Alternatives to Nash equilibrium
 Lecture 6

Tomáš Kroupa

Outline

1. Correlated equilibrium
2. Regret matching
3. Stackelberg equilibrium

Correlated equilibrium

Probabilistic interpretation of NE

- Assume that players follow Nash equilibrium $\left(p_{1}, \ldots, p_{n}\right)$
- Every player i samples a pure strategy $s_{i} \in S_{i}$ based on p_{i} independently of the other players
- This means that the probability of $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right) \in \mathbf{S}$ is

$$
p(\mathbf{s})=p_{1}\left(s_{1}\right) \cdots p_{n}\left(s_{n}\right)
$$

We may allow players to follow other random signals.

Correlation of pure strategies

A correlation mechanism is a probability distribution p over \mathbf{S}.
The extensive-form game $\Gamma(p)$ proceeds as follows:

1. A strategy profile (signal) \mathbf{s} is sampled from p
2. Each player i learns about s_{i} but not about \mathbf{s}_{-i}
3. Each player i picks $s_{i}^{\prime} \in S_{i}$, so the payoff is $u_{i}\left(s_{1}^{\prime}, \ldots, s_{n}^{\prime}\right)$

Strategies in $\Gamma(p)$ are maps $\sigma_{i}: S_{i} \rightarrow S_{i}$. A player i adopting the signalled strategy s_{i} is using the strategy $\sigma_{i}^{*}\left(s_{i}\right)=s_{i}$.

Correlated equilibrium

A correlated equilibrium in a normal-form game is a correlation mechanism p such that $\left(\sigma_{1}^{*}, \ldots, \sigma_{n}^{*}\right)$ is a Nash equilibrium in the extensive-form game $\Gamma(p)$.

- Does every game have a correlated equilibrium p ?
- How to compute such p ?

Correlated equilibrium, equivalently

A correlation mechanism p is a correlated equilibrium if, and only if, for each player i and every $s_{i}, s_{i}^{\prime} \in S_{i}$ with $s_{i} \neq s_{i}^{\prime}$,

$$
\sum_{\mathbf{s}_{-i} \in \mathbf{S}_{-i}} p\left(s_{i}, \mathbf{s}_{-i}\right) u_{i}\left(s_{i}^{\prime}, \mathbf{s}_{-i}\right) \leq \sum_{\mathbf{s}_{-i} \in \mathbf{S}_{-i}} p\left(s_{i}, \mathbf{s}_{-i}\right) u_{i}\left(s_{i}, \mathbf{s}_{-i}\right)
$$

This means that the set of all CE p is a convex polytope.

Example: The game of Chicken

$$
\left[\begin{array}{ll}
6,6 & 2,7 \\
7,2 & 0,0
\end{array}\right]
$$

The set of correlated equilibria is given by

$$
\begin{aligned}
7 p(1,1) & \leq 6 p(1,1)+2 p(1,2) \\
6 p(2,1)+2 p(2,2) & \leq 7 p(2,1) \\
7 p(1,1) & \leq 6 p(1,1)+2 p(2,1) \\
6 p(1,2)+2 p(2,2) & \leq 7 p(1,2)
\end{aligned}
$$

Properties of correlated equilibria

- In any game, every NE $\left(p_{1}, \ldots, p_{n}\right)$ induces a CE given by

$$
p(\mathbf{s})=p_{1}\left(s_{1}\right) \cdots p_{n}\left(s_{n}\right), \quad \mathbf{s}=\left(s_{1}, \ldots, s_{n}\right) \in \mathbf{S}
$$

- A single CE can be found by solving the linear program where the objective is to maximize the social welfare

$$
\sum_{i \in N} \sum_{\mathbf{s} \in \mathbf{S}} p(\mathbf{s}) u_{i}(\mathbf{s})
$$

or some other criterion

Regret matching

Motivation - learning in games

- Best response dynamics converges only to pure equilibria
- Fictitious play is slow and may fail to converge

We seek a simple adaptive procedure for playing a game:

- Players observe the history of past plays
- Not only best response actions may be played!
- The probability of strategy is proportional to its regret

Regret

Each player i plays a pure strategy s_{i}^{t} in iteration t. We define the following regrets of player i in iteration t for strategy s_{i} :

