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Introduction to Auctions

OPEN INFORMATICS / COMPUTATIONAL GAME THEORY: AUCTIONS



Auctions: Traditional

Auctions used in Babylon as early as 500 B.C. 

Stage 0: No automation
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Tuna Fish Auction
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Property Auction
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Auctions: Partial Automation

Grown massively with the Web/Internet 

→ Frictionless commerce: feasible to auction things that weren’t 
previously profitable

Stage 1: Computers manage auctions / run auction protocols
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Silent Auction

OPEN INFORMATICS / COMPUTATIONAL GAME THEORY: AUCTIONS



Auctions: (Almost) Full automation
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Stage 2: Computers also automate the decision making of bidders

Concerns: 
1) the most relevant adds are shown (→ user’s are reasonably happy)

2) auctioner’s profit is maximized (over long time)



What is an Auction?

An auction is a protocol that allows agents (=bidders) to indicate 
their interests in one or more resources (=items or goods) and that 
uses these indications of interest to determine both an allocation 
of the resources and a set of payments by the agents.  [Shoham & 
Leyton-Brown 2009]

Auctions use employ cardinal preferences to express interest .

Auctions are mechanisms with money.

Auctions can be viewed as (Baysian) games of a specific structure.
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Why Auctions?

Market-based price setting: for objects of unknown value, the 
value is dynamically assessed by the market!

Flexible: any object type can be allocated

Can be automated
▪ use of simple rules reduces complexity of negotiations

▪ well-suited for computer implementation

Revenue-maximising and efficient allocations are achievable
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Auctions Rules

Auctions are structured negotiations governed by auction rules 
(→ rules of the game)
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Bidding rules

How offers (bids) are 
made:

• by whom
• when
• what their 

content is

Clearing rules

Who gets which 
goods (allocation) 
and what money 
changes hands 
(payment).

Information 
rules

What information 
about the state of the 
negotiation is 
revealed to whom 
and when.



Lots of Applications

Industrial procurement

Transport and logistics

Energy markets

Cloud and grid computing

Internet auctions

(Electromagnetic spectrum allocation)

... and counting!
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Types of Auctions
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single- 
good

multi-attribute
items characterized by multiple 
attributes (A=𝑎1, 𝑎2, 𝑎3)

multi-unit
multiple indistinguishable 
items (A, A, A)

multi-item
multiple different 
items (A,B,C)

Combinatorial 
auctions



Single-Item Auctions
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Basic Auction Mechanisms

English

Japanese

Dutch

First-Price

Second-Price

(All pay auction)
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English Auction

1. Auctioneer starts the 
bidding (at some 
reservation price)

2. Bidders then shout out 
ascending prices (with 
minimum increments)

3. Once bidders stop 
shouting, the high bidder
gets the good at that price
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Japanese Auctions

Same as an English auction except that 
the auctioneer calls out the prices

1. All bidders start out standing

2. When the price reaches a level that 
a bidder is not willing to pay, that 
bidder sits down; once a bidder 
sits down, they can't get back up. 

3. The last person standing gets the 
good
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Dutch Auction

1. The auctioneer starts a clock at 
some high value; it descends

2. At some point, a bidder shouts 
“mine!" and gets the good at the 
price shown on the clock

Good when items need to be sold 
quickly (similar to Japanese)

No information is revealed during 
auction
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First-price sealed bid auction
▪ bidders write down bids on 

pieces of paper

▪ auctioneer awards the good to 
the bidder with the highest bid

▪ that bidder pays the amount of 
his bid

Second-price sealed bid 
auction (Vickerey auction)
▪ bidders write down bids on pieces 

of paper

▪ auctioneer awards the good to the 
bidder with the highest bid

▪ that bidder pays the amount bid by 
the second-highest bidder
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First-, Second-Price Sealed Bid Auctions

1st price 2nd price



Intuitive Comparison
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Analysing Auctions
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?

