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Summary

What we have learned so far:

e Normal-form (strategic) games, two-player zero-sum games
e Extensive-form games
e Games with incomplete information and auctions

e Cooperative games

Further topics:

e Stochastic games, multi-agent reinforcement learning_
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e Strategic games with continuum of actions



Main challenges in applications

e Poor scalability
e High dimension
e Environment changing too dynamically

Partial observations

e Unknown goals of agents

Large strategy spaces



Modelling assumptions

e 2 players (agents)
e Zero-sum (constant-sum) game
e Strategy sets with infinitely-many actions

e The game is determined by the loss function of player 1.

We seek the minimax/maximin solution for the game.



Min-max optimization



Min-max problem

Given

e closed convexsets X C R™ Y C R" and
e function f: X XY - R

solve

min max f(x,y).

We define the max-min problem analogously but their
solutions are different, in general.



Min-max problem and optimization
Define a function F: X — R by

F(x) := max f(x,y), x € X.
yeY

Then

iy e S,

is equivalent to the optimization problem

Minimize F(x) subject to x € X.



Typical assumptions

e f separately convex/concave
e fdifferentiable

e fhasa Lipschitz continuous gradient, that is, there exists
¢ > Osuchthatforall (x,y), (x',y') € X XY,

IVFx,y) = VI, Y)I < L(xy) — &,y

e X and Y bounded, for example, a multidimensional box

X =la1,b1] X -+ X [@m, by



Why min-max problems are important

e One agent has only partial control of the environment and
requires guarantees for the worst-case scenario

e For example, a design problem with model uncertainty or an
adversary where x is the design parameter and y is the
uncertainty/adversarial parameter

e The goalistofindx* € X thatisrobustagainstally € Y



Convex-concave min-max problem

Let f be continuous, convex in x, concaveiny,and X, Y be

compact convex. Then there exists a (global) Nash equilibrium
(x*,y*) € X XY,

f(x*y) < f(x%y") < fx,y") VxeX,VyeY
and

TR yar fEoy) =16y = g Sooy)



Example with f differentiable

Function f(z,y) = 22 — y?



Example with f non-differentiable

Function f(z,y) = |z| — |y|



No solution to the min-max problem




Applications of min-max problems

e Two-player zero-sum games
e Training GANs

e Adversarial ML

e Robust ML

e Signal processing

e Fair Al



Applications



Two-player zero-sum games

e Finite strategy sets {1,...,m}and {1,...,n}
e Let A € R™*" be the loss matrix of the first player
e The sets of mixed strategiesare X := A,,andY := A,

The expected loss of the first playerforx € X,y € Y is

3

n

f(xy) = Z LiYjQij = x' Ay.
1

i=1 j=

The min-max solution (=Nash equilibrium) always exists.



Example: matching pennies game
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Function f(z,y) = 4xy — 2z — 2y + 1 is the expected utility for Matching Pennies



GANs (1)

e Generative Al technique able to produce realistic samples
from complex distributions

e Generator samples i.i.d. from a known distribution and
transforms this to photo samples using a neural network

e Discriminator wants to distinguish between the fake samples
produced by the generator and the real samples from the
true distribution



GANs (2)

e This model can be viewed as a two-player zero-sum game

e Letx, andy, be the parameters of the corresponding
neural nets and f be the loss function of the generator

e We obtain the min-max problem

min max f(x
xgEXydEYf( 97Yd)



Robust ML (1)

e |t has been verified in many experiments that deep neural
nets are highly sensitive towards small changes of
parameters

e The goal is to make ML models robust in the phase of
learning against adversarial attacks

e The designer wants to solve a min-max training problem



Robust ML (2)

e Trainingdata (uy,t1),..., (un,tnN)
e Perturbationdatad;,...,dy
e L isthe loss function of the neural net with weights w

e pisthe predicted output of the neural net

The designer wants to solve the problem

N
. L 1 di) y t;
min max ; (p(u; +d;, w),t;)

W ||d;||<e, i=1,...,



Methods



Assumptions and challenges

e Numerical methods exist for solving convex-concave min-
max problems

e However, there are no widely accepted tools for solving non-
convex/non-concave min-max problems

The major challenges are:

e The lack of convexity/concavity prevents us from finding
global optima

e Whatis a min-max solution?



Solving min-max problems is hard
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(a) Min-min problem; the function values reveal the loca-

tion of the points within best response path.
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(b) Min-max problem; the function values do not reveal the
location of the points within best response path.

The Complexity of Constrained Min-Max Optimization, STOC’21



Projected gradient descent

e The minimization problem for a smooth convex function g
over a closed convex set Z,

min g(z)

 Projected gradient descent has iterates
2" = Py(z" — aVg(z"))

where Py is the Euclidean projectiononto Zand a > 0



Projected gradient descent contd.

e The quality of iterates improves over time, for each step k,

g(z""1) < g(z")

e Theiterates converge to critical points of g with global
optimality guarantees under mild assumptions

In practice, the PGD methods is often applied even to non-
convex problems and “acceptable” solutions are found.



PGD and non-convex problems

N ,;




PGD and non-convex problems contd.
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Projected gradient descent-ascent

Designed for f(x,y) non-convexin x but concaveiny.

e The method combines
1. gradient descent on x and gradient ascent on y with
2. the projections Px onto X and Py onto Y

e The iterations are

Xk—H — PX(Xk — avxf(xka yk))
y*t = Py(y* + aV, f(x",y"))



n

PGDA often fa

PGDA for f(x,y) = xy with equal stepsize (Non-convex Min-Max Optimization:
Applications, Challenges, and Recent Theoretical Advances, IEEE Signal Processing
Magazine)



Weakening the solution concept

e Min-max problem often don’t have solutions

e We need to find alternative notions and there are many
candidates

e Various (€, d) weakenings of saddle points and critical
points in which Hessian matrix behaves indifinitely



Local min-max equilibria (x*, y™*)
Foreverye > Oandeveryd < 4/ %:

Fx5y") < f(x,y7) +e
whenever ||x — x*|| < 4, and

fx5y") > f(x"y) —€

whenever |ly — y*|| < 6



Stay-On-the Ridge*, Daskalakis et al.,
Proceedings of ICML 2023

ur plot of the fun
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flz,y) =2zy* —z* —y

https://gitlab.fel.cvut.cz/kosohmar/StayOnTheRidge.jl



