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Correlated equilibrium



Probabilistic interpretation of NE
Assume that players follow Nash equilibrium 

Every player  samples a pure strategy  based on 
independently of the other players

This means that the probability of  is

We may allow players to follow other random signals.

(p1, … , pn)
i si ∈ Si pi
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Correlation of pure strategies
A correlation mechanism is a probability distribution  over .

The extensive-form game  proceeds as follows:

1. A strategy profile (signal)  is sampled from 

2. Each player  learns about  but not about 

3. Each player  picks , so the payoff is 

Strategies in  are maps . A player  adopting
the signalled strategy  is using the strategy .
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Correlated equilibrium
A correlated equilibrium in a normal-form game is a correlation
mechanism  such that  is a Nash equilibrium in
the extensive-form game .

Does every game have a correlated equilibrium ?

How to compute such ?
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Correlated equilibrium, equivalently
A correlation mechanism  is a correlated equilibrium if, and
only if, for each player  and every  with ,

This means that the set of all CE  is a convex polytope.
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Example: The game of Chicken

The set of correlated equilibria is given by

[ ]6, 6 2, 7
7, 2 0, 0

7p(1, 1) ≤ 6p(1, 1) + 2p(1, 2)
6p(2, 1) + 2p(2, 2) ≤ 7p(2, 1)

7p(1, 1) ≤ 6p(1, 1) + 2p(2, 1)
6p(1, 2) + 2p(2, 2) ≤ 7p(1, 2)



Properties of correlated equilibria
In any game, every NE  induces a CE given by

A single CE can be found by solving the linear program
where the objective is to maximize the social welfare

or some other criterion
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Regret matching



Motivation - learning in games
Best response dynamics converges only to pure equilibria

Fictitious play is slow and may fail to converge

We seek a simple adaptive procedure for playing a game:

Players observe the history of past plays

Not only best response actions may be played!

The probability of strategy is proportional to its regret



Regret
Each player  plays a pure strategy  in iteration . We define
the following regrets of player  in iteration  for strategy :

Instantenous regret 

Expected regret

Positive regret 
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Regret matching
1. Pick mixed strategies  arbitrarily when 

2. For each , sample  from :

i. If , then

ii. Otherwise , for all .

3. Set  and go to 2.
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Convergence to correlated equilibria
Let  be the strategy profile played
according to  at iteration 

The empirical distribution of such strategy profiles is

The sequence of empirical distributions 
converges to the set of correlated equilibria almost surely
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Stackelberg equilibrium



Two-player Stackelberg game
Player 1 (leader) and player 2 (follower) interact as follows:

1. The leader publicly commits to a mixed strategy 

2. The follower then selects a pure strategy 

The main problem
The leader wants to maximize , which depends on
unknown . We need a tie-breaking rule.

p1 ∈ ∆1

s2 ∈ BR2(p1)

U1(p1, s2)
s2 ∈ BR2(p1)



Tie-breaking
1. The set  contains only one element (no problem!)

2. The set  contains more than one element:

a.  for all 

b. The choice of best response is based on the application

c. The follower breaks ties in favor of the leader

d. The follower breaks ties to the disadvantage of the leader

BR2(p1)
BR2(p1)

U1(p1, s2) = U1(p1, t2) s2, t2 ∈ BR2(p1)



Strong Stackelberg equilibrium
The follower picks the best response  in favor of the leader:

Strong SE is a pair  satisfying
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Computation of strong SE
The optimal strategy of leader  can be computed by LP since

For each  maximize  s.t.

 is the optimal solution of an LP with the maximal value
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Strong SE: Example

This gives  (payoff 3.5) and  (payoff 0.5).

[ ] BR2(p1) =
2, 1 4, 0
1, 0 3, 1

⎧⎪⎨⎪⎩2 0 ≤ p1 < 0.5,
{1, 2} p1 = 0.5,
1 0.5 < p1 ≤ 1,

max
s2∈BR2(p1)

U1(p1, s2) = {p1 + 3 0 ≤ p1 ≤ 0.5,
p1 + 1 0.5 < p1 ≤ 1.

p∗
1 = 0.5 s2 ∈ {1, 2}



⎪⎪Weak Stackelberg equilibrium
The follower picks  to the disadvantage of the leader:

Weak SE is a pair  satisfying
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⎪⎪
Weak SE: Example

The last function doesn’t have maximum on 

This means that the weak SE doesn’t exist

[ ] BR2(p1) =
2, 1 4, 0
1, 0 3, 1

⎧⎪⎨⎪⎩2 0 ≤ p1 < 0.5,
{1, 2} p1 = 0.5,
1 0.5 < p1 ≤ 1,

min
s2∈BR2(p1)

U1(p1, s2) = {p1 + 3 0 ≤ p1 < 0.5,
p1 + 1 0.5 ≤ p1 ≤ 1.

[0, 1]



⎪⎪Zero-sum Stackelberg games
By the zero-sum assumption, for all ,

This implies that the leader solves the problem

whose optimal solution is the maxmin strategy

s2, t2 ∈ BR2(p1)

U1(p1, s2) = U1(p1, t2) = min
r2∈S2

U1(p1, r2)

max
p1∈∆1

min
r2∈S2

U1(p1, r2)