Are there fundamental similarities / differences between 
mechanisms described?
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1st-price 
sealed bid

2nd-price 
sealed bid

Japanese

EnglishDutch



Two Problems

Analysis of auction 
mechanisms

• determine the properties of 
a given auction mechanism

• methodology: treat 
auctions as (extended-form) 
Bayesian games and 
analyse players’ (i.e. 
bidders’) strategies

Design of auction 
mechanisms

• design the auction 
mechanism (i.e. the game 
for the bidders) with the 
desirable properties

• methodology: apply 
mechanism design 
techniques
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Payoff
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payoff* =
valuation of the item − 
price paid for the item 

If winner

payoff=zero1

If not winner

Agent’s payoff 
from participating in an auction

* Also termed surplus

Individual rationality: the agent never bids higher 
than its valuation.

1 not true for the all pay auction



Risk Attitudes

Risk neutrality: the payoff is a linear function of the difference 
between the item’s valuation and the price paid

Risk seeking (also risk loving): the payoff is a convex function of 
the difference (aggressively seeking high gains is prioritized)

Risk aversion: the payoff is a concave function of the difference 
(conservatively ensuring at least some gains is prioritized)
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Risk Attitudes
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surplus

payoff
(as a function 
of surplus)



Valuation Models
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Independent private value 
(IPV)

An agent A’s valuation of the good is 
independent from other agent’s 
valuation of the good (e.g. a taxi ride 
to the airport).

Correlated value

Valuations of the good are related 
between agents (typically the more 
other agents are prepared to pay, 
the more the agent A prepared to 
pay – e.g. purchase of items for later 
resale).



Bayesian Game

We assume that all of the above is common knowledge among 
the players,  but the type of an agent is private (i.e. only known 
by that agent).
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Definition (Bayesian Game)

A Bayesian game is a tuple 𝑁, 𝐴, Θ, 𝑝, 𝒖  where
• 𝑁 is the set of players
• Θ = Θ1 × Θ2 × ⋯ × Θ𝑛, Θ𝑖 is the type space of player 𝑖
• 𝐴 = 𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛 where 𝐴𝑖 is the set of actions for 

player 𝑖
• 𝑝: Θ ↦ [0,1] is a common prior over types
• 𝒖 = 𝑢1, … , 𝑢𝑛 , where 𝑢𝑖: A × Θ ↦ ℝ is the utility function 

of player 𝑖



Relation to (sealed bid) Auctions

Sealed bid auction under IPV is a Bayesian game in which 
▪ player 𝑖’s actions correspond to its bids ෝ𝑣𝑖

▪ player types Θ𝑖 correspond to players’ private valuations 𝑣𝑖 over the 
auctioned item(s)

▪ the payoff of player 𝑖 corresponds to: 𝒊’s valuation of the item 𝒗𝒊 – price 
paid (if winner); zero otherwise.

Similar analogies for more complicated auction mechanisms.
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?

Are there fundamental similarities / differences between 
mechanisms described?
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1st-price 
sealed bid

2nd-price 
sealed bid

Japanese

EnglishDutch



Bidding in Second-Price 
Sealed Bid Auction



Bidding in Second Price Sealed Bid Auction
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How should agents bid in the second-price sealed bid 
auctions?



Bidding in Second Price Sealed Bid Auction
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Proof: Assume that the other bidders bid in some arbitrary way. 
We must show that 𝑖's best response is always to bid truthfully. 
We'll break the proof into two cases:
▪ Bidding honestly, 𝑖 would win the auction

▪ Bidding honestly, 𝑖 would lose the auction

Theorem

Truth-telling is a dominant strategy in a second-price sealed bid 
auction (assuming independent private values – IPV).



Second-Price Sealed Bid Proof
Bidding honestly, 𝑖 is the winner

If 𝑖 bids higher, he will still win and still pay the same amount

If 𝑖 bids lower, he will either still win and still pay the same amount. . . 

