O Otevěená INFORMATIKA

Auctions 2

Michal Jakob
Artificial Intelligence Center,
Dept. of Computer Science and Engineering, FEE, Czech Technical University

CGT Autumn 2023- Lecture 9

Efficiency of Single-Item Auctions?

Efficiency in single-item auctions: the item allocated to the agent who values it the most.

With independent private values (IPV):

Auction	Efficient
English (without reserve price)	yes
Japanese	yes
Dutch	no
Sealed bid second price	yes
Sealed bid first price	no

Note: Efficiency (often) lost in the correlated value setting.

Optimal Auctions

Optimal Auction Design

The seller's problem is to design an auction mechanism which has a Nash equilibrium giving him/her the highest possible expected utility.

- assuming individual rationality

Second-prize sealed bid auction does not maximize expected revenue \rightarrow not the best choice if profit maximization is important (in the short term).

Designing an Optimum Auction

We assume the IPV setting and risk-neutral bidders.
Each bidder i 's valuation is drawn from some strictly increasing cumulative density function $F_{i}(v)$, having probability density function $f_{i}(v)$ that is continuous and bounded below.

- Allow $F_{i}(v) \neq F_{j}(v)$: asymmetric valuations

The risk neutral seller knows each F_{j} and has zero value for the object.

The auction that maximizes the seller's expected revenue subject to individual rationality and Bayesian incentive-compatibility for the buyers is an optimal auction.

Example

2 bidders, v_{i} uniformly distributed on [0,1].
Second-price sealed bid auction.

Outcome without reserve price

Outcome with reserve price

Some reserve price improves revenue.

Outcome with reserve price

Bidding true value is still the dominant strategy, so:

1. [Both bides below R]: No sale.

This happens with probability R^{2} and then revenue=0
2. [One bid above the reserve and the other below]: Sale at reserve price \boldsymbol{R} This happens with probability $2(1-R) R$ and the revenue $=\mathrm{R}$
3. [Both bids above the reserve]: Sale at the second highest bid.

This happens with probability $(1-R)^{2}$ and the
revenue $=E\left[\min v_{i} \mid \min v_{i} \geq R\right]=\frac{1+2 R}{3}$
Expected revenue $=2(1-R) R^{2}+(1-R)^{2} \frac{1+2 R}{3}$
$=\frac{1+3 R^{2}-4 R^{3}}{3}$
Maximizing: $0=2 R-4 R^{2}$, i.e., $R=\frac{1}{2}$

Outcome with reserve price

Reserve price of $1 / 2$: revenue $=5 / 12$
Reserve price of 0 : revenue $=1 / 3=4 / 12$
Tradeoffs:

- Lose the sale when both bids below 1/2: but low revenue then in any case and probability $1 / 4$ of happening.
- Increase the sale price when one bidder has low valuation and the other high: happens with probability $1 / 2$.

Setting a reserve price is like adding another bidder: it increases competition in the auction.

Optimal Single Item Auction

Definition (Virtual valuations)

Consider an IPV setting where bidders are risk neutral and each bidder i 's valuation is drawn from some strictly increasing cumulative density function $F_{i}(v)$, having probability density function $f_{i}(v)$. We then define:
where

- Bidder i 's virtual valuation is $\psi_{i}\left(v_{i}\right)=v_{i}-\frac{1-F_{i}\left(v_{i}\right)}{f_{i}\left(v_{i}\right)}$
- Bidder i^{\prime} s bidder-specific reserve price r_{i}^{*} is the value for which $\psi_{i}\left(r_{i}^{*}\right)=0$

Example: uniform distribution over $[0,1]: \psi(v)=2 v-1$

Example virtual valuation functions

virtual valuation

Optimal Single Item Auction

Theorem (Optimal Single-item Auction)

The optimal (single-good) auction is a sealed-bid auction in which every agent is asked to declare his valuation. The good is sold to the agent $\boldsymbol{i}=\operatorname{argmax}_{\mathbf{i}} \boldsymbol{\psi}_{\boldsymbol{i}}\left(\widehat{\boldsymbol{v}}_{\boldsymbol{i}}\right)$, as long as $\widehat{v_{i}}>r_{i}^{*}$. If the good is sold, the winning agent i is charged the smallest valuation that it could have declared while still remaining the winner:

$$
\inf \left\{v_{i}^{*}: \psi_{i}\left(v_{i}^{*}\right) \geq 0 \wedge \forall j \neq i, \psi_{i}\left(v_{i}^{*}\right) \geq \psi_{j}\left(\widehat{v}_{j}\right)\right\}
$$

Can be understood as a second-price auction with a reserve price, held in virtual valuation space rather than in the space of actual valuations.

Remains dominant-strategy truthful.

Second-Price Auction with Reservation Price

Symmetric case: second-price auction with reserve price r^{*} satisfying: $\psi\left(r^{*}\right)=r^{*}-\frac{1-F\left(r^{*}\right)}{f\left(r^{*}\right)}=0$

- Truthful mechanism when $\psi(v)$ is non-decreasing.
- Uniform distribution over $[0, p]$: optimum reserve price $=p / 2$.

