

# O OTEVŘENÁ INFORMATIKA

# Auctions 2

### Michal Jakob

Artificial Intelligence Center,

Dept. of Computer Science and Engineering, FEE, Czech Technical University

CGT Autumn 2023 - Lecture 9

# Efficiency of Single-Item Auctions?

**Efficiency** in single-item auctions: the item allocated to the agent who values it the most.

With independent private values (IPV):

| Auction                         | Efficient |
|---------------------------------|-----------|
| English (without reserve price) | yes       |
| Japanese                        | yes       |
| Dutch                           | no        |
| Sealed bid second price         | yes       |
| Sealed bid first price          | no        |

Note: Efficiency (often) lost in the correlated value setting.

# Optimal Auctions

# Optimal Auction Design

The seller's problem is to design an auction mechanism which has a Nash equilibrium giving him/her the highest possible expected utility.

assuming individual rationality

Second-prize sealed bid auction **does not maximize** expected revenue  $\rightarrow$  not the best choice if profit maximization is important (in the short term).

# Designing an Optimum Auction

We assume the IPV setting and risk-neutral bidders.

Each bidder i's valuation is drawn from some **strictly increasing** cumulative density function  $F_i(v)$ , having probability density function  $f_i(v)$  that is continuous and bounded below.

• Allow  $F_i(v) \neq F_j(v)$ : asymmetric valuations

The **risk neutral** seller knows each  $F_j$  and has **zero value** for the object.

The auction that maximizes the **seller's expected revenue** subject to **individual rationality** and **Bayesian incentive-compatibility** for the buyers is an **optimal auction**.

# Example

2 bidders,  $v_i$  uniformly distributed on [0,1].

**Second-price** sealed bid auction.

# Outcome without reserve price



# Outcome with reserve price

Some reserve price improves revenue.



# Outcome with reserve price

#### Bidding true value is still the dominant strategy, so:

- 1. [Both bides below R]: **No sale.** This happens with probability  $R^2$  and then **revenue**=0
- 2. [One bid above the reserve and the other below]: Sale at **reserve price** R This happens with probability 2(1-R)R and the **revenue**= R
- [Both bids above the reserve]: Sale at the **second highest bid**. This happens with probability  $(1-R)^2$  and the **revenue**=  $E[\min v_i \mid \min v_i \geq R] = \frac{1+2R}{3}$

Expected **revenue** = 
$$2(1-R)R^2 + (1-R)^2 \frac{1+2R}{3}$$
  
=  $\frac{1+3R^2-4R^3}{3}$ 

Maximizing: 
$$0 = 2R - 4R^2$$
, i.e.,  $R = \frac{1}{2}$ 

# Outcome with reserve price

Reserve price of 1/2: **revenue**= 5/12

Reserve price of 0: **revenue**= 1/3 = 4/12

#### **Tradeoffs:**

- Lose the sale when both bids below 1/2: but low revenue then in any case and probability 1/4 of happening.
- Increase the sale price when one bidder has low valuation and the other high: happens with probability 1/2.

Setting a reserve price is like **adding another bidder**: it increases competition in the auction.

# Optimal Single Item Auction

#### **Definition (Virtual valuations)**

Consider an **IPV setting** where bidders are **risk neutral** and each bidder i's valuation is drawn from some **strictly increasing** cumulative density function  $F_i(v)$ , having probability density function  $f_i(v)$ . We then define: where

- Bidder i's **virtual valuation** is  $\psi_i(v_i) = v_i \frac{1 F_i(v_i)}{f_i(v_i)}$
- Bidder i's **bidder-specific reserve price**  $r_i^*$  is the value for which  $\psi_i(r_i^*) = 0$

Example: uniform distribution over [0,1]:  $\psi(v) = 2v - 1$ 

# Example virtual valuation functions



# Optimal Single Item Auction

### **Theorem (Optimal Single-item Auction)**

The **optimal (single-good) auction** is a sealed-bid auction in which every agent is asked to **declare his valuation**. The good is sold to the agent  $i = \operatorname{argmax}_i \psi_i(\widehat{v}_i)$ , as long as  $\widehat{v}_i > r_i^*$ . If the good is sold, the winning agent i is charged the smallest valuation that it could have declared while still remaining the winner:

$$\inf\{v_i^*: \psi_i(v_i^*) \ge 0 \land \forall j \ne i, \psi_i(v_i^*) \ge \psi_j(\widehat{v}_j)\}$$

Can be understood as a second-price auction with a reserve price, held in virtual valuation space rather than in the space of actual valuations.

Remains dominant-strategy truthful.

## Second-Price Auction with Reservation Price

Symmetric case: second-price auction with reserve price  $r^*$  satisfying:  $\psi(r^*)=r^*-\frac{1-F(r^*)}{f(r^*)}=0$ 

- Truthful mechanism when  $\psi(v)$  is non-decreasing.
- Uniform distribution over [0, p]: optimum reserve price = p/2.