... or lose and get the payoff of zero.

➔ There is a disadvantage bidding lower and no advantage bidding 
higher
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Second-Price Sealed Bid Proof
Bidding honestly, 𝑖 is not the winner

If 𝑖 bids lower, he will still lose and still pay nothing

If 𝑖 bids higher, he will either still lose and still pay nothing...

... or win and pay more than his valuation (⇒ negative payoff).

➔ There is a disadvantage bidding higher and no advantage 
bidding lower
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Second-Price Sealed Bid Proof (alternative)
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𝑢(𝑏𝑖 , 𝐵−𝑖) … 𝑖’s bidder payoff when bidding 𝑏𝑖  and when the highest of 
the other bidders (except 𝑖) is 𝐵−𝑖. 

𝑏𝑖 > 𝑣𝑖 
(i.e. 𝑖 bids higher 
than its valuation)

𝑏𝑖 < 𝑣𝑖 
(i.e. 𝑖 bids lower than 
its valuation)

𝑏𝑖 = 𝑣𝑖 
(i.e. 𝑖 bids its 
valuation)

(from Maschler, page 93 and 94) 



Second-Price Sealed Bid 

Advantages:
▪ Truthful bidding is dominant strategy

▪ No incentive for counter-speculation

▪ Computational efficiency

Disadvantages:
▪ Lying auctioneer

▪ Bidder collusion self-enforcing

▪ Reveals true valuations

▪ Not revenue maximizing
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Bidding in First-Price 
Sealed Bid Auctions



Dutch and First-price Sealed Bid

Strategically equivalent: an agent bids without knowing about 
the other agents’ bids (i.e. difference are technical 
implementation)
▪ a bidder must decide on the amount he's willing to pay, conditional on 

having placed the highest bid

Differences
▪ First-price auctions can be held asynchronously

▪ Dutch auctions are fast, and require minimal communication 
▪ only one bit needs to be transferred from the bidders to the auctioneer
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Bidding in Dutch / First Price Sealed Bid

How should bidders bid in these auctions?
▪ Note: bidding true valuation results in zero surplus

There's a trade-off  between probability of winning vs. amount 
paid upon winning (and thus the winner’s surplus)

➔ Bidders don't have a dominant strategy anymore. 

Individually optimal strategy depends on the assumptions about 
others’ valuations.

We have a Bayesian game → Bayes-Nash equilibrium.
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Equilibrium  Strategy

Assume a first-price auction with two risk-neutral bidders whose 
valuations are drawn independently and uniformly at random 
from the interval [0, 1] - what is the equilibrium strategy?

→
1

2
𝑣1,

1

2
𝑣2 is the Bayes-Nash equilibrium strategy profile

OPEN INFORMATICS / COMPUTATIONAL GAME THEORY: AUCTIONS



Interim expected utility

Given a Bayesian game (𝑁, 𝐴, Θ, 𝑝, 𝑢) with finite sets of players, 
actions, and types, player 𝑖’s interim expected utility with respect 
to type 𝜃𝑖 and a mixed strategy profile 𝑠 is

𝐸𝑈𝑖 𝑠 𝜃𝑖 =

෍

𝜃−𝑖∈Θ−𝑖

𝑝(𝜃−𝑖|𝜃𝑖) ෍

𝑎∈𝐴

ෑ

𝑗∈𝑁

𝑠𝑗 𝑎𝑗 𝜃𝑗 𝑢𝑖(𝑎, 𝜃𝑖 , 𝜃−𝑖)

OPEN INFORMATICS / COMPUTATIONAL GAME THEORY



Proof

Assume that bidder 2 bids 
1

2
𝑣2, and that bidder 1 bids 𝑠1.

The following outcomes are possible*

1. Bidder 1 wins when 
1

2
𝑣2 < 𝑠1, gaining payoff 𝑢 = 𝑣1 − 𝑠1. 