Second-price sealed bid auction with Reserve Price is not efficient!

Second-Price Auction with Reservation Price

Why does this increase revenue?

- Reservation prices are like competitors: increase the payments of winning bidders.
- The virtual valuation can increase the impact of weak bidders' bids, making the more competitive.
- Bidders with higher expected valuations bid more aggressively.

Optimal Auctions: Remarks

For optimal revenue one needs to sacrifice some efficiency.
Optimal auctions are not detail-free:

- they require the seller to incorporate information about the bidders' valuation distributions into the mechanism
- \rightarrow rarely used in practice

Theorem (Bulow and Klemperer): revenue of an efficiencymaximizing auction with $k+1$ bidder is at least as high as that of the revenue-maximizing one with k bidders.
\rightarrow better to spend energy on attracting more bidders

Multi-unit Auctions

Multi-unit Auctions

Multiple identical copies of the same good on sale.
Multi-unit Japanese auction:

- After each increment, the bidder specifies the amount he is willing to buy at that price
- The amount needs to decrease over time: cannot buy more at a higher pirce
- The auction is over when the supply equals or exceeds the demand.
- Various options if supply exceeds demand

Similar extension possible for English and Dutch auctions.

Single-unit Demand

Assume there are k identical goods on sale and risk-neutral bidders who only want one unit each.
$k+1^{\text {st }}$-price auction is the equivalent of the second-price auction: sell the units to the k highest bidders for the same price, and to set this price at the amount offered by the highest losing bid.

Note: Seller will not always make higher profit by selling more items! Example:

Bidder	Bid amount
1	$\$ 25$
2	$\$ 20$
3	$\$ 15$
4	$\$ 8$

Combinatorial Auctions

Auctions for bundles of goods.
Let $\mathcal{G}=\left\{g_{1}, \ldots, g_{n}\right\}$ be a set of items (goods) to be auctioned
A valuation function $v_{i}: 2^{\mathcal{G}} \mapsto \mathbb{R}$ indicates how much a bundle $G \subseteq \mathcal{G}$ is worth to agent i.

We typically assume the following properties:

- normalization: $v(\varnothing)=0$
- free disposal: $G_{1} \subseteq G_{2}$ implies $v\left(G_{1}\right) \leq v\left(G_{2}\right)$

Example

Buying a computer gaming rig: PC, Monitor, Keyboard and mouse. Different types/brands available for each category of items.

Non-Additive Valuations

Combinatorial auctions are interesting when the valuation function is not additive.

Two main types on non-additivity.

Substitutability

The valuation function v exhibits substitutability if there exist two sets of goods $G_{1}, G_{2} \subseteq G$ such that $G_{1} \cap G_{2}=\emptyset$ and $v\left(G_{1} \cup G_{2}\right)<$ $v\left(G_{1}\right)+v\left(G_{2}\right)$. Then this condition holds, we say that the valuation function v is subadditive.

Ex: Two different brands of TVs.

Complementarity

The valuation function v exhibits complementarity if there exist two sets of goods $G_{1}, G_{2} \subseteq G$ such that $G_{1} \cap G_{2}=\emptyset$ and $v\left(G_{1} \cup G_{2}\right)>$ $v\left(G_{1}\right)+v\left(G_{2}\right)$. Then this condition holds, we say that the valuation function v is superadditive.

Ex: Left and right shoe.

How to Sell Goods with Non-Additive Valuations?

1. Ignore valuations dependencies and sell sequentially via a sequence of independent single-item auctions.
\rightarrow Exposure problem: A bidder may bid aggressively for a set of goods in the hope of winning a bundle but only succeed in winning a subset (a thus paying too much).
2. Run separate but connected single-item auctions simultaneously.

- a bidder bids in one auction he has a reasonably good indication of what is transpiring in the other auctions of interest.

3. Combinatorial auction: bid directly on a bundle of goods.

Allocation in Combinatorial Auction

Allocation is a list of sets $G_{1}, \ldots, G_{n} \subseteq \mathcal{G}$, one for each agent i such that $G_{i} \cap G_{j}=\emptyset$ for all $i \neq j$ (i.e. not good allocated to more than one agent)

Which way to choose an allocation for a combinatorial auction?
\rightarrow The simples is to maximize social welfare (efficient allocation):

$$
U\left(G_{1}, \ldots, G_{n}, v_{1}, \ldots, v_{n}\right)=\sum_{i=1}^{n} v_{i}\left(G_{i}\right)
$$

Simple Combinatorial Auction Mechanism

The mechanism determines the social welfare maximizing allocation and then charges the winners their bid (for the bundle they have won), i.e., $\rho_{i}=\hat{v}_{i}$.