- Instantenous regret $r_{i}^{t}\left(s_{i}\right)=u_{i}\left(s_{i}, \mathbf{s}_{-i}^{t}\right)-u_{i}\left(\mathbf{s}^{t}\right)$
- Expected regret

$$
R_{i}^{t}\left(s_{i}\right)=\frac{1}{t} \sum_{\tau=1}^{t} r_{i}^{\tau}\left(s_{i}\right)
$$

- Positive regret $R_{i}^{t}\left(s_{i}\right)_{+}=\max \left\{R_{i}^{t}\left(s_{i}\right), 0\right\}$

Regret matching

1. Pick mixed strategies $p_{1}^{t}, \ldots, p_{n}^{t}$ arbitrarily when $t=1$
2. For each $i \in N$, sample s_{i}^{t} from p_{i}^{t} :
i. If $\sum_{s_{i}^{\prime} \in S_{i}} R_{i}^{t}\left(s_{i}^{\prime}\right)_{+}>0$, then

$$
p_{i}^{t+1}\left(s_{i}\right)=\frac{R_{i}^{t}\left(s_{i}\right)_{+}}{\sum_{s_{i}^{\prime} \in S_{i}} R_{i}^{t}\left(s_{i}^{\prime}\right)_{+}}, \quad s_{i} \in S_{i}
$$

ii. Otherwise $p_{i}^{t+1}\left(s_{i}\right)=\frac{1}{\left|S_{i}\right|}$, for all $s_{i} \in S_{i}$.
3. Set $t \leftarrow t+1$ and go to 2 .

Convergence to correlated equilibria

- Let $\mathbf{s}^{t}=\left(s_{1}^{t}, \ldots, s_{n}^{t}\right)$ be the strategy profile played according to p_{i}^{t} at iteration t
- The empirical distribution of such strategy profiles is

$$
q^{t}(\mathbf{s})=\frac{\left|\left\{\tau=1, \ldots, t \mid \mathbf{s}^{\tau}=\mathbf{s}\right\}\right|}{t}, \quad \mathbf{s} \in \mathbf{S}
$$

- The sequence of empirical distributions q^{1}, q^{2}, \ldots converges to the set of correlated equilibria almost surely

Stackelberg equilibrium

Two-player Stackelberg game

Player 1 (leader) and player 2 (follower) interact as follows:

1. The leader publicly commits to a mixed strategy $p_{1} \in \Delta_{1}$
2. The follower then selects a pure strategy $s_{2} \in \mathbf{B R}_{2}\left(p_{1}\right)$

The main problem
The leader wants to maximize $U_{1}\left(p_{1}, s_{2}\right)$, which depends on unknown $s_{2} \in \mathbf{B R}_{2}\left(p_{1}\right)$. We need a tie-breaking rule.

Tie-breaking

1. The set $\mathbf{B R}_{2}\left(p_{1}\right)$ contains only one element (no problem!)
2. The set $\mathbf{B R}_{2}\left(p_{1}\right)$ contains more than one element:
a. $U_{1}\left(p_{1}, s_{2}\right)=U_{1}\left(p_{1}, t_{2}\right)$ for all $s_{2}, t_{2} \in \mathbf{B} \mathbf{R}_{2}\left(p_{1}\right)$
b. The choice of best response is based on the application
c. The follower breaks ties in favor of the leader
d. The follower breaks ties to the disadvantage of the leader

Strong Stackelberg equilibrium

The follower picks the best response s_{2} in favor of the leader:

$$
\max _{p_{1} \in \Delta_{1}} \max _{s_{2} \in \mathbf{B R}_{2}\left(p_{1}\right)} U_{1}\left(p_{1}, s_{2}\right)
$$

Strong $S E$ is a pair $\left(p_{1}^{*}, s_{2}^{*}\right)$ satisfying

$$
\begin{aligned}
\max _{s_{2} \in \mathbf{B R}_{2}\left(p_{1}^{*}\right)} U_{1}\left(p_{1}^{*}, s_{2}\right) & =\max _{p_{1} \in \Delta_{1}} \max _{s_{2} \in \mathbf{B R}}^{2}\left(p_{1}\right) \\
U_{2}\left(p_{1}^{*}, s_{2}^{*}\right) & =\max _{s_{2} \in S_{2}} U_{2}\left(p_{1}^{*}, s_{2}\right)
\end{aligned}
$$

