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Summary
What we have learned so far:

Normal-form (strategic) games, two-player zero-sum games

Extensive-form games

Games with incomplete information and auctions

Cooperative games

Further topics:

Stochastic games, multi-agent reinforcement learning

Strategic games with continuum of actions
Computational Game Theory - Lecture 13



Main challenges in applications
Poor scalability

High dimension

Environment changing too dynamically

Partial observations

Unknown goals of agents

Large strategy spaces



Modelling assumptions
2 players (agents)

Zero-sum (constant-sum) game

Strategy sets with infinitely-many actions

The game is determined by the loss function of player 1.

We seek the minimax/maximin solution for the game.



Min-max optimization



Min-max problem
Given

closed convex sets ,  and

function 

solve

We define the max-min problem analogously but their
solutions are different, in general.

X ⊆ Rm Y ⊆ Rn

f: X × Y → R

min
x∈X

max
y∈Y

f(x, y).



Min-max problem and optimization
Define a function  by

Then

is equivalent to the optimization problem

F : X → R

F(x) = max
y∈Y

f(x, y), x ∈ X.:

min
x∈X

max
y∈Y

f(x, y)

Minimize F(x) subject to x ∈ X.



Typical assumptions
 separately convex/concave

 differentiable

 has a Lipschitz continuous gradient, that is, there exists
 such that for all ,

 and  bounded, for example, a multidimensional box

f

f

f
ℓ > 0 (x, y), (x′, y′) ∈ X × Y

∥∇f(x, y) − ∇f(x′, y′)∥ ≤ ℓ∥(x, y) − (x′, y′)∥

X Y

X = [a1, b1] × ⋯ × [am, bm]



Why min-max problems are important
One agent has only partial control of the environment and
requires guarantees for the worst-case scenario

For example, a design problem with model uncertainty or an
adversary where  is the design parameter and  is the
uncertainty/adversarial parameter

The goal is to find  that is robust against all 

x y

x∗ ∈ X y ∈ Y



Convex-concave min-max problem
Let  be continuous, convex in , concave in , and  be
compact convex. Then there exists a (global) Nash equilibrium

,

and

f x y X, Y

(x∗, y∗) ∈ X × Y

f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗) ∀x ∈ X, ∀y ∈ Y

min
x∈X

max
y∈Y

f(x, y) = f(x∗, y∗) = max
y∈Y

min
x∈X

f(x, y).



Example with  differentiable

Function 

f

f(x, y) = x2 − y2



Example with  non-differentiable

Function 

f

f(x, y) = |x| − |y|



No solution to the min-max problem

Convex function f(x, y) = (x − y)2



Applications of min-max problems
Two-player zero-sum games

Training GANs

Adversarial ML

Robust ML

Signal processing

Fair AI



Applications



Two-player zero-sum games
Finite strategy sets  and 

Let  be the loss matrix of the first player

The sets of mixed strategies are  and 

The expected loss of the first player for  is

The min-max solution (=Nash equilibrium) always exists.

{1, … , m} {1, … , n}
A ∈ Rm×n

X = ∆m: Y = ∆n:

x ∈ X, y ∈ Y

f(x, y) =
m

∑
i=1

n

∑
j=1

xiyjaij = xT Ay.



Example: matching pennies game

Function  is the expected utility for Matching Penniesf(x, y) = 4xy − 2x − 2y + 1



GANs (1)
Generative AI technique able to produce realistic samples
from complex distributions

Generator samples i.i.d. from a known distribution and
transforms this to photo samples using a neural network

Discriminator wants to distinguish between the fake samples
produced by the generator and the real samples from the
true distribution



GANs (2)
This model can be viewed as a two-player zero-sum game

Let  and  be the parameters of the corresponding
neural nets and  be the loss function of the generator

We obtain the min-max problem

xg yd

f

min
xg∈X

max
yd∈Y

f(xg, yd)



Robust ML (1)
It has been verified in many experiments that deep neural
nets are highly sensitive towards small changes of
parameters

The goal is to make ML models robust in the phase of
learning against adversarial attacks

The designer wants to solve a min-max training problem



Robust ML (2)
Training data 

Perturbation data 

 is the loss function of the neural net with weights 

 is the predicted output of the neural net

The designer wants to solve the problem

(u1, t1), … , (uN , tN )
d1, … , dN

L w
p

min
w

max
∥di∥≤ϵ, i=1,…,N

N

∑
i=1

L(p(ui + di, w), ti)



Methods



Assumptions and challenges
Numerical methods exist for solving convex-concave min-
max problems

However, there are no widely accepted tools for solving non-
convex/non-concave min-max problems

The major challenges are:

The lack of convexity/concavity prevents us from finding
global optima

What is a min-max solution?



Solving min-max problems is hard

The Complexity of Constrained Min-Max Optimization, STOC’21



Projected gradient descent
The minimization problem for a smooth convex function 
over a closed convex set ,

Projected gradient descent has iterates

where  is the Euclidean projection onto  and 

g
Z

min
z∈Z

g(z)

zk+1 = PZ(zk − α∇g(zk))

PZ Z α > 0



Projected gradient descent contd.
The quality of iterates improves over time, for each step ,

The iterates converge to critical points of  with global
optimality guarantees under mild assumptions

In practice, the PGD methods is o#en applied even to non-
convex problems and “acceptable” solutions are found.

k

g(zk+1) ≤ g(zk)

g



PGD and non-convex problems



PGD and non-convex problems contd.



Projected gradient descent-ascent
Designed for  non-convex in  but concave in .

The method combines

1. gradient descent on  and gradient ascent on  with

2. the projections  onto  and  onto 

The iterations are

f(x, y) x y

x y
PX X PY Y

xk+1 = PX(xk − α∇xf(xk, yk))
yk+1 = PY (yk + α∇yf(xk, yk))



PGDA o"en fails

PGDA for  with equal stepsize (Non-convex Min-Max Optimization:
Applications, Challenges, and Recent Theoretical Advances, IEEE Signal Processing
Magazine)

f(x, y) = xy



Weakening the solution concept
Min-max problem o#en don’t have solutions

We need to find alternative notions and there are many
candidates

Various  weakenings of saddle points and critical
points in which Hessian matrix behaves indifinitely

(ϵ, δ)



Local min-max equilibria 
For every  and every :

whenever , and

whenever 

(x∗, y∗)
ϵ > 0 δ ≤ √ 2ϵ

Λ

f(x∗, y∗) < f(x, y∗) + ϵ

∥x − x∗∥ ≤ δ

f(x∗, y∗) > f(x∗, y) − ϵ

∥y − y∗∥ ≤ δ



Stay-On-the Ridge*, Daskalakis et al.,
Proceedings of ICML 2023

f(x, y) = 2xy2 − x2 − y

https://gitlab.fel.cvut.cz/kosohmar/StayOnTheRidge.jl


