicit partitioning of the games into information sets.

There is an equivalent, mathematically more compact definition.

Bayesian Game: Definition 2

Directly represent uncertainty over utility function using the notion of **epistemic type**.

Definition: Bayesian Game (type-based)

Bayesian game is a tuple $\langle N, A, \Theta, p, u \rangle$ where

- *N* is the set of **players**
- $A = A_1 \times A_2 \times \cdots \times A_n$ where A_i is the **set of actions** for player i
- $\Theta = \Theta_1 \times \Theta_2 \times \cdots \times \Theta_n$, Θ_i is the **type space** of player *i*
- $p: \Theta \mapsto [0,1]$ is a common prior over types
- $u = (u_1, ..., u_n)$, where $u_i: A \times \Theta \mapsto \mathbb{R}$ is the **utility** function of player *i*

The type captures all the information private to a player.

Example (using Definition 2)

a_1	a_2	$ heta_1$	θ_2	u_1	u_2	a_1	a_2	$ heta_1$	θ_2	u_1	u_2
Т	L	$\theta_{1,1}$	$\theta_{2,1}$	2	0	D	L	$\theta_{1,1}$	$ heta_{2,1}$	0	2
Т	L	$\theta_{1,1}$	$\theta_{2,2}$	2	2	D	L	$ heta_{1,1}$	$\theta_{2,2}$	3	0
Т	L	$\theta_{1,2}$	$\theta_{2,1}$	2	2	D	L	$\theta_{1,2}$	$ heta_{2,1}$	0	0
Т	L	$\theta_{1,2}$	$\theta_{2,2}$	2	1	D	L	$\theta_{1,2}$	$\theta_{2,2}$	0	0
Т	R	$ heta_{1,1}$	$ heta_{2,1}$	0	2	D	R	$ heta_{1,1}$	$ heta_{2,1}$	2	0
Т	R	$ heta_{1,1}$	$\theta_{2,2}$	0	3	D	R	$ heta_{1,1}$	$\theta_{2,2}$	1	1
Т	R	$\theta_{1,2}$	$ heta_{2,1}$	0	0	D	R	$\theta_{1,2}$	$ heta_{2,1}$	1	1
Т	R	$\theta_{1,2}$	$\theta_{2,2}$	0	0	D	R	$\theta_{1,2}$	$\theta_{2,2}$	1	2

Analysing Bayesian Games

Bayesian (Nash) Equilibrium

A plan of action for each player as a function of types that **maximize each type's expected utility**:

- 1. expecting over the actions of other players,
- 2. expecting over the **types** of (other) players.

Strategies

Given a Bayesian game (N, A, θ, p, u) with *finite* sets of players, actions, and types, strategies are defined as functions of player types as follows:

- Pure strategy: $s_i: \Theta_i \to A_i$
- Mixed strategy: $s_i: \Theta_i \to \prod A_i$

We denote $s_i(a_i | \theta_i)$ the probability under a mixed strategy s_i that player *i* plays action a_i , given that *i*'s type is θ_i .

Can be generalized to *infinite sets* (both countable and uncountable) but need to be careful about details (in particular measurability).

Expected Utility in Bayesian Games

Three standard notions of **expected utility**:

- ex-ante: the player knows nothing about anyone's actual type (including her)
- interim: the player knows her own type but not the types of the other players;
- ex-post: the player knows all players' types
 (→ corresponds to a complete information game)

Given a Bayesian game (N, A, Θ, p, u) with *finite* sets of players, actions, and types, player *i*'s **interim** expected utility with respect to type θ_i and a mixed strategy profile s is

$$EU_{i}(s|\theta_{i}) = \sum_{\theta_{-i}\in\Theta_{-i}} p(\theta_{-i}|\theta_{i}) \sum_{a\in A} \left(\prod_{j\in N} s_{j}(a_{j}|\theta_{j}) \right) u_{i}(a,\theta_{i},\theta_{-i})$$

 θ_{-i} ... the N - 1 tuple of types for all players except player i Θ_{-i} ... cartesian product of type spaces of all players except player i

Ex-ante expected utility

Given a Bayesian game (N, A, θ, p, u) with finite sets of players, actions, and types, player *i*'s **ex-ante expected utility** with respect a *mixed strategy* profile *s* is

$$EU_{i}(s) = \sum_{\theta_{i} \in \theta_{i}} p(\theta_{i}) EU_{i}(s|\theta_{i})$$

interim expected
utility

Note: Ex-ante expected utility is not conditioned on the player's type.

Bayesian Equilibrium (or Bayes-Nash equilibrium)

Definition (Bayes Nash Equilibrium)

Bayesian equilibrium is a mixed strategy profile *s* that satisfies

$$s_i \in \arg\max_{s'_i} \sum_{\theta_i} p(\theta_i) EU_i(s'_i, s_{-i}|\theta_i)$$

i and $\theta_i \in \Theta_i$

for each *i* and $\theta_i \in \Theta_i$.

This definition is based on **interim maximization** of utility.

Bayesian Equilibrium (ex-ante)

Assuming all types occur with *positive probability*, i.e., every $p(\theta_i) > 0$ for all $\theta_i \in \Theta_i$, then for each *i*:

$$s_i \in \arg\max_{s'_i} EU_i(s'_i, s_{-i}) = \arg\max_{s'_i} \sum_{\theta_i} p(\theta_i) EU_i(s'_i, s_{-i}|\theta_i)$$

i.e. the Bayes-Nash equilibrium strategy should maximize **exante** expected utility.

Bayes-Nash Equilibrium

Explicitly models behavior in uncertain environment.

Players choose strategies to maximize their payoffs in response to others accounting for:

- strategic uncertainty about how others will play
- **payoff uncertainty** about the values of their actions

Example: Sheriff's Dilemma

A sheriff is faces an armed suspect and they each must (simultaneously) decide whether to shoot the other or not, and:

the suspect is either a **criminal** (with probability p) or **innocent** with probability 1 - p.

VS.

the **criminal:** would rather shoot even if the sheriff does not, as the criminal would be caught if he does not shoot.

the **innocent suspect**: would rather not shoot even if the sheriff shoots.

the sheriff would rather shoot if the suspect shoots, but not if the suspect does not.

Sheriff's Dilemma: Baysesian Game Formulation

Sheriff's Dilemma: Suspect's strategy

Sheriff's Dilemma: Sheriff's strategy

Sheriff's Dilemma: Bayes-Nash Equilibrium

Bayes-Nash equilibrium for the Sheriff's game depends on *p*:

- $p > \frac{1}{3}$: sheriff should shoot; suspect should shoot if criminal and not shoot if innocent (unique equilibrium)
- $p < \frac{1}{3}$: sheriff should NOT shoot; suspect same as above (unique equilibrium)
- $p = \frac{1}{3}$: sheriff any mixture; suspect same as above

Bayesian Equlibrium Summary

Explicitly models behavior in an uncertain environment

Players choose strategies to maximize their payoffs in response to others accounting for:

- strategic uncertainty about how others will play and
- payoff uncertainty about the value to their actions

Payoff uncertainty common in real-world strategic situations.