Example:

Bidder 1	Bidder 2	Bidder 3
$v_{1}(x, y)=100$	$v_{2}(x)=75$	$v_{3}(y)=40$
$v_{1}(x)=v_{1}(y)=0$	$v_{2}(x, y)=v_{2}(y)=0$	$v_{3}(x, y)=v_{3}(x)=0$

Is this incentive-compatible? No.

VCG auction

A Vickrey-Clarke-Groves (VCG) auction is a type of sealed-bid auction of multiple items. Bidders submit bids that report their valuations for the items, without knowing the bids of the other bidders. The auction system assigns the items in a socially optimal manner: it charges each individual the harm they cause to other bidders. ${ }^{[1]}$

Vickrey-Clarke-Groves (VCG) auction, an analogy to secondprice sealed bid single-unit auctions, exists for the combinatorial setting and it is dominant-strategy truthful and efficient.

VCG example

Suppose two apples are being auctioned among three bidders.

- Bidder A wants one apple and is willing to pay $\$ 5$ for that apple.
- Bidder B wants one apple and is willing to pay $\mathbf{\$ 2}$ for it.
- Bidder C wants two apples and is willing to pay $\mathbf{\$ 6}$ to have both of them but is uninterested in buying only one without the other.

First, the outcome of the auction is determined by maximizing social welfare:

- the apples go to bidder A and bidder B, since their combined bid of \$5 + \$2 $=\$ 7$ is greater than the bid for two apples by bidder C who is willing to pay only $\$ 6$.
- Thus, after the auction, the value achieved by bidder A is $\boldsymbol{\$} \mathbf{5}$, by bidder \mathbf{B} is $\mathbf{\$ 2}$, and by bidder \mathbf{C} is $\mathbf{\$ 0}$ (since bidder \mathbf{C} gets nothing).

VCG example

Payment of bidder \mathbf{A} :

- an auction that excludes bidder A, the social-welfare maximizing outcome would assign both apples to bidder C for a total social value of $\$ 6$.
- the total social value of the original auction excluding A's value is computed as \$7-\$5 = \$2.
- Finally, subtract the second value from the first value. Thus, the payment required of A is $\$ 6$ - $\$ \mathbf{2}=\mathbf{\$ 4}$.

Payment of bidder \mathbf{B} :

- the best outcome for an auction that excludes bidder B assigns both apples to bidder \mathbf{C} for $\$ 6$.
- The total social value of the original auction minus B's portion is $\$ 5$. Thus, the payment required of B is $\$ 6-\$ 5=\$ 1$.

Finally, the payment for bidder C is $\mathbf{(\$ 5} \mathbf{+} \mathbf{\$ 2})$ - (\$5 + \$2) = \$0.
After the auction, A is $\$ 1$ better off than before (paying $\$ 4$ to gain $\$ 5$ of utility), B is $\$ 1$ better off than before (paying $\$ 1$ to gain $\$ 2$ of utility), and C is neutral (having not won anything).

Winner Determination Problem

Definition

The winner determination problem for a combinatorial auctions, given the agents' declared valuations \widehat{v}_{i} is to find the social-welfare-maximizing allocation of goods to agents. This problem can be expressed as the following integer program

$$
\begin{array}{rll}
\operatorname{maximize} & \sum_{i \in N} \sum_{Z \subseteq \mathcal{Z}} \widehat{v}_{i}(Z) x_{Z, i} & \\
\text { subject to } & \sum_{Z, j \in Z} \sum_{i \in N} x_{Z, i} \leq 1 & \forall j \in Z \\
& \sum_{Z \subseteq Z} x_{Z, i} \leq 1 & \forall i \in N \\
& x_{Z, i}=\{0,1\} & \forall Z \subseteq Z, i \in N
\end{array}
$$

Complexity of the Winner Determination Problem

Equivalent to a set packing problem (SSP) which is known to be NP-complete.

Worse: SSP cannot be approximated uniformly to a fixed constant.

Two possible solutions:

- Limit to instance where polynomial-time solutions exist.
- Heuristic methods that drop the guarantee of polynomial runtime, optimality or both.

Restricted instances

Use relaxation to solve WDP in polynomial time: Drop the integrality constraint and solve as a standard linear program.

The solution is guaranteed to be integral when the constraints matrix is unimodular.

Two important real-world cases fulfills this condition.

Contiguous ones property
(continuous bundles of goods)

Tree-structured bids

Heuristics Methods

Incomplete methods do not guarantee to find optimal solution.
Methods do exist that can guarantee a solution that is within $1 / \sqrt{k}$ of the optimal solution, where k is the number of goods.

Works well in practice, making it possible to solve WDPs with many hundreds of goods and thousands of bids.

Auctions Summary

Auctions are mechanisms for allocating scarce resource among self-interested agent

Mechanism-design and game-theoretic perspective
Many auction mechanisms: English, Dutch, Japanese, First-price sealed bid, Second-price sealed bid

Desirable properties: truthfulness, efficiency, optimality, ...
Rapidly expanding list of applications worth billions of dollars
Reading:

- [Shoham] - Chapter 11
- [Maschler] - Chapter 12