Computation of strong SE

The optimal strategy of leader p_{1}^{*} can be computed by LP since

$$
\max _{p_{1} \in \Delta_{1}} \max _{s_{2} \in \mathbf{B R}_{2}\left(p_{1}\right)} U_{1}\left(p_{1}, s_{2}\right)=\max _{s_{2} \in S_{2}} \max _{\substack{p_{1} \in \Delta_{1} \\ s_{2} \in \mathbf{B R}_{2}\left(p_{1}\right)}} U_{1}\left(p_{1}, s_{2}\right)
$$

- For each $s_{2} \in S_{2}$ maximize $U_{1}\left(p_{1}, s_{2}\right)$ s.t.

$$
\begin{aligned}
U_{2}\left(p_{1}, s_{2}\right) & \geq U_{2}\left(p_{1}, t_{2}\right) \quad \forall t_{2} \in S_{2} \\
p_{1} & \in \Delta_{1}
\end{aligned}
$$

- p_{1}^{*} is the optimal solution of an LP with the maximal value

Strong SE: Example

$$
\begin{gathered}
{\left[\begin{array}{ll}
2,1 & 4,0 \\
1,0 & 3,1
\end{array}\right] \quad \mathbf{B R}_{2}\left(p_{1}\right)= \begin{cases}2 & 0 \leq p_{1}<0.5, \\
\{1,2\} & p_{1}=0.5, \\
1 & 0.5<p_{1} \leq 1,\end{cases} } \\
\max _{s_{2} \in \mathbf{B R}_{2}\left(p_{1}\right)} U_{1}\left(p_{1}, s_{2}\right)= \begin{cases}p_{1}+3 & 0 \leq p_{1} \leq 0.5, \\
p_{1}+1 & 0.5<p_{1} \leq 1 .\end{cases}
\end{gathered}
$$

This gives $p_{1}^{*}=0.5$ (payoff 3.5) and $s_{2} \in\{1,2\}$ (payoff 0.5).

Weak Stackelberg equilibrium

The follower picks s_{2} to the disadvantage of the leader:

$$
\max _{p_{1} \in \Delta_{1}} \min _{s_{2} \in \mathbf{B R}_{2}\left(p_{1}\right)} U_{1}\left(p_{1}, s_{2}\right)
$$

Weak $S E$ is a pair $\left(p_{1}^{*}, s_{2}^{*}\right)$ satisfying

$$
\begin{aligned}
\min _{s_{2} \in \mathbf{B R}_{2}\left(p_{1}^{*}\right)} U_{1}\left(p_{1}^{*}, s_{2}\right) & =\max _{p_{1} \in \Delta_{1}} \min _{s_{2} \in \mathbf{B} \mathbf{R}_{2}\left(p_{1}\right)} U_{1}\left(p_{1}, s_{2}\right) \\
U_{2}\left(p_{1}^{*}, s_{2}^{*}\right) & =\max _{s_{2} \in S_{2}} U_{2}\left(p_{1}^{*}, s_{2}\right)
\end{aligned}
$$

Weak SE: Example

$$
\begin{gathered}
{\left[\begin{array}{ll}
2,1 & 4,0 \\
1,0 & 3,1
\end{array}\right] \quad \mathbf{B R}_{2}\left(p_{1}\right)= \begin{cases}2 & 0 \leq p_{1}<0.5, \\
\{1,2\} & p_{1}=0.5, \\
1 & 0.5<p_{1} \leq 1,\end{cases} } \\
\min _{s_{2} \in \mathbf{B R}_{2}\left(p_{1}\right)} U_{1}\left(p_{1}, s_{2}\right)= \begin{cases}p_{1}+3 & 0 \leq p_{1}<0.5, \\
p_{1}+1 & 0.5 \leq p_{1} \leq 1 .\end{cases}
\end{gathered}
$$

- The last function doesn't have maximum on $[0,1]$
- This means that the weak SE doesn't exist

Zero-sum Stackelberg games

- By the zero-sum assumption, for all $s_{2}, t_{2} \in \mathbf{B R}_{2}\left(p_{1}\right)$,

$$
U_{1}\left(p_{1}, s_{2}\right)=U_{1}\left(p_{1}, t_{2}\right)=\min _{r_{2} \in S_{2}} U_{1}\left(p_{1}, r_{2}\right)
$$

- This implies that the leader solves the problem

$$
\max _{p_{1} \in \Delta_{1}} \min _{r_{2} \in S_{2}} U_{1}\left(p_{1}, r_{2}\right)
$$

whose optimal solution is the maxmin strategy