2. Bidder 1 loses when 
1

2
𝑣2 > 𝑠1 and then gets payoff 𝑢 = 0 . 

 

𝐸𝑈1 𝑠 𝑣1 = න
0

1

𝑢(𝑠)𝑑𝑣2 =

= න
0

2𝑠1

𝑣1 − 𝑠1 𝑑𝑣2 + න
2𝑠1

1

0 𝑑𝑣2 =

= |𝑣1 − 𝑠1 𝑣2 0
2𝑠1 = 2𝑣1𝑠1 − 2𝑠1

2
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* we can ignore the case where the agents have the same valuation, because this occurs with probability zero). 



Proof Continued
We can determine bidder 1’s best response to bidder 2’ strategy 
by taking the derivative and setting it to zero:

𝜕

𝜕𝑠1
2𝑣1𝑠1 − 2𝑠1

2 = 0

2𝑣1 − 4𝑠1 = 0

𝑠1 =
1

2
𝑣1
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Thus, when player 2 is bidding half her valuation, player 1’s 
best reply is to bid half his valuation (and analogously for 
player 2, given the symmetry of the game).



Equilibrium in Dutch / First Price Sealed 
Bid Auctions

The more players, the harder to win and the lower the expected 
surplus.

⇒ Dutch / FPSB auctions not incentive compatible, i.e., there are 
incentives to counter-speculate.
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Theorem

In a first-price sealed bid auction with 𝑛 risk-neutral agents 
whose valuations 𝑣1, 𝑣2, … , 𝑣𝑛 are independently drawn from a 
uniform distribution on the same bounded interval of the real 
numbers, the unique symmetric equilibrium is given by the 
strategy profile (𝑛−1

𝑛
𝑣1,…,

𝑛−1

𝑛
𝑣𝑛). 



Equilibrium in Dutch / First Price Sealed Bid 
Auctions

For non-uniform valuation distributions: Each bidder should bid 
the expectation of the second-highest valuation, conditioned on 
the assumption that his own valuation is the highest.
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Equilibrium in more general cases?

Note we only verified the equilibrium.

What about more general assumptions?

→ We need to guess the equilibrium and it gets more complicated 
as we relax the assumptions about the distributions of valuations 
(non-uniformity, no symmetry etc.).

Even determining a Nash equilibrium exists gets difficult. 

This because auctions are non-continuous games: even a small 
variation in the bid amount can lead to not-winning and thus large 
changes in the payoff.
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Bidding in English and 
Japanese Auctions
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English and Japanese Auctions Analysis

A much more complicated strategy space
▪ extensive-form game

▪ bidders are able to condition their bids on information revealed by others

▪ in the case of English auctions, the ability to place jump bids

Intuitively, though, the revealed information does not make any 
difference in the independent-private value (IPV) setting.
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English and Japanese Auctions Analysis

In correlated-value auctions, it can be worthwhile to counter-
speculate.
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Theorem

Under the IPV model, it is a dominant strategy for bidders to bid 
up to (and not beyond) their valuations in both Japanese and 
English auctions.



Seller’s Revenue
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Which auction should the seller choose?
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Expected Seller’s Revenue 
(First Price Sealed Bid Auction)
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Let 𝑍 = max 𝑉1, 𝑉2  

𝐹𝑍 𝑧 = P 𝑍 ≤ 𝑧 = P max 𝑉1, 𝑉2 ≤ z = P 𝑉1 ≤ 𝑧 ⋅  P 𝑉2 ≤ 𝑧 = z2 

⇒ 𝑓𝑍 𝑧 = ቊ
2𝑧 if 0 ≤ 𝑧 ≤ 1
0 otherwise 

1

2
𝐸 𝑍 =

1

2
 න

0

1

𝑧𝑓𝑧 𝑧 𝑑𝑧 = න
0

1

𝑧2𝑑𝑧 = ቤ
1

3
𝑧3

0

1

=
𝟏

𝟑

E max
𝑉1

2
,
𝑉2

2
=

1

2
E(max 𝑉1, 𝑉2 =? 



Expected Seller’s Revenue 

OPEN INFORMATICS / COMPUTATIONAL GAME THEORY: AUCTIONS

E min 𝑉1, 𝑉2 =?