Second-price sealed bid auction with Reserve Price is **not efficient!** 

## Second-Price Auction with Reservation Price

#### Why does this increase revenue?

- Reservation prices are like competitors: increase the payments of winning bidders.
- The virtual valuation can increase the impact of weak bidders' bids, making the more competitive.
- Bidders with higher expected valuations bid more aggressively.

## Optimal Auctions: Remarks

For **optimal revenue** one needs to **sacrifice** some **efficiency**.

Optimal auctions are not detail-free:

- they require the seller to incorporate information about the bidders' valuation distributions into the mechanism
- → rarely used in practice

Theorem (Bulow and Klemperer): revenue of an efficiency-maximizing auction with k+1 bidder is at least as high as that of the revenue-maximizing one with k bidders.

→ better to spend energy on attracting more bidders

# Multi-unit Auctions

## Multi-unit Auctions

Multiple identical copies of the same good on sale.

### Multi-unit Japanese auction:

- After each increment, the bidder specifies the amount he is willing to buy at that price
- The amount needs to decrease over time: cannot buy more at a higher pirce
- The auction is over when the supply equals or exceeds the demand.
  - Various options if supply exceeds demand

Similar extension possible for English and Dutch auctions.

# Single-unit Demand

Assume there are k identical goods on sale and risk-neutral bidders who only want one unit each.

 $k+1^{\rm st}$ -price auction is the equivalent of the second-price auction: sell the units to the k highest bidders for the same price, and to set this price at the amount offered by the highest losing bid.

Note: Seller will not always make higher profit by selling more items! Example:

| Bidder | Bid amount |
|--------|------------|
| 1      | \$25       |
| 2      | \$20       |
| 3      | \$15       |
| 4      | \$8        |

## **Combinatorial Auctions**

Auctions for bundles of goods.

Let  $\mathcal{G} = \{g_1, \dots, g_n\}$  be a set of items (goods) to be auctioned

A valuation function  $v_i: 2^{\mathcal{G}} \mapsto \mathbb{R}$  indicates how much a bundle  $G \subseteq \mathcal{G}$  is worth to agent i.

We typically assume the following properties:

- normalization:  $v(\emptyset) = 0$
- free disposal:  $G_1 \subseteq G_2$  implies  $v(G_1) \le v(G_2)$

## Example

Buying a computer gaming rig: PC, Monitor, Keyboard and mouse.

Different types/brands available for each category of items.

## Non-Additive Valuations

Combinatorial auctions are interesting when the valuation function is **not additive**.

Two main types on non-additivity.

#### Substitutability

The valuation function v exhibits **substitutability** if there exist two sets of goods  $G_1, G_2 \subseteq G$  such that  $G_1 \cap G_2 = \emptyset$  and  $v(G_1 \cup G_2) < v(G_1) + v(G_2)$ . Then this condition holds, we say that the valuation function v is **subadditive**.

Ex: Two different brands of TVs.

### Complementarity

The valuation function v exhibits **complementarity** if there exist two sets of goods  $G_1, G_2 \subseteq G$  such that  $G_1 \cap G_2 = \emptyset$  and  $v(G_1 \cup G_2) > v(G_1) + v(G_2)$ . Then this condition holds, we say that the valuation function v is **superadditive**.

Ex: Left and right shoe.

# How to Sell Goods with Non-Additive Valuations?

- Ignore valuations dependencies and sell sequentially via a sequence of independent single-item auctions.
  - → Exposure problem: A bidder may bid aggressively for a set of goods in the hope of winning a bundle but only succeed in winning a subset (a thus paying too much).
- Run separate but connected single-item auctions simultaneously.
  - a bidder bids in one auction he has a reasonably good indication of what is transpiring in the other auctions of interest.
- 3. Combinatorial auction: bid directly on a bundle of goods.

## Allocation in Combinatorial Auction

**Allocation** is a list of sets  $G_1, ..., G_n \subseteq G$ , one for each agent i such that  $G_i \cap G_j = \emptyset$  for all  $i \neq j$  (i.e. not good allocated to more than one agent)

Which way to choose an allocation for a combinatorial auction?

→ The simples is to maximize **social welfare (efficient allocation)**:

$$U(G_1, ..., G_n, v_1, ..., v_n) = \sum_{i=1}^{n} v_i(G_i)$$

## Simple Combinatorial Auction Mechanism

The mechanism determines the **social welfare maximizing** allocation and then **charges** the winners their **bid** (for the bundle they have won), i.e.,  $\rho_i = \hat{v}_i$ .