Note: 
 min 𝑉1, 𝑉2 + max 𝑉1, 𝑉2 = 𝑉1 + 𝑉2

Hence: 

 E(min 𝑉1, 𝑉2 ) + E (max 𝑉1, 𝑉2 ) = E(𝑉1) + E(𝑉2) =
1

2
+

1

2
= 1

We already calculated (previous slide): 

  E (max 𝑉1, 𝑉2 ) = E 𝑍 =
2

3

Hence: 

  E (min 𝑉1, 𝑉2 ) =
𝟏

𝟑



Seller’s Revenue

Somewhat surprising and far from self-evident. 
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Corrolary (Expected Seller’s Revenue)

In the symmetric case with two risk-neutral bidders and IPV, the 
expected seller’s revenue from the first-price and second-price 
sealed bid auction is the same.



Revenue Equivalence
In fact, holds in more general.
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Theorem (Revenue Equivalence)

Assume that each of 𝑛 risk-neutral agents has an independent
private valuation for a single good at auction, drawn from a
common cumulative distribution 𝐹(𝑣) that is strictly increasing
and atomless on [𝑣, 𝑣]. Then any auction mechanism in which 
1. the good will be allocated to the agent with the highest 

valuation; and 
2. any agent with valuation 𝑣 has an expected utility of zero
yields the same expected revenue, and hence results in any 
bidder with valuation 𝑣 making the same expected payment.



Revenue Equivalence

Informally: As long as two mechanism allocate in the same way 
and they do not charge anything to the agent with the lowest 
valuation, the rest of payment functions is the same.

You cannot get extra money from bidder without changing the 
allocation function or the payment to the lowest-valued bidder. 

In fact, the revenue equivalence holds beyond IPV and single 
good.

Assuming bidders are risk neutral and have independent private 
valuations, all the auctions we have spoken about so far—English, 
Japanese, Dutch, and all sealed bid auction protocols—are 
revenue equivalent. 
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Applying Revenue Equivallence

Expected value of the 𝑘𝑡ℎ-largest of 𝑛 IID draws* from [0, 𝑣𝑚𝑎𝑥]:

𝑛 + 1 − 𝑘

𝑛 + 1
𝑣𝑚𝑎𝑥

Expected seller’s revenue in the second-price auction (with IID 
valuations):

𝑛 − 1

𝑛 + 1
𝑣𝑚𝑎𝑥
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* termed  k-th order statistics



Applying Revenue Equivallence
Both second-price and first-price auction satisfies the conditions 
of the revenue equivalence theorem.

Thus, a bidder in the first-price auction must bid his expected 
payment conditional on being the winner of a second price 
auction.

If 𝑣𝑖 is the high value, there are 𝑛 − 1 other values drawn from 
the uniform distribution on [0, 𝑣𝑖]. The expected value of the 
second-highest bid is therefore the first-order statistics of 𝑛 − 1 
draws from [0, 𝑣𝑖], which is

𝑛 − 1

𝑛
𝑣𝑚𝑎𝑥

We still need to verify the above is an equilibrium 
(the revenue equivalence theorem does not state that every revenue-
equivalent strategy profile is an equilibrium)
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Auctions Summary

Auctions are mechanisms for allocating scarce resource among 
self-interested agent

Mechanism-design and game-theoretic perspective

Many auction mechanisms: English, Dutch, Japanese, First-price 
sealed bid, Second-price sealed bid

Desirable properties: truthfulness, efficiency, optimality, ...

Rapidly expanding list of applications worth billions of dollars

Reading:
▪ [Shoham] – Chapter 11 
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