#### Example:

| Bidder 1              | Bidder 2                | Bidder 3                |
|-----------------------|-------------------------|-------------------------|
| $v_1(x, y) = 100$     | $v_2(x) = 75$           | $v_3(y) = 40$           |
| $v_1(x) = v_1(y) = 0$ | $v_2(x,y) = v_2(y) = 0$ | $v_3(x,y) = v_3(x) = 0$ |

Is this incentive-compatible? No.

## VCG auction

A Vickrey–Clarke–Groves (VCG) auction is a type of sealed-bid auction of multiple items. Bidders submit bids that report their valuations for the items, without knowing the bids of the other bidders. The auction system assigns the items in a <u>socially optimal</u> manner: it charges each individual the harm they cause to other bidders. [1]

Vickrey-Clarke-Groves (VCG) auction, an analogy to secondprice sealed bid single-unit auctions, exists for the combinatorial setting and it is dominant-strategy truthful and efficient.

# VCG example

Suppose two apples are being auctioned among three bidders.

- Bidder A wants one apple and is willing to pay \$5 for that apple.
- Bidder B wants one apple and is willing to pay \$2 for it.
- Bidder C wants two apples and is willing to pay \$6 to have both of them but is uninterested in buying only one without the other.

First, the outcome of the auction is determined by maximizing social welfare:

- the apples go to bidder A and bidder B, since their combined bid of \$5 + \$2
  = \$7 is greater than the bid for two apples by bidder C who is willing to pay only \$6.
- Thus, after the auction, the value achieved by bidder A is \$5, by bidder B is \$2, and by bidder C is \$0 (since bidder C gets nothing).

# VCG example

#### Payment of bidder A:

- an auction that excludes bidder A, the social-welfare maximizing outcome would assign both apples to bidder C for a total social value of \$6.
- the total social value of the original auction excluding A's value is computed as
  \$7 \$5 = \$2.
- Finally, subtract the second value from the first value. Thus, the payment required of A is \$6 \$2 = \$4.

#### Payment of bidder **B**:

- the best outcome for an auction that excludes bidder B assigns both apples to bidder C for \$6.
- The total social value of the original auction minus B's portion is \$5. Thus, the payment required of B is \$6 \$5 = \$1.

Finally, the payment for bidder C is (\$5 + \$2) - (\$5 + \$2) = \$0.

After the auction, A is \$1 better off than before (paying \$4 to gain \$5 of utility), B is \$1 better off than before (paying \$1 to gain \$2 of utility), and C is neutral (having not won anything).

## Winner Determination Problem

#### **Definition**

The winner determination problem for a combinatorial auctions, given the agents' declared valuations  $\hat{v}_i$  is to find the social-welfare-maximizing allocation of goods to agents. This problem can be expressed as the following integer program

$$\begin{aligned} & \text{maximize } \sum_{i \in N} \sum_{Z \subseteq \mathcal{Z}} \widehat{v_i}(Z) x_{Z,i} \\ & \text{subject to } \sum_{Z,j \in Z} \sum_{i \in N} x_{Z,i} \leq 1 \quad \forall j \in \mathcal{Z} \\ & \sum_{Z \subseteq \mathcal{Z}} x_{Z,i} \leq 1 \quad \forall i \in N \\ & x_{Z,i} = \{0,1\} \quad \forall Z \subseteq \mathcal{Z}, i \in N \end{aligned}$$

# Complexity of the Winner Determination Problem

Equivalent to a **set packing problem** (SSP) which is known to be **NP-complete**.

Worse: SSP cannot be **approximated uniformly** to a fixed constant.

Two possible solutions:

- Limit to instance where polynomial-time solutions exist.
- Heuristic methods that drop the guarantee of polynomial runtime, optimality or both.

## Restricted instances

Use **relaxation** to solve WDP in polynomial time: Drop the integrality constraint and solve as a **standard** linear program.

The solution is guaranteed to be integral when the constraints matrix is **unimodular**.

Two important real-world cases fulfills this condition.

# **Contiguous ones** property (continuous bundles of goods)



#### **Tree-structured** bids



## **Heuristics Methods**

Incomplete methods do not guarantee to find optimal solution.

Methods do exist that can **guarantee** a solution that is within  $1/\sqrt{k}$  of the optimal solution, where k is the number of goods.

Works well in practice, making it possible to solve WDPs with many hundreds of goods and thousands of bids.

# **Auctions Summary**

Auctions are mechanisms for allocating scarce resource among self-interested agent

Mechanism-design and game-theoretic perspective

Many auction mechanisms: English, Dutch, Japanese, First-price sealed bid, Second-price sealed bid

Desirable properties: truthfulness, efficiency, optimality, ...

Rapidly expanding list of applications worth billions of dollars

### Reading:

- [Shoham] Chapter 11
- [Maschler] Chapter 12